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SUMMARY

Group testing involves pooling individual specimens (e.g., blood, urine, swabs, etc.) and testing the pools
for the presence of disease. When the proportion of diseased individuals is small, group testing can
greatly reduce the number of tests needed to screen a population. Statistical research in group testing
has traditionally focused on applications for a single disease. However, blood service organizations and
large-scale disease surveillance programs are increasingly moving towards the use of multiplex assays,
which measure multiple disease biomarkers at once. Tebbs and others (2013, Two-stage hierarchical
group testing for multiple infections with application to the Infertility Prevention Project. Biometrics 69,
1064–1073) and Hou and others (2017, Hierarchical group testing for multiple infections. Biometrics 73,
656–665) were the first to examine hierarchical group testing case identification procedures for multiple
diseases. In this article, we propose new non-hierarchical procedures which utilize two-dimensional arrays.
We derive closed-form expressions for the expected number of tests per individual and classification
accuracy probabilities and show that array testing can be more efficient than hierarchical procedures when
screening individuals for multiple diseases at once. We illustrate the potential of using array testing in the
detection of chlamydia and gonorrhea for a statewide screening program in Iowa. Finally, we describe
an R/Shiny application that will help practitioners identify the best multiple-disease case identification
algorithm.
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1. INTRODUCTION

When screening a population for low-prevalence diseases, testing specimens in pools can be far more cost
efficient than testing specimens individually. Individuals in pools that test negatively can be classified as
negative, and individuals in pools that test positively can be retested to determine which ones are positive.
Testing pooled specimens, which is known as group testing, has a long history dating back to Dorfman
(1943), who proposed it to screen United States military recruits for syphilis. Today, group testing is
routinely used to screen blood and plasma donations for HIV, HBV, and HCV in the United States and in
other developed nations (Mine and others, 2003; Seed and others, 2005; Vansteelandt and others, 2005;
Schmidt and others, 2010; O’Brien and others, 2012; Stramer and others, 2013). Group testing also arises
in screening and surveillance applications for other diseases, including West Nile virus (Busch and others,
2005), chlamydia and gonorrhea (Lewis and others, 2012), malaria (Wang and others, 2014), influenza
(Edouard and others, 2015), and Zika virus (Saá and others, 2018).

There is a substantial literature on group testing case identification algorithms for a single disease, where
the goal is to classify each individual as positive or negative. Such algorithms are generally described as
being “hierarchical” or “non-hierarchical” in nature. A hierarchical algorithm uses master pools that
are non-overlapping, and positive pools are resolved in stages by splitting each one into smaller non-
overlapping subpools. Dorfman’s original proposal was to accomplish this in two stages; i.e., master
pools are tested in the first stage and individuals (from positive pools) are tested in the second. When the
disease prevalence is low, increasing the number of stages can further reduce the number of tests needed.
For example, Pilcher and others (2005) use a three-stage algorithm for HIV testing in North Carolina
with a master pool of size 90, nine second-stage subpools of size 10, and individual testing in the third
stage. Sherlock and others (2007) describe how variations of this three-stage testing algorithm have been
implemented in public health laboratories throughout the United States.

Array testing, also known as matrix pooling, is the most common type of non-hierarchical case iden-
tification algorithm. In (two-dimensional) array testing procedures, individual specimens are assigned
to an array consisting of rows and columns. Row and column master pools are tested in the first stage,
and individuals not classified as negative after the first stage are retested in the second. Phatarfod and
Sudbury (1994) introduced array testing for disease screening purposes in the absence of testing error.
Kim and others (2007) and Westreich and others (2008) offered comparisons of array testing and hierar-
chical algorithms for single diseases while allowing for imperfect assays. In other single-disease settings,
Hudgens and Kim (2011) determined optimal configurations for square arrays, McMahan and others
(2012) acknowledged individual covariate information, and Lendle and others (2012) accounted for
correlated responses. Kim and Hudgens (2009) examined array testing in higher dimensions where, geo-
metrically, one can envision that rows and columns are tested across multiple planes or hyperplanes.
Martin and others (2013) implemented a three-dimensional version of this algorithm for HIV testing in
New Jersey.

In this article, we extend the use of array testing to test for multiple diseases simultaneously. Our work
is motivated by the development and increased use of “multiplex assays,” which detect multiple pathogens
in a single application. These assays reduce the workload involved in screening a population for multiple
diseases when compared with using singleplex (or one-disease) assays for each disease separately. Previous
research merging group testing with multiplex assays has considered only hierarchical case identification
algorithms. Tebbs and others (2013) characterized the performance of a two-stage algorithm for two
diseases, motivated by current chlamydia and gonorrhea testing practices in Iowa. More recently, Hou
and others (2017) developed a Markov chain framework to propose higher-stage hierarchical algorithms
for multiple diseases. Here, the focus of our article is on group testing with multiplex assays carried out by
using two-dimensional arrays. We demonstrate that this non-hierarchical design can be more efficient than
hierarchical algorithms, a practically important finding for laboratories and high-volume testing centers
that screen individuals for multiple diseases at once.
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In Section 2, we define notation and restate the assumptions in Hou and others (2017), which are
also used in this article. In Section 3, we describe how to derive closed-form expressions for the expected
number of tests per individual and classification accuracy probabilities for two diseases in two-dimensional
arrays. These expressions are complex when allowing for testing error, so we make extensive use of the
supplementary material available at Biostatistics online. In Section 4, we provide a thorough comparison
of array testing and the hierarchical algorithms in Tebbs and others (2013) and Hou and others (2017).
In Section 5, we illustrate the potential benefit of using array testing when screening Iowa residents for
chlamydia and gonorrhea simultaneously. In Section 6, we provide a summary discussion and describe
our online resources that will help practitioners identify the best multiplex algorithm.

2. NOTATION AND ASSUMPTIONS

Suppose individual specimens (e.g., blood, urine, swabs, etc.) are randomly assigned to the cells of an
n × n array, where n ≥ 2. In this article, we consider square arrays for simplicity, although generalizing
our derivations for rectangular arrays is possible. To simplify the exposition, we assume the number of
diseases is K = 2; see Section 6 for a discussion on using array testing for more than two diseases. Let
Iij denote the individual assigned to the (i, j) cell, for i = 1, 2, ..., n and j = 1, 2, ..., n. In the first stage,
rows are tested producing R1, R2, ..., Rn, where Ri = (Ri1, Ri2)

′ and Rik = 1 (Rik = 0) if the ith row tests
positively (negatively) for the kth disease, k = 1, 2. Columns are also tested in the first stage producing
C1, C2, ..., Cn, where Cj = (Cj1, Cj2)

′ and Cjk = 1 (Cjk = 0) if the jth column tests positively (negatively)

Fig. 1. A 5 × 5 array for K = 2 diseases. Row and column master pool testing responses R1, R2, ..., R5 and
C1, C2, ..., C5 are observed in the first stage. The second stage involves retesting individuals Iij ∈ M+ as described
in Section 2.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
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for the kth disease. Figure 1 illustrates this notation for n = 5; i.e., a 5 × 5 array. It is important to
emphasize that R1, R2, ..., Rn and C1, C2, ..., Cn are the testing responses in the first stage; they could be
incorrect because of inherent assay error.

In the second stage, individual testing is used for those individuals not declared to be negative after
the first stage. If an assay is perfect, this collection of individuals is easy to determine, that is, one need
only to examine the intersections of positive rows and columns. Otherwise, ambiguities may arise. For
example, if the first row tests positively for the first disease (i.e., R11 = 1) but all columns test negatively
for the first disease (i.e., C11 = C21 = · · · = Cn1 = 0), we assume this is an ambiguity caused by assay
error. To resolve this, we adopt the strategy in Kim and others (2007) and retest all individuals in the first
row. Following this convention for each disease separately (and allowing for the analogous case when
all rows test negatively), let M+ denote the collection who are tested individually in the second stage.
Mathematically, we can express M+ = {Iij : T (AT)

ij1 + T (AT)

ij2 ≥ 1}, where

T (AT)

ijk = I (Rik = 1, Cjk = 1) + I

(
Rik = 1,

n∑
j=1

Cjk = 0

)
+ I

(
n∑

i=1

Rik = 0, Cjk = 1

)
,

k = 1, 2, and I (·) is the indicator function. Individuals in the complement set M− = Mc
+ are not tested

in the second stage and are declared to be negative for both diseases.
We now list five assumptions that are made for the remainder of this article. These assumptions are

analogous to those in Hou and others (2017) for hierarchical algorithms and are used to derive operating
characteristics in closed form.

ASSUMPTION 1 A discriminating multiplex assay is used to test both rows and columns in the first stage.
Briefly, a multiplex assay is said to discriminate if upon application it provides a diagnosis for each disease
separately. For example, a discriminating multiplex assay applied to the first row in Figure 1 produces
both R11 and R12. This same assay is also used to test individuals Iij ∈ M+ in the second stage.

ASSUMPTION 2 Let Ỹij = (Ỹij1, Ỹij2)
′ denote the true disease status of individual Iij. The Ỹij’s are indepen-

dent and identically distributed random vectors with probability mass function pr(Ỹij1 = ỹ1, Ỹij2 = ỹ2) =
p(1−̃y1)(1−̃y2)

00 p̃y1(1−̃y2)

10 p(1−̃y1 )̃y2
01 p̃y1 ỹ2

11 , where ỹ1, ỹ2 ∈ {0, 1} and p00 + p10 + p01 + p11 = 1.

ASSUMPTION 3 Let S(n)

e:k and S(n)

p:k denote the multiplex assay sensitivity and specificity for testing row and

column master pools of size n, respectively, for the kth disease (k = 1, 2). Let S(1)

e:k and S(1)

p:k denote the

same multiplex assay accuracy probabilities for individual testing. We assume S(n)

e:k , S(n)

p:k , S(1)

e:k , and S(1)

p:k are
known.

ASSUMPTION 4 We assume S(n)

e:k and S(n)

p:k for one disease do not depend on the true status of the other disease.

The same assumption is made for S(1)

e:k and S(1)

p:k .

ASSUMPTION 5 Testing responses on rows, columns, and individuals are mutually independent, conditional
on the true disease statuses of all individuals.

Several comments are in order. First, the widespread availability of discriminating multiplex assays
for disease detection is discussed in Tebbs and others (2013) and Hou and others (2017). Multiplex
assays best described as non-discriminating (i.e., assays that do not differentiate between diseases) are
not considered in this article. In Assumption 3, we allow the sensitivity and specificity of the multiplex
assay to be pool-size dependent as in Hou and others (2017). Pilot data on assay performance, which
are typically available in the product literature published by manufacturers, can be used to elicit values
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for these accuracy probabilities; see also Section 6. Assumption 4 requires that an assay have adequate
discriminating power to differentiate between diseases and that there is no interference in detection; see,
for example, Ellington and others (2010) for a discussion of this issue with antibody-based multiplex
assays. Finally, the conditional independence requirement in Assumption 5 is also common in the case
identification literature for single diseases. This assumption means that misclassification can arise only
because of errors in test implementation or other factors not related to true disease status.

3. OPERATING CHARACTERISTICS

We describe how to derive the expected number of tests per individual and classification accuracy proba-
bilities for array testing with K = 2 diseases. The derivations are formidable when allowing for imperfect
assays, so we highlight the salient starting points herein and relegate specifics to the supplementary mate-
rial available at Biostatistics online. We also describe a modified version of the two-stage algorithm in
Section 2 that includes a preliminary test on the entire array.

3.1. Efficiency

Henceforth, we denote the two-stage algorithm in Section 2 by AT. The first stage of AT uses 2n tests for
the rows and columns. Second-stage individual testing is used when the event {T (AT)

ij1 + T (AT)

ij2 ≥ 1} occurs.
Therefore, the expected number of tests per individual, or efficiency, for AT is given by

EFF(AT) = 1

n2

{
2n + n2pr(T (AT)

ij1 + T (AT)

ij2 ≥ 1)
}

,

where pr(T (AT)

ij1 + T (AT)

ij2 ≥ 1) = pr(T (AT)

ij1 = 1) + pr(T (AT)

ij2 = 1) − pr(T (AT)

ij1 = 1, T (AT)

ij2 = 1). Calculating the

marginal probability pr(T (AT)

ij1 = 1) is straightforward. By considering only the first disease, one can take

Equation (9) in Kim and others (2007) and replace Se (Sp) with S(n)

e:1 (S(n)

p:1 ) and q with π 1 = 1 − π1, where

π1 = p10 + p11 is the marginal prevalence of the first disease. Calculating pr(T (AT)

ij2 = 1) is done similarly

for the second disease by using S(n)

e:2 , S(n)

p:2 , and π 2 = 1 − π2, where π2 = p01 + p11.

Calculating the joint probability pr(T (AT)

ij1 = 1, T (AT)

ij2 = 1) is difficult. Because array testing is gen-
erally preferred for low-prevalence diseases, one might initially think to treat this probability as being
negligible or at least to approximate it under the assumption of no testing error, thereby creating a simple
approximation for EFF(AT). We concluded that both strategies would be unwise. Not only does this lack
verisimilitude (as few assays are perfect), but we have found that this probability can be non-trivial even
when the diseases are rare. By exploiting the symmetry between rows and columns of the array, we can
express pr(T (AT)

ij1 = 1, T (AT)

ij2 = 1) as the sum

pr(R′
i = (1, 1), C′

j = (1, 1)) + 2
2∑

k=1

pr

⎛⎝R′
i = (1, 1), Cjk = 1,

n∑
j′=1

Cj′k ′ = 0

⎞⎠
+ 2pr

⎛⎝R′
i = (1, 1),

n∑
j′=1

Cj′1 = 0,
n∑

j′=1

Cj′2 = 0

⎞⎠
+ 2pr

⎛⎝Ri1 = 1,
n∑

j′=1

Cj′1 = 0, Cj2 = 1,
n∑

i′=1

Ri′2 = 0

⎞⎠.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
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In the supplementary material available at Biostatistics online, we derive each of these probabilities. The
derivations themselves are similar in spirit to those in the array testing literature for single diseases; see,
e.g., Kim and others (2007). However, in the presence of testing error, these derivations are substantially
more challenging and provide different answers when compared with the single-disease setting (e.g., when
treating individuals as “disease free” or not).

3.2. Classification accuracy

As in Tebbs and others (2013) and Hou and others (2017), we define the pooling sensitivity PSe:k as the
probability an individual is classified as positive for the kth disease, k = 1, 2, given that the individual is
truly positive for the kth disease. In two-dimensional array testing,

PSe:k = pr(Yijk = 1, T (AT)

ij1 + T (AT)

ij2 ≥ 1|Ỹijk = 1),

where Ỹijk denotes the true (binary) status of individual Iij for disease k and Yijk denotes the correspond-
ing individual testing response. The pooling specificity PSp:k is defined analogously for truly negative
individuals being classified negatively; i.e.,

PSp:k = 1 − pr(Yijk = 1, T (AT)

ij1 + T (AT)

ij2 ≥ 1|Ỹijk = 0).

Using the inclusion-exclusion rule for conditional probabilities, we can write the pooling sensitivity PSe:k

as

pr(Yijk = 1, T (AT)

ijk = 1|Ỹijk = 1) + pr(Yijk = 1, T (AT)

ijk ′ = 1|Ỹijk = 1)

− pr(Yijk = 1, T (AT)

ijk = 1, T (AT)

ijk ′ = 1|Ỹijk = 1),

and, in the supplementary material available at Biostatistics online, we derive each of these probabilities.
We also show the pooling specificity

PSp:k = 1 − S
(1)

p:k

π k

{
EFF(AT) − πkPSe:k

S(1)

e:k

− 2

n

}
,

where S
(1)

p:k = 1 − S(1)

p:k , π k = 1 − πk , and πk is the marginal prevalence of the kth disease.

3.3. Adding a master array test

In array testing for a single disease, Kim and others (2007) and Westreich and others (2008) have demon-
strated that a simple modification to the two-stage procedure can further reduce the expected number of
tests per individual when the probability of disease is very small. The modification involves performing
a preliminary test on all specimens in the array; i.e., a test on all n2 specimens in an n × n array. If this
preliminary test is negative, all individuals in the array are declared to be negative without further testing.
Otherwise, one proceeds to test the rows and columns as in the two-stage version.

We adapt this three-stage algorithm for use with K = 2 diseases, denoted herein by ATM. In the first
stage, let Mk = 1 if the master array tests positively for the kth disease, Mk = 0 otherwise. If the master
array tests positively for either disease; i.e., if M1 + M2 ≥ 1, then two-stage AT is used. Mathematically,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
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we can express the collection who are tested individually as M+ = {Iij : T (ATM)

ij1 + T (ATM)

ij2 ≥ 1}, where,
for k = 1, 2,

T (ATM)

ijk = I (M1 + M2 ≥ 1, Rik = 1, Cjk = 1) + I

(
M1 + M2 ≥ 1, Rik = 1,

n∑
j=1

Cjk = 0

)

+ I

(
M1 + M2 ≥ 1, Cjk = 1,

n∑
i=1

Rik = 0

)
.

Therefore, the efficiency of ATM is given by

EFF(ATM) = 1

n2

{
1 + 2npr(M1 + M2 ≥ 1) + n2pr(T (ATM)

ij1 + T (ATM)

ij2 ≥ 1)
}

.

In the supplementary material available at Biostatistics online, we derive EFF(ATM) in closed form as
well as the classification accuracy probabilities PSe:k and PSp:k for ATM. These derivations require a slight

modification of Assumption 3 (see Section 2) where now known values of S(n2)

e:k and S(n2)

p:k are elicited for
the master array. The conditional independence assumption (Assumption 5) is also broadened to include
the master array’s testing response.

4. COMPARISONS

We compare our array-testing procedures to the hierarchical algorithms in Tebbs and others (2013) and Hou
and others (2017). To examine low-prevalence diseases where pooling would be useful, we consider values
of p00 ∈ {0.90, 0.95, 0.97, 0.99} and vary the remaining probabilities p10, p01, and p11 in two ways. First,
we select these probabilities so that the marginal disease probabilities π1 = p10 + p11 and π2 = p01 + p11

are equal. Second, we investigate cases where the marginal probabilities are unequal; specifically, cases
where π1 is approximately 4–5 times larger than π2. To incorporate the possibility of misclassification
for each disease, we assume Se:k = 0.95 and Sp:k = 0.99 when testing all pools (regardless of size) and
all individuals. This might be reasonable when a multiplex assay can be calibrated to perform similarly
on both pooled and individual specimens; see Section 5. All of our array calculations of efficiency and
classification accuracy are exact, based on the derivations described in Section 3.

Because AT (ATM) is a two-stage (three-stage) procedure, our focus is on comparing (i) AT with
the two-stage procedure in Tebbs and others (2013), denoted by H2, and (ii) ATM with the three-stage
procedure in Hou and others (2017), denoted by H3. These comparisons are probably the most logical,
as case identification algorithms using the same number of stages have similar levels of complexity with
regard to implementation and similar turnaround times (Westreich and others, 2008). All comparisons are
made by using the optimal versions of each algorithm in terms of efficiency. In other words, we identify and
compare the array and hierarchical procedures that minimize the expected number of tests per individual.
Note that we do invoke one constraint when selecting the optimal ATM algorithm; namely, we do not
consider arrays larger than 10 × 10. This bounds the number of individuals in the master array test at 100,
a constraint also used in Kim and others (2007) and Kim and Hudgens (2009) for single diseases out of
concerns for dilution. Similar concerns can arise with multiplex assays; see Section 5.

Efficiency comparisons for the eight configurations of p00, p10, p01, and p11 are shown in Table 1.
Examining the two-stage designs, AT confers substantial gains in efficiency when compared with H2. For
example, in Case 2 where the marginal disease probabilities are both 0.03, AT with 11×11 arrays is 20.6%
more efficient than the best two-stage hierarchical algorithm H2 (0.344 versus 0.433, respectively). This
and the other efficiency gains in Table 1, which range from 9.1% to 41.1%, are practically significant for

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data


424 P. HOU AND OTHERS

Table 1. Efficiency of two- and three-stage algorithms with Se:k = 0.95 and Sp:k = 0.99 for testing all
pools (regardless of size) and individuals. H2 and H3 (hierarchical) algorithms are from Tebbs and
others (2013) and Hou and others (2017), respectively. Pool sizes are chosen to minimize the expected
number of tests per individual. The maximum allowable array size for ATM is 10 × 10. For Cases 1–4,
the marginal disease probabilities π1 = p10 + p11 and π2 = p01 + p11 are equal. For Cases 5–8, the
marginal disease probabilities are unequal

Stages Algorithm Efficiency Stages Algorithm Efficiency

C
as

e
1 p00 = 0.90

p10 = 0.04
p01 = 0.04
p11 = 0.02

2
H2(4 : 1) 0.594

C
as

e
5 p00 = 0.90

p10 = 0.08
p01 = 0.016
p11 = 0.004

2
H2(4 : 1) 0.591

AT(8 × 8) 0.530 AT(8 × 8) 0.537

3
H3(9 : 3 : 1) 0.572

3
H3(9 : 3 : 1) 0.564

ATM(8 × 8) 0.543 ATM(8 × 8) 0.544

C
as

e
2 p00 = 0.95

p10 = 0.02
p01 = 0.02
p11 = 0.01

2
H2(5 : 1) 0.433

C
as

e
6 p00 = 0.95

p10 = 0.04
p01 = 0.008
p11 = 0.002

2
H2(5 : 1) 0.431

AT(11 × 11) 0.344 AT(11 × 11) 0.352

3
H3(9 : 3 : 1) 0.371

3
H3(9 : 3 : 1) 0.368

ATM(10 × 10) 0.354 ATM(10 × 10) 0.356

C
as

e
3 p00 = 0.97

p10 = 0.01
p01 = 0.01
p11 = 0.01

2
H2(7 : 1) 0.345

C
as

e
7 p00 = 0.97

p10 = 0.025
p01 = 0.004
p11 = 0.001

2
H2(7 : 1) 0.342

AT(14 × 14) 0.258 AT(15 × 15) 0.260

3
H3(16 : 4 : 1) 0.273

3
H3(16 : 4 : 1) 0.268

ATM(10 × 10) 0.282 ATM(10 × 10) 0.279

C
as

e
4 p00 = 0.99

p10 = 0.004
p01 = 0.004
p11 = 0.002

2
H2(11 : 1) 0.209

C
as

e
8 p00 = 0.99

p10 = 0.008
p01 = 0.0016
p11 = 0.0004

2
H2(11 : 1) 0.208

AT(29 × 29) 0.123 AT(29 × 29) 0.128

3
H3(25 : 5 : 1) 0.135

3
H3(25 : 5 : 1) 0.134

ATM(5 × 5) 0.150 ATM(5 × 5) 0.150

high-volume laboratories that already use H2 for multiple diseases; as a two-stage procedure itself, AT is
an attractive alternative to further reduce testing costs without requiring additional resources. Moving to
the three-stage comparisons, ATM improves upon the best three-stage hierarchical algorithm H3 in the
p00 = 0.90 and p00 = 0.95 cases, but not in the p00 = 0.97 and p00 = 0.99 cases; i.e., where one or both
diseases are more rare. Note that our comparisons may penalize ATM slightly in some cases because we
do not consider arrays larger than 10 × 10 for ATM. Furthermore, it is interesting to note that in each of
the eight configurations, the best AT procedure is more efficient than the best H3 procedure.

To complement the results in Table 1, we performed a simulation study to assess the variability in the
number of tests per individual for the four algorithms H2,AT, H3, andATM using the optimal configurations
identified in Table 1. For each of the eight parameter configurations, we generated the true disease statuses
of 100 000 individuals, assigned the individuals to master pools, and executed each algorithm while
assuming Se:k = 0.95 and Sp:k = 0.99 as before. This process was repeated B = 1000 times for each
parameter configuration. Figure 2 displays boxplots of the resulting 1000 values of the number of tests
per individual for Cases 1–4 in Table 1; the same boxplots for Cases 5–8 are shown in the supplementary
material available at Biostatistics online. In all eight cases, there are only minor differences in the variability
in the number of tests per individual. Furthermore, among all four procedures, the empirical distributions
described by the boxplots tend to favor AT as providing the smallest number of tests per individual.

Finally, any comparison of competing case identification algorithms should examine classification
accuracy. In the supplementary material available at Biostatistics online, we provide values of PSe:k and
PSp:k for each of the eight cases in Table 1. We also include the pooling positive and negative predictive

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
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Fig. 2. Simulation study for Cases 1–4 in Table 1. Boxplots of the number of tests per individual using B = 1000
Monte Carlo data sets. Array and hierarchical group sizes are the same as those in Table 1. The same figure for Cases
5–8 in Table 1 is in the supplementary material available at Biostatistics online.

values for each disease; i.e.,

PPVk = πkPSe:k

πkPSe:k + (1 − πk)(1 − PSp:k)
and NPVk = (1 − πk)PSp:k

(1 − πk)PSp:k + πk(1 − PSe:k)
.

For the kth disease, PPVk (NPVk ) gives the probability an individual is truly positive (negative) given
that the algorithm has classified the individual positively (negatively). Our calculations show that all
four algorithms increase specificity (PSp:k) when compared with individual testing and that their negative
predictive values NPVk are similar. Hierarchical algorithms are slightly preferred overall in terms of
pooling sensitivity. On the other hand, AT can provide higher values of PPVk when compared with H2,
most notably when p00 is larger.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
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5. APPLICATION

Chlamydia (CT) and gonorrhea (NG) are two of the most common sexually transmitted diseases in the
United States and elsewhere. In 2014, the Centers for Disease Control and Prevention (CDC) estimated that
about 1.8 million new infections were reported in the United States (CDC, 2015). Untreated infections can
lead to serious medical problems, including pelvic inflammatory disease, infertility, ectopic pregnancy,
sterility, and an increased likelihood of acquiring or transmitting HIV (Papp and others, 2014; CDC,
2015). There is also a concern that certain strains of NG may soon become completely resistant to standard
antibiotics used for treatment (Kirkcaldy and others, 2016). This has put new pressures on public health
officials at statewide testing centers as they attempt to curtail the spread of both diseases.

Unfortunately, federal funds allocated to screen for CT/NG in the United States have declined in recent
years, and this trend is expected to continue. The downward trend started in 2010 and coincided with
the passage of the Affordable Care Act, which stipulated new requirements for private health insurance
policies to cover CT/NG testing and other preventative services for young and “at-risk” women (JSI
Research & Training Institute/Denver, 2013). This soon after lead to the discontinuation of the largest
nationally funded CT/NG screening program in the United States, the Infertility Prevention Project, which
since 1988 had provided financial support to public health laboratories in all 50 states. Dissolving the IPP
has reduced the annual CT/NG testing budgets of these laboratories, leaving officials overseeing screening
programs to become increasingly concerned about testing costs.

Given the current funding environment, pooling specimens emerges as an excellent option for statewide
testing centers to reduce the cost of testing. The largest public health laboratory in Iowa, the State Hygienic
Laboratory (SHL) in Coralville, already uses group testing with a multiplex CT/NG assay to accomplish
this. Each year, the SHL receives thousands of individual specimens from STD clinics and family planning
centers located throughout the state. Upon arrival at the laboratory, specimens are first cross-classified
according to sex (female/male) and type (swab/urine). This quadfurcation of specimens is done primarily
for two reasons. First, commercially available CT/NG multiplex assays exhibit different accuracy levels
for individuals in these four strata (Gaydos and others, 2003, 2010; Cheng and others, 2011). Second, the
populations of individuals represented by the specimens received at the SHL are substantially different
for females and males. Males are more likely to be tested only when they exhibit symptoms of infection
(e.g., painful urination/ejaculation, etc.), whereas most females are tested annually as part of routine health
examinations.

The Iowa SHL uses the two-stage hierarchical procedure (H2) described in Tebbs and others (2013) to
test female swab specimens in pools of size 4.All specimens from the other three strata (female urine, male
swab, and male urine) are tested individually. In the hope of reducing testing costs further, our colleagues
at the SHL are interested in the following questions:

1. Can AT, a comparable two-stage procedure, reduce the number of tests needed to diagnose female
swab specimens for CT/NG?

2. Should the SHL pool specimens in the other three strata? If so, how does AT compare to hierarchical
algorithms?

Using historical data from the SHL, we perform a feasibility study to investigate both questions.
Table 2 summarizes the diagnoses of 33 811 Iowa residents during the 2013 calendar year. These

diagnoses are cross-classified by sex and specimen type, and estimates of p00, p10, p01, and p11 within each
sex/specimen type stratum are provided. The SHL uses the Gen-Probe Aptima Combo 2 Assay (AC2A),
a multiplex assay that utilizes nucleic acid amplification techniques to detect ribosomal RNA from CT
and/or NG. The values of Se:k and Sp:k provided in Table 2 are taken from Gen-Probe’s product literature
for the AC2A. Specimens are carefully prepared by the lead technician at the SHL to ensure that testing
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Table 2. Iowa SHL data summary. CT/NG diagnoses for 33,811 individuals during 2013, cross-classified
by sex and specimen type. Stratum sample sizes N are shown. Estimates of p00, p10, p01, and p11 are
provided. The values of sensitivity and specificity are taken from the product literature for the Aptima
Combo 2 Assay (1 = CT; 2 = NG). The algorithms shown in the last column minimize the expected
number of tests per individual

Stratum Count CT/NG Estimate Sensitivity Specificity Algorithms

18775 −/− p̂00 = 0.923
H2(4 : 1)

AT(8 × 8)

H3(9 : 3 : 1)

Female Swab 1442 +/− p̂10 = 0.071 Se:1 = 0.942 Sp:1 = 0.976
(N = 20332) 63 −/+ p̂01 = 0.003 Se:2 = 0.992 Sp:2 = 0.987

52 +/+ p̂11 = 0.003

5438 −/− p̂00 = 0.906
H2(4 : 1)

AT(7 × 7)

H3(9 : 3 : 1)

Female Urine 521 +/− p̂10 = 0.087 Se:1 = 0.947 Sp:1 = 0.989
(N = 5998) 21 −/+ p̂01 = 0.004 Se:2 = 0.913 Sp:2 = 0.993

18 +/+ p̂11 = 0.003

1050 −/− p̂00 = 0.809
H2(3 : 1)

AT(6 × 6)

H3(9 : 3 : 1)

Male Swab 183 +/− p̂10 = 0.141 Se:1 = 0.959 Sp:1 = 0.975
(N = 1298) 43 −/+ p̂01 = 0.033 Se:2 = 0.991 Sp:2 = 0.978

22 +/+ p̂11 = 0.017

5137 −/− p̂00 = 0.830
H2(3 : 1)

AT(5 × 5)

H3(9 : 3 : 1)

Male Urine 919 +/− p̂10 = 0.149 Se:1 = 0.979 Sp:1 = 0.985
(N = 6183) 73 −/+ p̂01 = 0.012 Se:2 = 0.985 Sp:2 = 0.996

54 +/+ p̂11 = 0.009

error rates are the same for pooled specimens and individual specimens, so we perform our study under
this assumption. The lab’s lead virologist estimates that each application of the AC2A costs the laboratory
$37 and requires 6 h to complete.

Our study is performed as follows. Using the 2013 estimates and common values of Se:k and Sp:k

for pools and individuals, we first determine the most efficient versions of H2, AT, and H3 for each
sex/specimen type stratum while assuming the master pool size is no larger than 10; see Table 2. This
constraint was invoked because the pooling literature for CT/NG has not examined using pools larger
than this; for this same reason, we did not include ATM in this investigation. For each of the four strata,
we then simulate individual CT/NG diagnoses to emulate what would have occurred had these optimal
algorithms been used. For example, in the female/swab stratum, we simulate the true CT/NG statuses of
N = 20 332 individuals based on the 2013 estimates, assign these individuals to optimally sized versions
of H2, AT, and H3, and then perform each algorithm. This same strategy is then implemented in the other
three sex/specimen type strata, and this is repeated B = 5000 times in each stratum. We used individual
testing for those individuals that remained when a complete master pool/array could not be formed. For
example, in the female/swab stratum with N = 20 332 individuals, there were 5083 master pools created
for H2(4 : 1), 317 master arrays created for AT(8 × 8), and 2259 master pools created for H3(9 : 3 : 1),
admitting 0, 44, and 1 individual tests, respectively.

Table 3 shows the results. With the 5000 data sets created in each sex/specimen type stratum, we
calculate the mean and standard deviation of the number of tests expended by H2, AT, and H3 to classify
all individuals for CT and NG. We also report estimates of the four accuracy probabilities (PSe:k , PSp:k ,
PPVk , and NPVk ) in each stratum for each disease, which are calculated by comparing the true CT/NG
statuses to the simulated diagnoses in each data set and then averaging across them. Boxplots showing the
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Table 3. Iowa SHL feasibility study results. Estimated operating characteristics for optimal algorithms
based on B = 5000 data sets in each sex/specimen type stratum. The average (Mean) and standard
deviation (SD) of the number of tests are provided. Stratum sample sizes N are shown. The estimated
efficiency (EFF) is the mean number of tests divided by N . Accuracy probabilities (1 = CT; 2 = NG) are
estimated by averaging over the 5000 data sets

Stratum Algorithm Mean (SD) EFF PSe:1 PSe:2 PSp:1 PSp:2 PPV1 PPV2 NPV1 NPV2

Female Swab
(N = 20332)

H2(4 : 1) 10907 (130) 0.536 0.891 0.989 0.994 0.996 0.927 0.620 0.991 1.000
AT(8 × 8) 9930 (166) 0.488 0.844 0.989 0.996 0.997 0.938 0.662 0.988 1.000

H3(9 : 3 : 1) 9815 (170) 0.483 0.844 0.986 0.996 0.997 0.950 0.698 0.988 1.000

Female Urine
(N = 5998)

H2(4 : 1) 3429 (73) 0.572 0.899 0.876 0.997 0.998 0.969 0.735 0.990 0.999
AT(7 × 7) 3253 (86) 0.542 0.856 0.890 0.998 0.998 0.976 0.779 0.986 0.999

H3(9 : 3 : 1) 3223 (94) 0.537 0.856 0.851 0.998 0.998 0.978 0.786 0.986 0.999

Male Swab
(N = 1298)

H2(3 : 1) 1058 (30) 0.815 0.928 0.987 0.990 0.990 0.947 0.839 0.987 0.999
AT(6 × 6) 1044 (44) 0.804 0.895 0.984 0.990 0.990 0.946 0.842 0.980 0.999

H3(9 : 3 : 1) 1110 (43) 0.855 0.906 0.985 0.991 0.990 0.948 0.844 0.983 0.999

Male Urine
(N = 6183)

H2(3 : 1) 4726 (66) 0.764 0.960 0.979 0.995 0.998 0.973 0.926 0.993 1.000
AT(5 × 5) 4796 (85) 0.776 0.942 0.980 0.996 0.999 0.978 0.936 0.989 1.000

H3(9 : 3 : 1) 4942 (94) 0.799 0.944 0.977 0.995 0.998 0.974 0.928 0.990 1.000

distributions of the number of tests are provided in the supplementary material available at Biostatistics
online. All operating characteristics in Table 3 are estimates calculated from our feasibility study. Exact
values of the efficiency and accuracy probabilities for H2,AT, and H3 (based on the information in Table 2)
are also provided in the supplementary material available at Biostatistics online. The estimates in Table 3
are very close to these exact values, although minor differences arise occasionally for AT because we used
individual testing for remainder arrays.

We now return to the questions posed by our colleagues. For the first question, our investigation shows
that switching from H2 to AT could be beneficial when screening female swab specimens for CT/NG.
The estimated efficiency for AT is 0.488 (see Table 3), which represents a 9.0% reduction in the average
number of tests per year when compared with H2 (EFF = 0.536). Assuming N = 20,322 specimens are
received per year, this translates to an average reduction of 977 tests and an annual savings of $36 149.
The performance of AT is also comparable to H3, which is even slightly more efficient (EFF = 0.483). AT
and H3 provide about the same variability in the number of tests expended and similar levels of accuracy.
Choosing between AT and H3 might involve a detailed examination of each algorithm’s level of logistical
complexity. For example, with each application of the AC2A taking 6 h, H3 could increase the turnaround
time from 12 h (for AT) to 18 h, potentially delaying the laboratory in providing positive diagnoses by one
working day. At the same time, the most efficient version of AT requires a larger number of specimens to
pool (8 × 8 = 64) than H3, which may delay testing all together if not enough specimens are received.
These logistical issues aside, the only reason to continue using H2 might be that it provides a slight
improvement in pooling sensitivity for CT.

For the second question, it is difficult to argue that pooling would not be useful when testing female
urine specimens for CT/NG. The estimated efficiency of H2 is 0.572, which would provide an annual cost
savings of $95 053 when compared with individual testing.AT and H3 can be even more efficient, reducing
the average number of tests further by about 200 per year. Moving to the male strata, where the proportion
of positives is larger, the benefits of pooling are obviously reduced but are probably still large enough to
garner attention. For example, when screening male urine specimens for CT/NG, optimal versions of H2

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data


Array testing for multiplex assays 429

and AT both reduce the average number of tests by about 1400 per year when compared with individual
testing, which corresponds to over $50 000 in annual savings. On the other hand, individual testing might
be preferred for male swab specimens due to the high prevalence in this stratum and also because the SHL
receives far fewer specimens of this type each year.

6. DISCUSSION

We have extended the utility of array testing to screening applications that use multiplex assays. For two
diseases, we obtain closed-form expressions for the expected number of tests per individual and relevant
classification accuracy probabilities. These expressions show that array testing can dramatically reduce
the number of tests needed when compared with two-stage hierarchical algorithms and can compete well
with hierarchical algorithms which use a larger number of stages. Our case study using CT/NG data in
Iowa sheds light on questions posed by public-health officials and illustrates the cost-saving benefits of
using array testing in practice.

On a recent visit to the SHL, our colleagues expressed concern about the future of CT/NG screening
in the United States. This is due primarily to the fact that federal and state funds for screening are
“plummeting” and the belief that CT/NG prevalence rates could rise as a result. It is our hope that the
pooling algorithms described in this article and those in Tebbs and others (2013) and Hou and others
(2017) will provide laboratories with viable options to reduce their testing costs for CT/NG screening
purposes. To disseminate our work to potential stakeholders, we have created an R/Shiny application
that performs efficiency and classification accuracy calculations for the algorithms in all three articles and
determines the most efficient algorithm of each type. This resource should allow public health officials and
lab technicians to quickly explore the potential benefits of CT/NG pooling and make informed decisions
about which algorithm might be best to implement in their own laboratories.

We conclude with two remarks. First, an anonymous reviewer has pointed out that the population-level
parameters p00, p10, p01, and p11 are rarely known exactly, yet any evaluation of our algorithms in this
article depends on them. Of course, estimates of disease prevalence can be obtained from previous periods
of testing (e.g., the SHL has been testing Iowa residents for CT/NG in pools since 1999); however, even
good estimates are still subject to uncertainty. One possible way to address this issue would be to perform
efficiency and accuracy calculations for a range of disease prevalence values (and possibly assay accuracy
probabilities too) and select the optimal design based on those identified in this range. Our R/Shiny
application makes this approach feasible as all calculations in this article (for K = 2 diseases) can be
performed almost instantly for arrays of reasonable size. Second, it is easy to envision how array testing
would work with a discriminating multiplex assay for three or more diseases. In fact, Stramer and others
(2013) describe how “triplex” nucleic acid test assays for the detection of HIV, HBV, and HCV have been
available since 2007 and summarize a feasibility study that evaluates a discriminating assay of this type
with pooled samples from blood donors in the United States. Deriving closed-form expressions for the
efficiency and classification accuracy probabilities for K ≥ 3 diseases with AT (or ATM) becomes nearly
overwhelming even when K = 3; however, our R/Shiny application will approximate these quantities by
using simulation.

7. SOFTWARE

Software in the form of R code is available on GitHub (https://github.com/harrindy/multiplex).

8. SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.

https://github.com/harrindy/multiplex
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy058#supplementary-data
http://biostatistics.oxfordjournals.org
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