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Abstract

We propose a cost-effective two-stage approach to investigate gene-disease associations when 

testing a large number of candidate markers using a case-control design. Under this approach, all 

the markers are genotyped and tested at stage 1 using a subset of affected cases and unaffected 

controls, and the most promising markers are genotyped on the remaining individuals and tested 

using all the individuals at stage 2. The sample size at stage 1 is chosen such that the power 

to detect the true markers of association is 1−β1 at significance level α1. The most promising 

markers are tested at significance level α2 at stage 2. In contrast, a one-stage approach would 

evaluate and test all the markers on all the cases and controls to identify the markers significantly 

associated with the disease. The goal is to determine the two-stage parameters (α1, β1, α2) that 

minimize the cost of the study such that the desired overall significance is α and the desired power 

is close to 1−β, the power of the one-stage approach. We provide analytic formulae to estimate 

the two-stage parameters. The properties of the two-stage approach are evaluated under various 

parametric configurations and compared with those of the corresponding one-stage approach. The 

optimal two-stage procedure does not depend on the signal of the markers associated with the 

study. Further, when there is a large number of markers, the optimal procedure is not substantially 

influenced by the total number of markers associated with the disease. The results show that, 

compared to a one-stage approach, a two-stage procedure typically halves the cost of the study.
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INTRODUCTION

Complex diseases are diseases that do not exhibit a simple Mendelian pattern of segregation 

and are multifactorial in nature. Linkage analyses were used in the past to identify genes 

associated with Mendelian disorders, based on information obtained from extended families. 

This approach, however, requires a large number of potential recombination events to 

localize the disease susceptibility regions to narrow intervals for practical uses such as 

positional cloning [Boehnke, 1994]. Well-designed population-based association studies 

are better suited to identify genes associated with complex diseases [Cardon and Bell, 

2001; Cardon and Palmer, 2003]. Association studies are commonly carried out using a 

case-control design, where the candidate markers are genotyped on all cases and controls. 

The ability to obtain a large number of markers (such as single-nucleotide polymorphisms) 

on the human genome has accelerated research interests in association studies. These studies 

are carried out using either a whole-genome approach or the candidate gene approach. 

Under the whole-genome approach, markers are evenly spaced throughout the genome, and 

the markers exhibiting a statistically significant association with the disease outcome are 

identified. On the other hand, the candidate gene approach focuses on specific (candidate) 

genomic regions that are selected based on a priori hypotheses regarding their role in disease 

incidence [Tabor et al., 2002]. Thus, the candidate gene approach involves evaluation of 

fewer markers than the whole-genome approach. In association studies, typically every 

marker is first genotyped on all cases and controls, and an appropriate test statistic [such 

as Armitage’s chi-square test for trend; see Sasieni, 1997] is then used to determine the 

association between every marker and the disease. This one-stage approach, however, is 

not a cost-effective strategy when testing a large number of markers, because many of 

the markers can be eliminated early on in the study as being unlikely to be associated 

with the disease. Two-stage genotyping strategies were shown to be efficient methods for 

identifying disease loci in linkage analyses [Elston, 1994; Elston et al., 1996]. Under this 

approach, a sparse scanning of the genome is performed at stage 1 on all individuals to 

identify candidate regions. Additional markers flanking and in the candidate regions are 

genotyped on all the individuals at stage 2 to more accurately localize the disease loci. The 

two-stage procedure approximately halves the cost of the linkage study in comparison with 

the one-stage procedure alone [Elston et al., 1996]. Two-stage designs were recently shown 

to be cost-effective for association studies, where at stage 1 all the markers are evaluated 

on a subset of the individuals, and the most promising markers are then evaluated at stage 

2 using additional individuals [Satagopan et al., 2002]. When the principal constraint is the 

total cost of the study, a rule-of-thumb two-stage design that provides near-optimal power 

is to evaluate all the markers on approximately 25% of the individuals at stage 1, and 

then to validate the top 10% of the markers on all remaining individuals at stage 2. This 

rule-of-thumb two-stage design enables evaluation of 325% more individuals in comparison 

with a one-stage design, thus resulting in a substantial increase in power to detect the 

markers associated with the disease.

Often, however, it may be of more interest to design a study with predefined power than 

with predefined total cost. In this paper, we consider a two-stage design where the required 

sample size is first calculated corresponding to a one-stage design with a desired power 
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and significance level. Given this sample size, we then focus on determining the two-stage 

design that minimizes the cost of marker evaluations such that the desired power is attained. 

We describe the two-stage design for candidate gene association studies using a statistical 

hypothesis-testing paradigm to identify the markers significantly associated with the disease. 

We derive the significance level α1 and the power 1−β1 for testing all the markers on a 

subsample at stage 1. Those markers that are significant will then be tested at stage 2 at 

significance level α2, using all the individuals. Our goal is to derive the values of α1, β1, 

and α2 that minimize the total cost of the study, but such that the desired overall significance 

level is α and the power is close to 1−β (the desired power of the corresponding one-stage 

approach). The values of α1 and β1 determine the size of the subsample to take at stage 1. 

Using Monte Carlo simulations, we show that near-optimal power can be achieved under a 

two-stage approach by utilizing only a fraction of the cost of the corresponding one-stage 

design.

METHODS

We consider evaluating m markers using a case-control design, where the cases and controls 

are all unrelated persons. Further, we assume that the markers are not in strong linkage 

disequilibrium with each other, and hence the markers can be considered independent; 

in other words, we assume that there is only one marker (which could be defined by a 

haplotype) for each candidate gene. Suppose there are D (<m) disease loci. We assume 

that for every disease locus there is a marker in complete linkage disequilibrium with that 

locus. Our goal is to identify at least one of these loci. A one-stage design will proceed 

by genotyping all the m markers on all available individuals. At every marker locus we 

will then test the null hypothesis that the marker is not associated with the disease against 

the alternative hypothesis that the marker is associated with the disease. Let μ denote 

the “signal” or design effect of the marker being tested. In a case-control design, the 

allele (or genotype or haplotype) frequencies in cases and controls are compared at every 

marker locus to determine association between the locus and the binary disease status. 

Denoting the allele frequencies in the cases and controls as p1 and p0, respectively, the null 

hypothesis tested at a marker locus is given by H0: p1=p0. Let U1 and U0, respectively, 

denote the observed number of cases and controls carrying the allele of interest at the 

marker locus. Then, using a binomial distribution, the statistic U1−U0 has expected value 

n(p1−p0) and variance n[p1(1−p1)+p0(1−p0)], where n denotes both the number of cases 

and the number of controls. Therefore, the signal μ can be interpreted as the “design 

effect” p1 − p0 / p1 1 − p1 + p0 1 − p0 . The null hypothesis H0: p1=p0 is equivalent H0: 

μ=0. Without loss of generality, here we will consider a one-sided alternative hypothesis HA: 
μ>0. We make the large sample assumption that our test statistic is normally distributed with 

variance proportional to the sample size.

ONE-STAGE PROCEDURE

Let α be the desired overall significance level, and 1−β denote the desired power. Let 

Φ(.) and ϕ(.) denote the cumulative distribution function and probability density function 

of the standard normal distribution, respectively. We shall use the notation Za to denote the 

100*ath percentile of a standard normal distribution, i.e., Φ(Za)=a. Suppose we consider 
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a case-control design with equal numbers (n each, say) of cases and controls. Using the 

Bonferroni correction for testing m independent markers, the sample size of the one-stage 

design is given by Witte et al. [2000]:

n = 1
μ2 Z1 − α/m + Z1 − β

2 . (1)

When there are multiple disease loci (i.e., D>1) with different signals, we consider μ to 

represent the smallest of the D signals. In other words, n represents the sample size (number 

of cases and an equal number of controls) required to detect the disease locus with the 

smallest signal of interest.

Now let TA denote the cost of recruiting a case-control pair, and let TG denote the cost of 

genotyping a single marker on these two individuals (we assume that both TA and TG are 

known to the investigator). Then the cost of this one-stage design, denoted T1*, is given by 

T1* = nTA + nmTG. Let T1 = T1*/TG. Further, let R=TA/TG denote the cost of recruiting an 

individual relative to the cost of genotyping a marker on that individual. Then using as units 

of cost the cost of genotyping a single marker, the cost of the one-stage design is:

T1 = nR + nm . (2)

TWO-STAGE PROCEDURE

Consider the following two-stage design. At stage 1, evaluate (i.e., genotype and test) all 

m markers using n1 (<n) cases and n1 controls, where the sample size n1 is such that the 

power to detect a disease locus is 1−β1 at significance level α1. Let m1 (<m) denote the 

number of markers significant at level α1. At stage 2, genotype these m1 markers on the 

remaining n2=n−n1 cases and n2 controls. Test the m1 markers at significance level α2, using 

all individuals. The markers significant at level α2 will be identified as the disease loci. The 

cost of the two-stage design is thus T2* = nTA + n1mTG + n2m1TG. Denoting T2 = T2*/TG, the 

cost of the two-stage design, T2, can be written as:

T2 = nR + n1m + n2m1 . (3)

The above two-stage design has similarities to group sequential designs, commonly used in 

clinical trials [Jennison and Turnbull, 2000]. As in a group sequential design, the decision 

to evaluate a marker at stage 2 depends on whether the marker exceeds the desired critical 

value Z1 − α1 at stage 1. However, here we test multiple markers at every stage.

Let P represent the power to detect a disease locus using the two-stage design. In the 

absence of any constraint on sample size, the one-stage design will have the maximum 

power to detect a disease locus, i.e., 1−β>P. Note that since n1<n and m1<m, we have 

T2<T1. Hence, if the two-stage design were to provide power close to that of a one-stage 

design, and if the cost reduction is substantial, then it would be more cost-effective to 

perform a two-stage design.
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The sample size n1 at stage 1 is given by:

n1 =
Z1 − α1 + Z1 − β1

2

μ2 . (4)

The expected number of significant markers at stage 1 is given by:

E m1 = (m − D)α1 + D 1 − β1 . (5)

This is a mixture of two binomial random variables, since the D disease loci each have a 

probability 1−β1 of being selected at stage 1, and the m−D null loci each have probability α1 

of being selected at stage 1. The values (α1, β1, α2) define the two-stage design parameters. 

Our goal is to estimate the two-stage design parameters that minimize the expected cost T2, 

such that the overall significance level of the two-stage procedure is α and the power P is 

close to 1−β.

A simplifying assumption to derive the overall significance level and power functions is that, 

under the alternative hypothesis, an observation on a marker from a single individual has 

a normally distributed outcome with variance 1 and mean μ. This could be a reasonable 

approximation so long as the sample size (number of cases and controls) is large enough that 

the test statistic corresponding to each marker has an approximate normal distribution with 

variance proportional to the sample size. Let (X1, X2) denote the test statistics of a marker 

at stages 1 and 2. Then X1~N(n1μ, n1) and X2~N(nμ, n). When the marker is not associated 

with the disease, μ=0. Further, since cases and controls are randomly sampled (i.e., unrelated 

individuals), the test statistics follow the Markov property, i.e., X2−X1 is independent of X1. 

Hence, X2−X1~N(n2μ, n2). In other words, the test statistic pair (X1, X2) for a marker in 

the two stages has a bivariate normal distribution with mean vector (n1μ, nμ) and covariance 

matrix Σ =
n1 n1
n1 n .

OVERALL SIGNIFICANCE LEVEL AND POWER OF THE TWO-STAGE PROCEDURE

The overall significance α is the probability of finding at least one significant association 

under the null hypothesis (i.e., at least one false-positive association). Let P0(.) denote 

the probability of an event under the null hypothesis. The probability of detecting a false-

positive association at stage 1 is α1 = P0 X1 > Z1 − α1 n1 . Let p2 denote the conditional 

probability of a false-positive association at stage 2, given there is a false-positive 

association at stage 1. Then p2 = P0 X2 > Z1 − α2 n ∣ X1 > Z1 − α1 n1 . Hence, the overall 

significance level can be obtained as below:
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1 − α = P0 no false positive associations
= P0 no false positive association at Stage1 + P0
at least 1 false positive association at Stage1 and none at Stage2

= 1 − α1 m + ∑
k = 1

m
P0 k false positive associations at Stage1 and none at Stage2

= 1 − α1 m + ∑
k = 1

m m
k α1

k 1 − α1 m − k 1 − p2 k

= 1 − α1 m + ∑
k = 1

m m
k

α1 1 − p2
1 − α1

k
1 − α1 m

= ∑
k = 0

m m
k

α1 1 − p2
1 − α1

k
1 − α1 m

= 1 − α1p2 m .

When the total number of markers m is large, we have 

α/m = α1p2 = P0 X1 > Z1 − α1 n1, X2 > Z1 − α2 n .

The power P of the two-stage procedure is the probability of selecting a disease locus under 

the alternative hypothesis. Therefore, denoting PA(.) as the probability of an event under the 

alternative hypothesis, we can write P as follows:

P = PA X1 > Z1 − α1 n1, X2 > Z1 − α2 n

= ∫Z1 − α1

∞
1 − Φ

Z1 − α2 n − z n1 − n2μ
n2

× ϕ z − μ n1 dz . (6)

The right hand side of this equation is an increasing function of α2 for given values of m, μ, 

α, β (and hence n), α1, and β1 (and hence n1). The significance level can be obtained from 

Equation (6) by setting μ=0.

ESTIMATING THE TWO-STAGE DESIGN PARAMETERS

The expected cost function of the two-stage approach is given by T2 = nR + n1m + (n − 

n1)E(m1). This expected cost function is, therefore, a function of α1 and β1, and using this 

and Equations 4 and 5 we can write:

T2 − nR μ2 = m Z1 − α1 + Z1 − β1
2 + (m − D)α1 + D 1 − β1

× Z1 − α/m + Z1 − β
2 − Z1 − α1 + Z1 − β1

2 .
(7)

Our goal is to minimize the expected cost given by Equation (7) with respect to the three 

unknowns (α1, β1, α2), subject to the significance level and power constraints given by 

Equation 6, for given values of m, D, R, μ, α, and β (and hence of n). More specifically, our 

goal is to estimate the value of the parameters (α1, β1, α2) that provide the minimum cost, 

such that the power P of the two-stage design is close to 1−β, the power of the one-stage 

design. In other words, for a given small positive value of ϵ, the estimated parameters must 

be such that (1−β)−P≤ϵ. Minimizing the expected cost T2 with respect to (α1, β1, α2) is 

equivalent to minimizing the right-hand side of Equation (7), which is independent of μ and 
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R. Further, it can be easily seen using Equations (1) and (4) that the integrand of Equation 

(6) is independent of μ when written as functions of α, β, α1, β1, and α2. Hence, the values 

of (α1, β1, α2) that minimize the expected cost will not depend upon μ or R. When the 

value of T2 is specified, the Power Equation 6, the significance-level equation obtained by 

setting μ=0 in Equation 6, and the Cost Equation (7) constitute three equations in the three 

unknowns. Hence, a solution to the unknown parameters can be obtained by solving the 

three equations. Note that when T2 is specified, β1 can be estimated from Equation (7) using 

the Newton-Raphson method for a given α1. The value of α2 can then be estimated from 

Equation (6) by setting μ=0 using the Newton-Raphson method and numerical integration. 

Finally, P can be calculated from Equation (6) using numerical integration.

The cost fraction (T2 − nR)/(T1 − nR) ∈ (0, 1) represents the fraction of marker evaluations 

performed under the two-stage procedure relative to the one-stage approach. The cost of 

the one-stage procedure T1 is known when the values of m, μ, α, β (and hence n), and R 

are given. Therefore, specifying the cost fraction is equivalent to specifying the (expected) 

cost T2 of the two-stage procedure. Further, the significance level for testing at stage 1 is 

between 0 and 1, i.e., α1∈(0, 1). We use a Monte Carlo grid search on the unit square to 

obtain the required solution for given values of m, μ, D, R, α, and 1−β. Every point on the 

grid corresponds to a value of the cost fraction and α1. At every point on the grid, we can 

solve for β1, α2, and P as described above. For every cost fraction, we then identify the 

parameters (α1, β1, α2) where the power P is maximum. Finally, we identify the smallest 

cost fraction, and hence the minimum expected cost T2, at which the maximum power P is 

such that (1−β)−P≤ϵ, for some prespecified ϵ (we take ϵ=0.01). The corresponding values of 

(α1, β1, α2) provide the required solution.

RESULTS

We calculated the optimal design parameters using Monte Carlo simulations for various 

combinations of the following parameters: m=25, 50, 100, 200, 500, and 1,000 markers; 

D=1, 5, and 10 disease loci; overall significance level α=0.01, 0.05; and power of the 

one-stage design 1−β=0.80, 0.90. Further, we set ϵ=0.01. Therefore, the two-stage procedure 

is said to have near-optimal power when (1−β)−P≤ϵ.

Figure 1 illustrates the results for D=1, α=0.05 and 1−β=0.80. The horizontal axis shows 

the cost fraction (shown here between 0.25–0.90). The vertical axis represents the maximum 

power P of the two-stage procedure. The power is shown for values of m ranging from 

25–1,000. The horizontal lines correspond to 1−β=0.80 (power of the one-stage design) 

and 1−β−ϵ=0.79 (lower bound for achieving near-optimal power). As the cost fraction 

increases, the power of the two-stage procedure increases towards the power of the one-stage 

procedure. Note that when the cost fraction increases to one, T2≈T1. Therefore, from 

Equations (2) and (3), nm≈n1m+n2m1=n1m+(n−n1)m1. This implies that m≈m1. Therefore, 

when the cost fraction increases to one, the two-stage design is essentially a one-stage 

design, and hence the power converges to 1−β. Further, for a given cost fraction, the power 

increases as m increases. The two vertical lines correspond to cost fractions of 50% and 

55%. Note that when the cost fraction is above 50%, the power of the two-stage design 
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is between 0.79 and 0.80. In general, when m≥100, the two-stage procedure achieves 

near-optimal power when the cost fraction is at least 50%.

Tables I–IV illustrate the results of various Monte Carlo simulations. These results show that 

near-optimal power can be obtained by using only a fraction of the cost of the one-stage 

procedure. In general, when D=1 and m is large (≥100), a cost fraction of approximately 

50% or less is sufficient to obtain near-optimal power. The optimal cost fraction increases 

as D increases. When m is very large, this increase in the optimal cost fraction is not 

substantial. For example, when m=1,000, near-optimal power is attained when the cost 

fraction is approximately 45%, irrespective of the value of D. Similarly, when m=200, 

near-optimal power is attained when the cost fraction is around 50%. As a general rule-of-

thumb, when the number of markers m is large, a judicious choice of two-stage parameters 

(obtained using Equations 6 and 7) can provide near-optimal power by using only 50% of 

the cost of a one-stage design. Denoting F as the optimal cost fraction, the optimal expected 

cost of a two-stage design can be obtained as F × (T1 − nR) + nR, where n (a function of 

μ2)is given by Equation (1), and T1 is given by Equation (2). The value of R is provided 

by the investigator. For example, let α=0.05, 1−β=0.80, m=100, μ=0.10, R=2, and the cost 

fraction F=0.50. The sample size is n=1,708, and the expected cost of the two-stage design is 

88,816 units.

For a given m, the value of D does not (substantially) influence the optimal two-stage 

parameters. For example, when m=25, α=0.05, and 1−β=0.80, the optimal two-stage 

parameters are α1=0.24, β1=0.05, and α2=0.002, irrespective of the value of D. This is 

equivalent to testing all the markers on a subset of n1 individuals, where n1 is calculated 

such that the power to detect a true marker is 1−β1=95% at α1=24% significance level at 

stage 1, and testing the significant markers on all n individuals at α2=0.2% significance level 

at stage 2. In general, the optimal value of α2 is approximately equal to α/m, irrespective 

of the values of the other parameters. Further, when α=0.05, near-optimal power is attained 

when the sample size n1 in stage 1 is chosen such that the power to detect at least one 

disease locus in stage 1 is approximately 96% (and 97% when α=0.01), irrespective of the 

values of the other parameters.

DISCUSSION

We have shown that the two-stage procedure is an efficient strategy to identify markers 

associated with a disease when testing a large number of markers using case-control 

samples. We can achieve an overall power of 80% using this method by designing the 

study (i.e., calculating the sample size n) such that the corresponding one-stage design has 

power 80%+100 × ϵ%, and we suggest setting ϵ=0.01. The optimal two-stage sequential 

approach derived here, in general, halves the cost (or the number of marker evaluations) of 

large-scale association studies. Further, our results on the optimal cost fraction are similar to 

the optimal two-stage procedure for linkage analyses discussed in Elston et al. [1996].

Here we have described two-stage association studies using independent genetic markers. 

This assumption may be violated when the markers are correlated, e.g., when the markers 

are in linkage disequilibrium. In particular, when testing every marker individually in an 
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association study, violation of this assumption would influence the overall significance 

level (given by Equation 6), thus resulting in conservative estimates of significance levels. 

Note that when multiple single-nucleotide polymorphisms (SNPs) in a candidate gene (or 

a candidate region) are in complete (or high) linkage disequilibrium, it would be possible 

to infer their genotypes based on information from one or a few SNPs in that region. 

Therefore, it would be pragmatic to conduct a pilot study of linkage disequilibrium to first 

reduce the number of SNPs and only consider a subset of SNPs in a candidate region that 

represents the biological function of that region, after eliminating SNPs that are in high 

linkage disequilibrium. The presumption of independent test statistics for the markers would 

then be reasonable to derive the significance level and power of the two-stage approach in 

candidate gene association studies.

The two-stage approach proposed here is based on genotyping every marker on all cases 

and controls (i.e., individual genotyping). DNA pooling is becoming increasingly used as a 

genotyping strategy for association studies [Shaw et al., 1998]. Under this approach, DNA 

samples from two or more cases are pooled to create several case DNA pools, and similarly 

for control DNA pools. Allele frequencies at the marker loci are then obtained using the 

DNA pools. Ito et al. [2003] suggested DNA pooling using two individuals per pool in order 

to obtain reliable haplotype information. Wang et al. [2003] evaluated the cost-effectiveness 

of DNA pooling methods for estimating haplotype frequencies, and recommended using 

two individuals per DNA pool. DNA pooling enables reduction of genotyping costs, but 

at the expense of only being able to obtain the allele (or haplotype), rather than genotype, 

frequencies. The individual genotyping approach, on the other hand, provides complete 

information on the genotype frequencies of individuals at every marker locus. Testing for 

deviation from Hardy-Weinberg equilibrium (HWE) proportions in cases was suggested as a 

more precise method to localize disease loci [Feder et al., 1996; Jiang et al., 2001], provided 

the mode of inheritance is not multiplicative [Nielsen et al., 1999]. This approach, however, 

requires knowledge of individual genotype, rather than allele (or haplotype), frequencies. 

It will be worthwhile to consider a two-stage approach that combines the two genotyping 

methods. All the markers could be evaluated on a subset of cases and controls at stage 1, 

using two (or even more) individuals per DNA pool. The most promising markers could 

then be evaluated on all individuals at stage 2, using individual genotyping so that testing 

for deviations from HWE could be used to identify causative loci. Two-stage approaches of 

this type, combining case-control association tests and HWE tests with various genotyping 

strategies, can be considered. Since, under this approach, controls might only be used in the 

first stage, the design could focus on ascertaining more cases than controls. Further research 

is needed to determine cost-efficient strategies of this nature. Finally, it should be noted 

that, although we focused here on a case-control design where the cases and controls are 

independent, the same technique can be used when the controls are family-based, such as the 

pseudosib controls that are used in the transmission/disequilibrium test design [Spielman et 

al., 1993].
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Fig. 1. 
Power of two-stage approach for D=1, α=0.05, 1−β=0.80, and ϵ=0.01. Note that 1−β is 

power of one-stage approach. Power is shown for values of m ranging from 25–1,000. 

Horizontal axis shows cost fraction (T2−nR)/(T1−nR). Vertical axis shows maximum power 

attained by two-stage procedure for a given cost fraction. Two horizontal lines correspond to 

powers of 79% and 80%. Two vertical lines correspond to cost fractions of 50% and 55%.
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TABLE I.

Characteristics of optimal two-stage procedure using independent markers, α=0.05, 1−β=0.80, and ϵ=0.01
a

Optimal parameters

m D Optimal cost fraction α1 β1 α2

25 1 0.56 0.24 0.05 0.002

5 0.63 0.24 0.05 0.002

50 1 0.43 0.22 0.04 0.001

5 0.57 0.22 0.04 0.001

100 1 0.51 0.21 0.04 0.0005

5 0.53 0.21 0.04 0.0005

200 1 0.49 0.19 0.04 0.00026

5 0.50 0.19 0.04 0.00026

10 0.51 0.19 0.04 0.00026

500 1 0.46 0.17 0.04 0.0001

5 0.47 0.17 0.04 0.0001

10 0.47 0.17 0.04 0.0001

1,000 1 0.45 0.16 0.04 0.00005

5 0.45 0.16 0.04 0.00005

10 0.45 0.16 0.04 0.00005

a
m, total number of markers; D, number of disease loci.
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TABLE II.

Characteristics of optimal two-stage procedure using independent markers, α=0.05, 1−β=0.90, and ϵ=0.01
a

Optimal parameters

m D Optimal cost fraction α1 β1 α2

25 1 0.56 0.23 0.03 0.002

5 0.63 0.23 0.03 0.002

50 1 0.53 0.22 0.03 0.001

5 0.56 0.21 0.03 0.001

100 1 0.50 0.19 0.03 0.0005

5 0.52 0.19 0.03 0.0005

200 1 0.48 0.18 0.03 0.00026

5 0.49 0.18 0.03 0.00026

10 0.50 0.18 0.03 0.00026

500 1 0.45 0.16 0.03 0.0001

5 0.46 0.17 0.03 0.0001

10 0.46 0.16 0.03 0.0001

1,000 1 0.44 0.16 0.02 0.00005

5 0.44 0.16 0.02 0.00005

10 0.44 0.15 0.02 0.00005

a
m, total number of markers; D, number of disease loci.
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TABLE III.

Characteristics of optimal two-stage procedure using independent markers, α=0.01, 1−β=0.80, and ϵ=0.01
a

Optimal parameters

m D Optimal cost fraction α1 β1 α2

25 1 0.52 0.20 0.04 0.0004

5 0.59 0.19 0.04 0.0004

50 1 0.49 0.18 0.04 0.0002

5 0.53 0.18 0.04 0.0002

100 1 0.47 0.17 0.04 0.0001

5 0.49 0.17 0.04 0.0001

200 1 0.45 0.16 0.04 0.00005

5 0.45 0.16 0.04 0.00005

10 0.47 0.16 0.04 0.00005

500 1 0.43 0.15 0.04 0.00002

5 0.43 0.15 0.04 0.00002

10 0.44 0.15 0.04 0.00002

1,000 1 0.41 0.14 0.04 0.00001

5 0.42 0.14 0.04 0.00001

10 0.42 0.14 0.04 0.00001

a
m, total number of markers; D, number of disease loci.
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TABLE IV.

Characteristics of optimal two-stage procedure using independent markers, α=0.01, 1−β=0.90, and ϵ=0.01
a

Optimal parameters

m D Optimal cost fraction α1 β1 α2

25 1 0.51 0.19 0.03 0.0004

5 0.59 0.19 0.03 0.0004

50 1 0.48 0.18 0.03 0.0002

5 0.52 0.18 0.03 0.0002

100 1 0.46 0.17 0.03 0.0001

5 0.48 0.17 0.03 0.0001

200 1 0.44 0.16 0.03 0.00005

5 0.45 0.16 0.03 0.00005

10 0.47 0.16 0.03 0.00005

500 1 0.42 0.14 0.03 0.00002

5 0.42 0.14 0.03 0.00002

10 0.43 0.14 0.03 0.00002

1,000 1 0.41 0.13 0.03 0.00001

5 0.41 0.13 0.03 0.00001

10 0.41 0.13 0.03 0.00001

a
m, total number of markers; D, number of disease loci.
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