Skip to main content
. 2022 Mar;63(3):389–395. doi: 10.2967/jnumed.121.262117

TABLE 4.

Number of Independent Features per Segmentation Method, Number of Included Features, and Predictive Value for Largest Lesion for All Extracted Features (n = 483) and All Reliable, Repeatable, and Reproducible Features (n = 99)

No. of features Parameter Independent of MTV Independent of SUVpeak Independent of MTV and SUVpeak Independent of MTV and SUVpeak and uncorrelated No. of features in linear regression CV-AUC (±SD)
483 SUV4.0 427 134 85 24 11 0.73 ± 0.10
41%max 409 158 84 19 10 0.71 ± 0.11
A50P 424 176 117 21 8 0.71 ± 0.11
MV2 435 141 93 21 3 0.71 ± 0.10
MV3 424 173 114 21 5 0.69 ± 0.11
Best 437 168 122 25 10 0.69 ± 0.11
99 SUV4.0 57 46 13 10 5 0.73 ± 0.10
41%max 50 57 14 6 1 0.65 ± 0.11
A50P 54 59 20 9 4 0.63 ± 0.11
MV2 59 52 18 8 3 0.70 ± 0.11
MV3 54 52 18 7 3 0.67 ± 0.11
Best 59 55 21 10 3 0.69 ± 0.11

41%max = 41% of SUVmax; A50P = 50% of SUVpeak; MV2 = majority vote segmenting voxels detected by ≥2 methods; MV3 = majority vote segmenting voxels detected by ≥3 methods.