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Prostate MRI has an established role in guiding prostate 
biopsies and diagnosis of clinically significant prostate can-
cers (PCas).1–4 Although the benefit of use of MRI has been 
reported in studies mainly conducted in academic centers, 
it is evident that the diagnostic performance reported in 
large-scale academic studies cannot be widely reproduced.5 
Use of prostate MRI in diagnosis of PCa through the MRI-
guided biopsy pathway has several key steps, such as MRI 
acquisition, interpretation/reporting, MRI data processing 
for biopsy use, and MRI to transrectal ultrasonography 
image registration during biopsy procedure, all of which 
make up a multistep quality chain.6–8 In order to improve 
standardization of use of prostate MRI, the Prostate Imag-
ing and Reporting Data System (PI-RADS) was developed 
and released by international experts in 20159 and current-
ly its version 2.1 is in use.10 Although PI-RADS has been 
documented to improve use of prostate MRI in PCa clini-
cal care, its key elements are still subjective, which is prone 
to diminish robustness of prostate MRI, specifically in the 
community setting. Artificial intelligence (AI) has been 
shown to aid multiple tasks such as organ segmentation, le-
sion detection, classification in medical imaging including 
radiology and pathology.11,12

Machine learning (ML) is an important branch of AI and 
mainly serves as the basis for development and training 
algorithms for certain tasks which allows computers to 
learn from human expert-driven data and predict certain 
outcomes. ML algorithms can be stratified in three 
categories:

(1)	 Supervised learning: Algorithm training is dependent 
on a ground truth training data labeled by human 
experts.

(2)	 Unsupervised learning: Algorithm training is 
independent of training data labeled by human experts.

(3)	 Reinforcement learning: Algorithm training is adaptive 
and is based on continuous feedback from its own 
mistakes and successes.

ML strategy can analyze and recruit big-scaled data for 
training AI models which is much more efficient compared 
to traditional statistical approaches, and therefore it has an 
expanding role in radiology, where massive amount of data 
is produced continuously. Deep learning (DL) is a subset 
of supervised ML which employs algorithms also called 
convolutional neural networks (CNNs) with hidden layers 
in a structured fashion mimicking human neuron archi-
tecture. For radiology applications, traditionally imaging 
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ABSTRACT

Prostate cancer (PCa) is the most common cancer type in males in the Western World. MRI has an established role in 
diagnosis of PCa through guiding biopsies. Due to multistep complex nature of the MRI-guided PCa diagnosis pathway, 
diagnostic performance has a big variation. Developing artificial intelligence (AI) models using machine learning, 
particularly deep learning, has an expanding role in radiology. Specifically, for prostate MRI, several AI approaches have 
been defined in the literature for prostate segmentation, lesion detection and classification with the aim of improving 
diagnostic performance and interobserver agreement. In this review article, we summarize the use of radiology appli-
cations of AI in prostate MRI.
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data are transformed into integrated feature vectors which 
build the input neurons of the network, and this is followed by 
a number of hidden layers made up by neural nodes. Each node 
is then connected to those in other layers with different weights, 
which determine the strength of connections between neurons, 
leading to the output neurons that encode the model outcome 
(Figure  1).13 In the last half decade, there has been a growing 
interest in use of DL-based AI applications in prostate MRI14,15 
and in this review article, we will summarize use of radiology 
applications of AI in prostate MRI.

AI IN PROSTATE MRI SCAN QUALITY
As prostate MRI has been more widely used, this has led a large 
variation in scan quality. Scan quality is closely related to factors, 
such as equipment used, pulse sequence parameters and patient-
related factors (e.g. hip prosthesis, motion, and rectal gas). The 
PI-RADS v. 2.1 document provides minimum technical speci-
fications and patient preparation options to improve quality of 
prostate MRI.10 The adherence to PI-RADS technical standards 
is quite variable,16,17 and stringent adherence to these tech-
nical standards do not necessarily ensure good quality prostate 
MRI scans.18 Additionally, the actual impact of patient prepa-
ration measures, such as bowel preparation or use of antispas-
modic agents, is quite variable.19–22 Several groups in the world 
are exploring routes of improving prostate MRI quality and, 
recently, Prostate Imaging quality (PI-QUAL) has been released 
by European prostate MRI experts.23 This system aims to eval-
uate the diagnostic quality of prostate MRIs using a set of criteria 
for each pulse sequence.23 PI-QUAL has been recently investi-
gated in an interreader agreement study with 103 patients and 2 
dedicated radiologists. The agreement for each single PI-QUAL 
score was strong (κ = 0.85 and percent agreement = 84%). The 
agreement for diagnostic quality of each pulse sequence was 
89% (92/103 scans), 88% (91/103 scans) and 78% (80/103 scans) 
for T2 weighted imaging, dynamic contrast-enhanced MRI and 
diffusion-weighted imaging, respectively.24The actual impact of 
PI-QUAL evaluation system on improving prostate MRI quality 
will soon be reported. Use of AI in evaluation and improving 
prostate MRI scan quality is an understudied topic and very 
few studies exist. In a pilot study with 30 patients, Gassenmaier 
et al utilized a novel DL T2 weighted turbo spin echo imaging 
(T2DL) sequence in prostate MRI and investigate its impact on 

examination time, image quality, diagnostic confidence, and 
PI-RADS classification compared to standard T2 weighted turbo 
spin echo imaging. The DL algorithm in that study relied on 
data consistency through a parallel imaging signal model and 
was trained on a pool of representative data which resulted in 
more suited regularization allowing faster image acquisitions. 
The fixed unrolled algorithm for accelerated MR image recon-
struction consisted of multiple cascades, each made up from a 
data consistency using a trainable Nesterov momentum followed 
by CNN-based regularization. The regularization model’s archi-
tecture was based on a novel hierarchical design of an iterative 
network that repeatedly decreases and increases the resolution 
of the feature maps, allowing for a more memory-efficient model 
than conventional CNNs. As input to the network, undersampled 
k-space data and conventionally estimated coil-sensitivity maps 
were provided. The DL-based T2 sequence image acquisition was 
shorter than the standard T2 sequence (1:38 min vs 4:37 min). 
Noise level was lower, and image quality was rated higher for the 
DL-based T2 sequence, which resulted in a better lesion detec-
tion performance.25 This feasibility study needs further valida-
tion is larger cohorts.

It is quite evident that radiologists can perform much better if 
good quality imaging studies can be consistently provided to 
them during their read-outs. For prostate MRI, several initia-
tives exist for improving quality and use of AI for this purpose 
is currently in its infancy. However, implementation of AI-based 
MRI quality models into structured systems, such as PI-QUAL, 
can further improve this process.

AI IN PROSTATE GLAND SEGMENTATION
Planimetric delineation (also known as segmentation) of the 
prostate at MRI has critical clinical uses, such as accurate esti-
mation of the entire prostate gland volume for normalizing 
the serum prostate-specific antigen (PSA) density as suggested 
by PI-RADS v. 2.1 and MRI data preparation for biopsy guid-
ance in transrectal ultrasonography/MRI fusion-guided biopsy 
systems and for radiotherapy planning.26 Manual delineation 
of the prostate is often time-consuming and prone to human 
errors.27 AI has been commonly used for prostate segmentation 
and currently, there are few commercial solutions for this time-
consuming task of prostate MRI data processing.28 Recently, 
DL-based AI solutions are reported commonly to provide robust 
performance for segmenting prostate gland and its zones. In a 
study by Wang et al, a three-dimensional (3D) fully convolu-
tional network with deep supervision was used to develop a fully 
automated prostate segmentation model for T2 weighted MRI. 
The authors reported a mean dice similarity coefficient (DSC) of 
0.88 (range, 0.83–0.93) between AI model and manual segmen-
tations for the whole prostate.29 In another study with 299 MRI 
studies, Ushinsky et al developed a hybrid 3D–2D U-net-based 
segmentation algorithm for automatic localization and segmen-
tation of prostate gland at T2 weighted MRI. The AI-based whole 
prostate segmentation model achieved a mean DSC of 0.898 
(range, 0.890–0.908) when compared with manual segmenta-
tions.30 Finally, in a study by Sanford et al, which included 648 
patients, a DL approach combining 2D and 3D architectures 
with transfer learning incorporation was used to develop a whole 

Figure 1. Artificial intelligence development methods cur-
rently in use.
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prostate and transition zone (TZ) segmentation algorithm. The 
study reported mean DSCs of 0.931 and 0.89 for whole prostate 
and TZ, respectively. This study utilized a data augmentation 
strategy which was specific to the deformations, intensity, and 
alterations in image quality seen on MRI data from five different 
centers, and this novel strategy improved the whole prostate and 
TZ segmentation performances 2.2 and 3%, respectively.31 In a 
recent study by Bardis et al with 242 patients, a DL model based 
on three convolutional networks with a U-net architecture had 
mean DSCs of 0.94, 0.91 and 0.774 for whole prostate, TZ and 
PZ, respectively.32

Prostate segmentation is the most commonly studied applica-
tion with AI among others for prostate MRI. Although several 
algorithms exist in the literature, five prostate segmentation 
AI algorithms exist in commercial platforms for users. All 
of these tools are approved for use in USA by FDA [Prostate 
MR® (Siemens), Quantib Prostate® (Quantib), OnQ Prostate® (​
Cortechs.​ai), PROView® (GE Medical Systems), qp-Prostate® 
(Quibim)], whereas two are approved in Europe [Prostate MR® 
(Siemens), Quantib Prostate® (Quantib)].33,34 Having robust AI 
algorithms for prostate segmentations can certainly diminish the 
time needed for preparing MRI data for biopsy purposes and it 
can enable accurate calculation for PSA density for better risk 
stratification. Additionally, automated segmentation of the pros-
tate and its zones can further boost performance of intraprostatic 
lesion detection and classification algorithms.

AI IN INTRAPROSTATIC LESION DETECTION
Intraprostatic lesion detection is the most critical step of reading 
prostate MRI, as this directly impacts performance of clinically 
significant PCa detection using MRI guidance. Considering 
the wider use of prostate MRI in community setting, a robustly 
working AI system with a balanced true-positive vs false-positive 
rate is almost always desired. In a 335-patient study, Ishioka et al 
developed a DL-based model which utilized U-net and ResNET 
architectures for detecting targeted biopsy-confirmed PCa 
lesions. They evaluated their model in two separate populations 
and the model had an area under the curve (AUC) of 0.636 and 
0.645 for PCa detection.35 Schleb et al developed and tested a 
U-net-based DL model, which was trained in 250 patients for 
detection of targeted biopsy-confirmed cancer suspicious lesions 
at MRI. In the test set, PI-RADS cut-offs 3 and above vs 4 and 
above on a per-patient basis had sensitivity of 96% vs  88% and 
specificity of 22% vs 50%.36 In another study by Arif et al with 
292 low-risk PCa patients, a U-net-based DL model achieved 
an average sensitivity of 82–92% with an AUC of 0.65–0.89 for 
detecting targeted biopsy-confirmed PCa lesions with volumes 
ranging from >0.03 to >0.5 cc.37 AI algorithms tend to perform 
better with larger data sets available for training. In a study by 
Yoo et al with 427 cases, who underwent MRI and guided biop-
sies, for a ResNet architecture-based neural network training, the 
reported AUCs for PCA detection in a separate 108 sample size 
test cohort were 0.87 and 0.84 at slice and patient level, respective-
ly.38In a multireader study by Winkel et al, a DL-based AI system’s 
impact on radiologists' interpretation accuracy and efficiency in 
reading biparametric prostate MRI was evaluated. The study 
included 100 open-source cases and 7 radiologists performed 2 

rounds of read-out with and without AI using a 2-week washout 
period. The tested AI system was a commercial one which was 
approved in Europe and the United States. Use of AI system 
improved the average performance of radiologists from 0.84 to 
0.88 for finding PI-RADS >3 lesions. Interreader agreement also 
increased from κ = 0.22 to 0.36; whereas the median reading time 
in the unaided/aided scenario was reduced by 21% from 103 to 
81 s. This multireader study did not incorporate histopathology 
validation and aimed to mimic a pre-biopsy radiologist read-out 
scenario. Despite this limitation, it serves as a good study design 
example for proper evaluation of lesion detection AI systems 
for prostate MRI.39 In a recent study by Saha et al, a multistage 
3D AI model comprised two parallel 3D CNNs (dual-attention 
U-net detector and residual classifier) followed by a decision 
fusion node for automated detection of clinically significant PCa 
at biparametric MR imaging (bpMRI) was developed in 1950 
patients and testing was conducted in 486 patients. The authors 
reported sensitivity values of 83.69 ± 5.22% and 93.19 ± 2.96% 
at 0.50 and 1.46 false positive(s) per patient, respectively, with 
0.882 ± 0.030 area under the receiver operating characteristic in 
patient-based diagnosis which significantly outperformed four 
state-of-the-art baseline architectures (U-SEResNet, UNet++, 
nnU-Net, and Attention U-Net). Interestingly, this AI model had 
a reasonable agreement with expert radiologists (κ = 0.51±0.04) 
and pathologists (κ = 0.56±0.06).40 AI is recently being more 
heavily investigated for PCa detection and a recent meta-analysis 
with 12 studies yielded an overall pooled AUC of 0.86, with 
0.81–0.91 95% confidence intervals in clinically significant PCa 
identification.41 Although the currently reported results are 
promising for AI applications in PCa detection with MRI, some 
limitations exist. First, DL-based AI algorithms naturally require 
large-scaled, diverse and well-annotated training and indepen-
dent testing data sets. The current evidence in the literature is 
mostly based on studies with <1000 case sample sizes, and this 
most likely prevents wide applicability of the currently available 
AI systems. Construction of a large, multicenter and resultantly 
diverse data sets for developing stronger AI models can be chal-
lenging since data governance regulations can vary geograph-
ically and the bureaucracy can often be time and resource 
consuming. Alternate solutions for developing robust AI model 
without data sharing but with model sharing, such as federated 
learning, can be quite useful to enable accelerated development 
of models across institutions, enabling greater generalizability in 
clinical use without actual data sharing.42 The currently reported 
performance metrics are mostly based on cross-validation and 
do not include an actual radiologist vs AI interaction, and these 
studies are far from representative of a real-world setting. Such 
an interaction and the implications of the mismatches between 
radiologist reads and AI outcomes are quite unknown. No doubt 
future research will yield the actual use and utility of AI in PCa 
detection at MRI. Finally, there are four commercially available 
platforms which include AI algorithms for PCa lesion detec-
tion and classification tasks, three of these tools are approved 
for use in Europe [Prostate MR® (Siemens), Quantib Prostate® 
(Quantib), JPC-01K® (JLK Inc.)], whereas three are approved by 
USFDA [Prostate MR® (Siemens), Quantib Prostate® (Quantib), 
PROView® (GE Medical Systems)].33,34
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AI IN PI-RADS CLASSIFICATION AT MRI
PI-RADS classification is another critical component of 
prostate MRI read-out. PI-RADS employs a 5-tier category 
approach and as category number increases the likelihood of 
that particular lesion for including clinically significant PCa 
(>Gleason Grade 1) increases gradually (e.g. category 5 = very 
highly likely to include clinically significant PCa).43 Lesion 
categorization is heavily based on subjective imaging features 
at T2 weighted, diffusion-weighted and dynamic contrast-
enhanced pulse sequences, which is often reported to have 
high interreader variation, which directly hampers wide use of 
prostate MRI.44,45 Recently, very few studies report to use AI 
for PI-RADS categorization for intraprostatic lesions detected 
at MRI. Zhong et al used a ResNet-based CNN to detect and 
classify prostate lesions as indolent or clinically significant 
(equal or above PI-RADS 4). T2W and apparent diffusion 
coefficient MR data of 110 patients were used to train this DL 
model. The model achieved an AUC of 0.73 for predicting 
lesions with a PI-RADS category of 4 and above.46 In another 
study, Sanford et al developed an automated PI-RADS clas-
sification system using a CNN with ResNet 34 architecture. 
They used T2W, diffusion-weighted MRI of 687 patients for AI 
development and compared AI’s performance with an expert 
radiologist and assessed interreader agreement with an inde-
pendent radiologist. The AI system was most successful at 
assigning the same PI-RADS score as the study radiologist on 
lesions that received PI-RADS scores 4 and 5 (~55 and 80% 
respectively, and much lower for PI-RADS scores 3 and 2). 
Since no statistically significant difference was found between 
AI’s and radiologist’s PI-RADS scores and histopathologic 
grade (Gleason grade), the overall conclusion was that AI is 
more consistent than the radiologist in correctly predicting 
high risk (PI-RADS 4 or 5) lesions and overall, the proposed 
AI system had similar agreement as between the study radiol-
ogist and an independent radiologist, with κ scores of 0.4 vs 
0.34, respectively.47

Intraprostatic lesion PI-RADS classification is a relatively new 
topic in prostate imaging AI. Currently available AI algorithms 
report comparable results with expert-based PI-RADS read-
outs and this can be quite helpful to aid non-dedicated body 
radiologists during their prostate MRI evaluations. However, 
the field remains constrained by the limited availability of 
well-curated diverse data.

EVOLVING REGULATORY LANDSCAPE AND 
OTHER USE CASES
For AI systems to be used in clinical practice, regulators must 
define a framework for approval. With organizations, such as the 

American Food and Drug Administration as of early 2021, this 
remains a work in progress. All software systems in use today 
involve use cases with some form of human supervision. Fully 
autonomous use cases for AI systems are not quite ready for 
prime-time and how these will be regulated remains unclear. 
Requirements for defining real-world performance of AI soft-
ware systems remain a challenge given among a host of issues 
the potential for baked in biases in data used for training and 
testing. It is expected that the regulatory landscape will continue 
to evolve. Furthermore, transparency and full disclosure of 
methodology and training and testing data used to develop of 
AI tools approved, and we may use in our day-to-day practice 
has been generally lacking. Many of these issues and solicitation 
for community input have been recently expressed by the Food 
and Drug Administration.48 Finally, there is great potential for 
super-human use cases where AI models can predict outcomes 
and help makes decision by analyzing large and deep data sets on 
individual patients that include a suite of lab results, comorbid-
ities, genomics, family history etc. which is beyond our capacity 
as radiologists to synthesize. Appropriate data infrastructure 
to develop such models is an important step to see such super-
human performance in the future.
CONCLUSION
In conclusion, prostate MRI is more commonly used in the 
last decade. Use of prostate MRI for PCa diagnosis is subject to 
several critical steps almost which are currently prone to human 
errors. AI in imaging has made great strides in the past few 
years and AI-based systems have been reported to perform tasks 
that are typically performed by diagnostic radiologists, such as 
scan quality evaluation, prostate segmentation, lesion detection 
and PI-RADS classification in research setting. While there are 
existing commercial AI platforms for prostate MRI, majority of 
the research-based AI solutions aiding these steps need training 
with larger-scaled, diverse data sets and the AI models need to 
be tested in real-life setting before a routine use in the clinical 
practice.
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