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Abstract 

Background:  Data from certain subgroups of clinical interest may not be presented in primary manuscripts or 
conference abstract presentations. In an effort to enable secondary data analyses, we propose a workflow to retrieve 
unreported subgroup survival data from published Kaplan-Meier (KM) plots.

Methods:  We developed KMSubtraction, an R-package that retrieves patients from unreported subgroups by match-
ing participants on KM plots of the overall cohort to participants on KM plots of a known subgroup with follow-up 
time. By excluding matched patients, the opposing unreported subgroup may be retrieved. Reproducibility and limits 
of error of the KMSubtraction workflow were assessed by comparing unmatched patients against the original survival 
data of subgroups from published datasets and simulations. Monte Carlo simulations were utilized to evaluate the 
limits of error of KMSubtraction.

Results:  The validation exercise found no material systematic error and demonstrates the robustness of KMSub-
traction in deriving unreported subgroup survival data. Limits of error were small and negligible on marginal Cox 
proportional hazard models comparing reconstructed and original survival data of unreported subgroups. Extensive 
Monte Carlo simulations demonstrate that datasets with high reported subgroup proportion (r = 0.467, p < 0.001), 
small dataset size (r = − 0.374, p < 0.001) and high proportion of missing data in the unreported subgroup (r = 0.553, 
p < 0.001) were associated with uncertainty are likely to yield high limits of error with KMSubtraction.

Conclusion:  KMSubtraction demonstrates robustness in deriving survival data from unreported subgroups. The limits 
of error of KMSubtraction derived from converged Monte Carlo simulations may guide the interpretation of recon-
structed survival data of unreported subgroups.
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Background
Advances in secondary data analysis of survival data has 
been made by Guyot et  al. [1]. This enables retrieval of 
individual patient data (IPD) from reported Kaplan-
Meier (KM) plots [2, 3]. However, this is only amena-
ble for KM plots presented in the original publication. 
Often, subgroups of interest in clinically negative rand-
omized controlled trials (RCTs) may not be presented in 
KM plots. Where subgroups of interest are not reported 
(or more commonly presented as a summary statistic 
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in forest plots), IPD retrieval utilizing such algorithms 
becomes impossible.

In this era of precision medicine, where molecular mark-
ers or gene expression levels are increasingly available to 
clinicians, treatment should ideally be rendered to the 
patient when their clinicopathological profile is predictive 
of a good treatment response [4–6]. This is critical in decid-
ing approvals for unique subgroups, or conversely for dis-
couraging use in the opposing subgroup – where negative 
biomarkers have demonstrated the lack of benefit [7]. In 
addition, cost-effectiveness analysis (CEA), a major consid-
eration in deciding against therapeutic strategies at a public 
health level, requires IPD data for the appropriate analysis. 
While new biomarkers for therapeutic regimens have been 
sought after and studied in trials, they remain exploratory 
and are often underpowered for interpretation. To over-
come this, meta-analytic techniques may be exploited to 
pool data together to increase statistical power.

In an effort to enable secondary data analyses in 
such circumstances, we propose a workflow to retrieve 
unreported subgroup survival data from published KM 
plots. This method was first utilized to retrieve unre-
ported overall and progression free survival of patients 
treated with first-line immune checkpoint inhibitors 
with advanced gastroesophageal adenocarcinoma with 
a tumor combined positive score (CPS) of 1–4 and 1–9 
from CheckMate-649 and KEYNOTE-062 respectively 
[8–10]. Here, we demonstrate the robustness of this 
novel approach and discuss parameters that may influ-
ence its limits of error.

Methods
KMSubtraction is an R-package (https://​github.​com/​
josep​hjzhao/​KMSub​tract​ion/) designed to retrieve sur-
vival data of patients from unreported subgroups. A 
Shiny app is also made available and accessible through 
the GitHub user guide. An overview of the KMSubtrac-
tion workflow is illustrated in Fig.  1. The workflow of 
KMSubtraction is detailed as such:

Step 1 Reconstruction of time‑to‑event outcomes
A graphical reconstructive algorithm is exploited to 
estimate time-to-event outcomes from KM plots by an 
iterative algorithm based on KM estimation described by 
Guyot et al. [1, 2, 11]. The implementation of this step is 
described by Liu et  al. in the package IPDfromKM [11]. 
KM plots describing the overall cohort and a known sub-
group is required.

Step 2 Matching of patients – KMSubtractionMatch()
KMSubtractionMatch() is a wrapper function that utiliz-
ing raw reconstructed time-to-event outcomes to match 

patients from subgroups among the overall cohort. 
Minimal cost bipartite matching with the Hungarian 
algorithm [12] was adopted as the primary matching 
algorithm. The minimal cost bipartite matching algo-
rithm aims to match patients from the overall and sub-
group cohort by minimizing follow-up time differences 
between matched patients [12]. The Hungarian alogrithm 
(or the Huhn-Munkres algorithm) is a combinatorial 
optimization algorithm that solves the problem of assign-
ing optimal pairs in polynomial time, and is implemented 
in the RcppHungarian package in R. Matching through 
Mahalanobis distance matching (Mahalanobis) and near-
est neighbor matching by logistic regression (Logisitic) 
with the MatchIt [13] package are provided as well. In 
Mahalanobis distance matching, pairs are assigned based 
on a scale-free Euclidean distance to minimize covari-
ate differences within each pair [14]. In nearest neighbor 
matching, pairs are assigned based on the propensity 
score difference estimated via logistic regression, without 
reference to how other units will be or have been paired, 
and therefore this method does not aim to optimize any 
criterion [14, 15]. The three methods of matching were 
comparatively evaluated as described below. Patients 
with events and censorships were matched separately 
and are referred to as “patients with events” and “patients 
with censorships” in this study. By excluding matched 
patients, the opposing unreported subgroup may be 
retrieved.

Evaluation of matching – KMSubtractionEvaluateMatch()
The quality of matching was evaluated by comparing 
matched patients. This was conducted by inspecting the 
following parameters and quality of match test statistics 
(1) Bland-Altman [16] plots to explore discrepancies 
between matched pairs with the blandr [17] package in 
R (2) Empirical cumulative distribution functions and the 
Kolmogorov−Smirnov Test of follow-up times between 
matched pairs (3) KM plots of matched patients from the 
overall cohorts versus directly reconstructed subgroup 
cohorts, along with hazard ratios and log-rank tests from 
a marginal Cox proportional hazard model.

Potential limits of error of each task – KMSubtractionError()
In light of the variation in each implementation, the lim-
its of error surrounding each task would be different. It 
would therefore be of paramount importance to ascertain 
whether the implementation of KMSubtraction would be 
appropriate in each context. This may be especially rel-
evant in the interpretation of derived data in  situations 
where there is a sizable proportion of missing data in 
the opposing subgroup. KMSubtractionError() conducts 
Monte Carlo simulations to evaluate the limits of error 
of KMSubtractionMatch() given parameters surrounding 
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Fig. 1  Illustration of KMSubtraction 
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the reconstruction task required. Follow-up time was 
modelled by a random weibull distribution of common 
shape parameter of 1.000 and scale parameter of 5.000. 
Reconstructed and original survival data were compared 
by means of marginal Cox-proportional hazard models 
and restricted mean survival time difference (RMST-D) 
[18]. The similarity may be summarized by the natural 
logarithmic of the hazard ratio, ln(HR) and RMST-D. 
Deviations from the true value is reflected by the abso-
lute of ln(HR) and RMST-D, where |ln(HR)| and |RMST-
D| = 0 is ideal.

Simulation exercise
Next, we conducted Monte Carlo simulations to evalu-
ate the effect of the sample size, reported subgroup 
proportion, proportion of missing data, censorship pro-
portion in the overall and subgroup cohort, and number 
of number-at-risk table intervals on the quality of recon-
struction. Five thousand iterations were conducted for 
each scenario. Follow-up time was modelled by a ran-
dom Weibull distribution of common shape parameter 
of 1.000 and scale parameter of 5.000. To facilitate the 
high magnitude of simulations performed, curve coor-
dinates retrieval from KM plot images were automated 
by identifying RGB coordinates of each rasterized curve 
with a prespecified color and rescaling them with pre-
specified maximum and minimum xy coordinates. This 
was conducted using the magick [19] package in R. The 
extracted xy coordinates of curves were thereafter incor-
porated into IPDfromKM [11] for reconstruction. Utiliz-
ing KMSubtraction, patients from the opposing subgroup 
are identified.

Thereafter, reconstructed KM plots were compared 
against original plots using a marginal Cox proportional 
hazards model. The absolute value of natural logarith-
mic transformed hazard ratios (|ln(HR)|) was inspected 
as the main summary statistic. Running |ln(HR)| mean 
plots were inspected to evaluate for simulation conver-
gence. For each scenario, means and Wald’s 95% confi-
dence intervals were derived per outcome. The Pearson’s 
product-moment correlation coefficient r was inspected 
to evaluate the proportion of the variation in |ln(HR)| 
that is predictable from the upstream varying independ-
ent variables. Cutoffs were determined by the intersec-
tion between |ln(HR)| = 0.03, 0.04 & 0.05 and smoothing 
splines of 15 degrees of freedom generated with the pri-
mary matching algorithm. Comparisons between the 
different matching algorithms were undertaken using 
two-way analysis of variance (ANOVA) with Tukey mul-
tiple pairwise-comparisons between each algorithm. 
Besides minimal cost bipartite matching, Mahalano-
bis distance matching, and nearest neighbor match-
ing by logistic regression were explored as well. Finally, 

we sought to evaluate associations between the quality 
of match and the limits of error. Correlograms reflect-
ing associations between |ln(HR)| and quality of match 
test statistics of KMSubtractionEvaluateMatch() were 
inspected to help interpret and identify tests that may 
assist in prognosticating reconstruction accuracy.

The R code for the simulations is provided in Supple-
mentary Code, and the parameters utilized for each sim-
ulation scenario are provided in Supplementary Table 1. 
Running |ln(HR)| mean plots to demonstrate simulation 
convergence is shown in Supplementary Figure  1.  All 
analyses were conducted in R-4.1.0.

Implementation
Scenario 1
The first scenario utilizes time-to-death data of patients 
with stage III colon carcinoma treated with fluorouracil 
(5FU) plus levamisole (Lev) versus levamisole only after 
resection in a randomized controlled trial by Moertel 
et  al. [20]. The dataset was retrieved from the survival 
package in R. The hypothetical scenario is designed as 
such: KM plots describing survival outcomes for patients 
treated with Lev vs Lev+5FU is presented for the over-
all cohort (n = 614) (Fig. 2A) and for patients with more 
than 4 positive lymph nodes (n = 168) (Fig. 2B). Survival 
outcomes for patients with less than or equal to 4 positive 
lymph nodes is however unreported (n = 446) (Fig.  2C, 
solid line).

Upon reconstruction of Fig.  2A and Fig.  2B, and pro-
cessing with KMSubtractionMatch() with minimal cost 
bipartite matching, the retrieved subgroup yielded plots 
(Fig. 2C, dashed line) similar to the original data. Hazard 
ratios on the marginal Cox model were similar as well 
(original-HR = 0.714, 95%-CI: 0.526–0.969, p  = 0.030 
vs KMSubtraction-HR = 0.713, 95%-CI: 0.526–0.966, 
p = 0.028) (Fig. 2C).

Following, 1000 Monte Carlo iterations with KMSub-
tractionError() were conducted per arm, yielding mean 
(standard deviation) |ln(HR)| of 0.00960 (0.00780) and 
0.01120 (0.00866) for Lev and Lev+5FU respectively. 
This suggests that the limits of error of KMSubtraction in 
the above scenarios are likely small and negligible.

Scenario 2
The second scenario utilizes time-to-death data of 
patients with primary breast cancer from the Rotterdam 
tumor bank by Royston and Altman et al. [21]. The data-
set was retrieved from the survival package in R [22]. 
The hypothetical scenario is designed as such: KM plots 
describing survival outcomes for patients treated with 
chemotherapy-only (Chemo) vs hormonal therapy-only 
(Hormon) is presented for the overall cohort (n = 863) 
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(Fig.  3A) and for patients with estrogen receptors (ER) 
or progesterone receptors (PGR) more than 100 fmol/l 
(n = 448) (Fig.  3B). Survival outcomes for patients with 
ER and PGR less than or equal to 100 fmol/l is however 
unreported (n = 415) (Fig. 3C, solid line).

Upon reconstruction of Fig.  3A and Fig.  3B, and pro-
cessing with KMSubtraction with minimal cost bipartite 
matching, the retrieved subgroup yielded plots (Fig. 3C, 
dashed line) similar to the original data. Hazard ratios on 
the marginal Cox model comparing Chemo vs Hormon 
among patients with ER and PGR less than or equal to 
100 fmol/l were similar as well (original-HR = 1.353, 95%-
CI: 1.117–1.638, p < 0.001 vs KMSubtraction-HR = 1.359, 
95%-CI: 1.031–1.791, p = 0.029) (Fig. 3C).

Following, 1000 Monte Carlo iterations with KMSub-
tractionError() were conducted per arm, yielding mean 
(standard deviation) |ln(HR)| of 0.01211 (0.00818) and 
0.01271 (0.01125) for Chemo and Hormon respectively. 

This suggests that the limits of error of KMSubtraction in 
the above scenarios are likely small and negligible.

Simulation results
Size of dataset
Twenty scenarios of intervals n = 50 were created from 
sample sizes ranging 50 to 1000. |ln(HR)| was nega-
tively associated with sample size (Bipartite: r = − 0.374, 
p  < 0.001; Mahalanobis: r = − 0.380, p  < 0.001; Logistic: 
r = − 0.373, p < 0.001), suggesting that small data sets are 
likely to yield high limits of error (Fig.  4A). No signifi-
cant differences between the matching algorithms were 
demonstrated on the Tukey pairwise comparisons (all 
p > 0.05). Datasets smaller than n = 112, 89, 71 are likely 
to yield a mean |ln(HR)| of 0.03, 0.04 and 0.05 respec-
tively with minimum cost bipartite matching. The mean 
of absolute differences in follow-up time among patients 
with events appears to be weakly associated with the lim-
its of error (Fig. 5A).

A B C
Maginal hazard ratio (95%-CI)
Original: 0.714 (0.526-0.969), p = 0.030
KMSubtraction: 0.713 (0.526-0.966), p = 0.028

Fig. 2  Example scenario 1 - patients with colon cancer treated with Levamisole (Lev) + 5-Fluorouracil (FU) vs Lev only. Kaplan Meier plots reporting 
(A) Overall cohort from original data (B) Patients with more than 4 positive lymph nodes (the presented subgroup) from original data (C) Patients 
with less than or equal to 4 positive lymph nodes comparing original and KMSubtraction derived data (opposing subgroup)

A B C

Fig. 3  Example scenario 2 - patients with breast cancer treated with chemotherapy vs hormonal therapy. Kaplan Meier plots reporting (A) Overall 
cohort from original data (B) Patients with estrogen receptors (ER) or progesterone receptors (PGR) more than 100 fmol/l (the presented subgroup) 
from original data (C) Patients with less than or equal to 4 positive lymph nodes between original and KMSubtraction derived data (opposing 
subgroup)
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Proportion of reported subgroup
Twenty scenarios of intervals 5% were created from 
proportions ranging 1 to 96%. |ln(HR)| was positively 
associated with the proportion of reported subgroup 
(Bipartite: r = 0.467, p  < 0.001; Mahalanobis: r = 0.446, 
p  < 0.001; Logistic: r  = 0.457, p  < 0.01), suggesting that 
large proportion of reported subgroups are likely to yield 
high limits of error (Fig.  4B). The Mahalanobis match-
ing algorithm yielded significantly lower limits of error 
when the proportion of reported subgroup is beyond 86% 
(Supplementary Table  2). Proportions of reported sub-
groups larger than 86.2, 89.3 and 91.1% are likely to yield 
a mean |ln(HR)| of 0.03, 0.04 and 0.05 respectively with 
minimum cost bipartite matching. In scenarios with high 
proportions of subgroups, the |ln(HR)| between matched 
patients of the overall and subgroup cohort, log-rank 
test and mean of absolute differences in follow-up time 
among patients with censorships appears to be associ-
ated with the limits of error (Fig. 5B).

Proportion of censorship in overall cohort
Twenty scenarios of intervals 5% were created from pro-
portions ranging 1 to 96%. |ln(HR)| was weakly asso-
ciated with the proportion of censorship (Bipartite: 
r  = 0.157, p  < 0.001; Mahalanobis: r  = 0.172, p  < 0.001; 
Logistic: r  = 0.160, p  < 0.001) (Fig.  4C). No significant 
differences between the matching algorithms were 

demonstrated on the Tukey pairwise comparisons (all 
p > 0.05). Proportions of censorships in the overall cohort 
larger than 92.2, 94.2 and 95.8% are likely to yield a mean 
|ln(HR)| of 0.03, 0.04 and 0.05 respectively with mini-
mum cost bipartite matching. In scenarios with smaller 
proportions of censorship in the overall cohort, the mean 
of absolute differences in follow-up time among patients 
with events appears to be weakly associated with the lim-
its of error (Fig. 5C).

Proportion of censorship in subgroup cohort
Twenty scenarios of intervals 5% were created from pro-
portions ranging 1 to 96%. |ln(HR)| was weakly asso-
ciated with the proportion of censorship (Bipartite: 
r  = 0.149, p  < 0.001; Mahalanobis: r  = 0.164, p  < 0.001; 
Logistic: r = 0.152, p < 0.001) (Fig. 4D). No significant dif-
ferences between the matching algorithms were demon-
strated on the Tukey pairwise comparisons (all p > 0.05). 
Proportions of censorships in the overall cohort larger 
than 92.3, 94.3 and 96.0% are likely to yield a mean 
|ln(HR)| of 0.03, 0.04 and 0.05 respectively with mini-
mum cost bipartite matching. In scenarios with smaller 
proportions of censorship in the subgroup cohort, the 
mean of absolute differences in follow-up time among 
patients with events appears to be weakly associated with 
the limits of error (Fig. 5D).
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Proportion of missing data
Nineteen scenarios of intervals 5% were created from 
proportions ranging 1 to 91%. |ln(HR)| was positively 
associated with the proportion of reported subgroup 
(Bipartite: r = 0.553, p  < 0.001; Mahalanobis: r = 0.553, 
p  < 0.001; Logistic: r = 0.553, p  < 0.001), suggesting that 
large proportion of missing data in unreported sub-
groups are likely to yield high limits of error (Fig. 4E). No 

significant differences between the matching algorithms 
were demonstrated on the Tukey pairwise compari-
sons (all p > 0.05). Proportions of reported missing data 
larger than 12.8, 21.5 and 30.9% are likely to yield a mean 
|ln(HR)| of 0.03, 0.04 and 0.05 respectively with mini-
mum cost bipartite matching. Across the range of simu-
lations, all quality of match test statistics were poorly 
associated the limits of error (Fig. 5E).
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Fig. 5  Correlograms of quality of match test statistics against the limits of error for simulations conducted for (A) Size of dataset (B) Proportion 
of reported subgroup (C) Proportion of patients with censorship in the overall cohort (D) Proportion of patients with censorship in the subgroup 
cohort (E) Proportion of missing data (F) Number of number-at-risk table intervals
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Number of number‑at‑risk table intervals
Nineteen scenarios were created from intervals rang-
ing from 1 to 20. |ln(HR)| was weakly associated with 
the number of number-at-risk table intervals (Bipar-
tite: r  = − 0.180, p  < 0.001; Mahalanobis: r  = − 0.182, 
p  < 0.001; Logistic: r = − 0.175, p  < 0.001) (Fig.  4F). No 
significant differences between the matching algorithms 
were demonstrated on the Tukey pairwise comparisons 
(all p  > 0.05). Across all scenarios, mean |ln(HR)| was 
under 0.03 with all matching algorithms. Where the 
number of number-at-risk table intervals were small, the 
|ln(HR)| between matched patients of the overall and 
subgroup cohort, log-rank test, mean of absolute differ-
ences in follow-up time among patients with censorships 
and the Kolmogorov-Smirnov Test of follow-up time 
between patients with censorships appears to be strongly 
associated with the limits of error (Fig. 5F).

Discussion
Secondary analysis through meta-analysis has become 
increasingly relevant in this era of precision medicine, 
where definitive conclusions on biomarkers of disease or 
treatment regimens are required to facilitate clinical deci-
sion making. The upstream analyses demonstrates that 
KMSubtraction is robust and reliable. Other real-world 
implementations of KMSubtraction were demonstrated 
to yield similar if not identical treatment effects in KEY-
NOTE-590 [23] among patients with advanced gastroe-
sophageal adenocarcinoma dichotomized by CPS and in 
CheckMate-227 [24] among patients with advanced non-
small cell lung cancer dichotomized by PD-L1 expression 
levels [10].

The simulation exercise established that the limits of 
error of KMSubtraction were small and likely negligible in 
most circumstances. Apart from the proportion of miss-
ing data from the unreported subgroup, the reproducibil-
ity of reconstructed data was largely not affected by the 
other parameters studied. This is perhaps because when 
the reported subgroup is larger relative to the original 
cohort, the likelihood of identifying the correct patients 
in the opposing subgroup decreases. Interestingly, there 
was some evidence that Mahalanobis distance matching 
proffered a significantly smaller error when the propor-
tion of the reported subgroup is beyond 86%. Nonethe-
less, given that KMSubtraction would be discouraged in 
scenarios where the proportion of reported subgroup 
is high, there is unlikely a scenario for this advantage to 
be exploited. There were otherwise no other appreci-
able differences on the Tukey HSD pairwise comparisons 
between the matching strategies investigated.

Extensive Monte Carlo simulations demonstrate 
that datasets with high reported subgroup proportion 
(r  = 0.467, p  < 0.001), small dataset size (r  = − 0.374, 

p  < 0.001) and high proportion of missing data in the 
unreported subgroup (r = 0.553, p  < 0.001) were associ-
ated with uncertainty and are likely to yield high limits 
of error with KMSubtraction. Users are advised against 
implementation of KMSubtraction in such situations, or 
if need be, transparently acknowledge the ensuing limita-
tions and likely compromise in quality of reconstructed 
data. The limits of error of KMSubtraction, as reflected 
by the mean |ln(HR)| from converged Monte Carlo sim-
ulations may be arbitrarily interpreted as small (< 0.03), 
moderate (0.03–0.05) and large (> 0.05), and may guide 
the appropriateness of implementing KMSubtraction in 
each context.

In implementing KMSubtraction, the quality of match 
may be the only raw parameter derived from the manu-
ally retrieved survival information. From our simula-
tions, we found a wide variation of how the quality of 
match influences the limits of error of KMSubtraction. 
As such, in circumstances where the simulated limit of 
error is shown to be high, users are advised to inspect 
the association of each quality of match test statistic 
against the simulated limits of error.

This approach is not without its limitations. The 
described method is also unable to retrieve patient-level 
covariates for adjustment, or deal with high-dimen-
sional survival data. Hence, biomarker investigation 
through this analysis should be interpreted with cau-
tion as no further analysis of causal inference may be 
conducted. Further, the described method is only able 
to handle dichotomous variables, rather than continu-
ous variables. This would unfortunately limit meta-
analytic pooling of unreported subgroup data after 
KMSubtraction when different cutoffs are used instead.

Given the demonstrated effect of the above param-
eters on the quality of KMSubtraction derived data, it 
would be instructive for those utilizing KMSubtraction 
to report (1) Proportion of reported subgroup among 
the overall cohort (2) Size of dataset (3) Proportion of 
censorship in overall and subgroup cohorts (4) Propor-
tion of missing data (5) Number of number-at-risk table 
intervals (6) Mean and standard deviation of |ln(HR)| 
from KMSubtractionError() simulations.

Conclusion
While KMSubtraction demonstrates robustness in 
deriving survival data from unreported subgroups, the 
implementation of KMSubtraction should take into 
consideration the aforementioned limitations. The lim-
its of error of KMSubtraction, as reflected by the mean 
|ln(HR)| from converged Monte Carlo simulations 
may guide the interpretation of reconstructed survival 
data of unreported subgroups. This approach hopes to 
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enhance the quality of secondary analysis of subgroups 
and biomarkers in the era of precision medicine.
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