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A B S T R A C T   

During events like the COVID-19 pandemic or a disaster, researchers may need to switch from collecting bio-
logical samples to personal exposure samplers that are easy and safe to transport and wear, such as silicone 
wristbands. Previous studies have demonstrated significant correlations between urine biomarker concentrations 
and chemical levels in wristbands. We build upon those studies and use a novel combination of descriptive 
statistics and supervised statistical learning to evaluate the relationship between polycyclic aromatic hydro-
carbon (PAH) concentrations in silicone wristbands and hydroxy-PAH (OH-PAH) concentrations in urine. In New 
York City, 109 participants in a longitudinal birth cohort wore one wristband for 48 h and provided a spot urine 
sample at the end of the 48-hour period during their third trimester of pregnancy. We compared four PAHs with 
the corresponding seven OH-PAHs using descriptive statistics, a linear regression model, and a linear discrimi-
nant analysis model. Five of the seven PAH and OH-PAH pairs had significant correlations (Pearson’s r =
0.35–0.64, p ≤ 0.003) and significant chi-square tests of independence for exposure categories (p ≤ 0.009). For 
these five comparisons, the observed PAH or OH-PAH concentration could predict the other concentration within 
a factor of 1.47 for 50–80% of the measurements (depending on the pair). Prediction accuracies for high 
exposure categories were at least 1.5 times higher compared to accuracies based on random chance. These results 
demonstrate that wristbands and urine provide similar PAH exposure assessment information, which is critical 
for environmental health researchers looking for the flexibility to switch between biological sample and wrist-
band collection.   
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1. Introduction 

1.1. Need for flexible alternatives for personal chemical exposure 
assessment 

During events such as a pandemic, hurricane, or wildfire, it becomes 
difficult or impossible for researchers to safely collect personal chemical 
exposure information using traditional methods. Researchers evaluating 
personal chemical exposure often collect biological samples such as 
blood or urine (Aylward et al. 2014). Biomarkers in these biological 
samples serve as a proxy for personal chemical exposure and enable 
researchers to better understand the potential link between chemical 
exposure and health outcomes. 

As seen with COVID-19, many environmental health researchers 
have not been able or allowed to collect biological samples due to 
government mandates and institutional policies, and many research 
projects were halted (NYT 2020; Servick et al. 2020). For example, re-
searchers at the Columbia Center for Children’s Environmental Health 
(CCCEH) have been collecting biological samples for birth cohort studies 
since 1998, but had to “ramp down” non-COVID-19 research in March 
2020 to ensure the safety of research staff and study participants 
(Columbia 2020). 

Despite such disruptions to normalcy, it is crucial that environmental 
health data collection continue. In June 2020, the National Institute for 
Environmental Health Sciences stated that environmental factors may 
play a part in how and where COVID-19 spreads (NIEHS 2020). The 
COVID-19 pandemic has highlighted the need for environmental health 
researchers to implement alternative personal chemical exposure 
assessment methodologies. 

1.2. Silicone wearable characteristics 

Silicone wearables are an additional exposure assessment tool that 
researchers use to measure chemical exposure. Study participants can 
wear these samplers as a wristband, lapel, dog tag, or other configura-
tion (Dixon et al. 2020; O’Connell et al., 2014; Poutasse et al. 2020). 
Since silicone wearables were first reported on in 2014, they have been 
used in over 30 exposure assessment studies and have been worn by 
thousands of people on six continents (Bullock et al. 2020; Craig et al. 
2019; De Vecchi et al. 2019; Dixon et al. 2020; Hammel et al. 2020; 
Hendryx et al. 2020; Reche et al. 2020; Reddam et al. 2020; Rohlman 
et al. 2019; Wang et al., 2020; Wang et al., 2019; Wise et al. 2020; Zuy 
et al. 2020). Silicone wearables are passive sampling devices, which 
sequester the fraction of chemicals that are available to transport across 
cellular membranes (Anderson and Hillwalker 2008; O’Connell et al., 
2014). Over 1530 different volatile and semi-volatile organic chemicals 
(VOCs and SVOCs), including flame retardants, pesticides, volatile 
organic chemicals, polycyclic aromatic hydrocarbons (PAHs), and 
phthalates, can be detected and quantified in silicone wearables (Berg-
mann et al. 2017). Depending on how the silicone wearables are worn, 
chemicals in silicone wearables can include contributions from several 
exposure routes, including inhalation, dermal contact, and potentially 
some ingestion exposure (Aerts et al., 2018; Dixon et al. 2020). 

Study participants can easily and safely receive, wear, and return 
silicone wearables to researchers. Unlike biological sample collection, 
silicone wearables can be mailed and can be stored at ambient tem-
perature when kept in airtight, impermeable containers, such as poly-
tetrafluoroethylene (PTFE) bags (Anderson et al. 2017). Anderson et al. 
simulated transport and storage conditions and tested the recovery of a 
wide range of VOC and SVOCs in silicone wristbands (2017). Evidence 
from these studies suggest that researchers can transport silicone 
wearables through the mail without the need for ice or refrigeration as 
well as store the silicone wearables without losing valuable chemical 
data. For example, Anderson et al. demonstrated that under transport 
conditions (30 ◦C), VOCs were unchanged in the wristbands for 7 days 
(average 99% recovery) and SVOCs were stable up to one month 

(average 104% recovery; 2017). Long-term storage at − 20 ◦C was tested 
with VOC concentrations stable for up to three months and with SVOC 
concentrations still stable at time of publishing storage stability data (six 
months; Anderson et al. 2017). This study has since been extended 
which indicates that SVOCs are stable at for at least 21 months at − 20 ◦C 
(data unpublished). 

Silicone wearable studies report high volunteer compliance (Berg-
mann et al. 2017; Donald et al. 2016; Harley et al. 2019; Kile et al. 2016; 
Vidi et al. 2017). For example, 100% of wristbands worn by rural 
farming families in Diender, Senegal (Donald et al. 2016) and 95% of 
wristbands worn by asthmatics in Eugene, OR, USA were returned to the 
laboratory and met study criteria (Rohlman et al. 2019). Volunteers in 
stressful environments have also worn silicone wearables with high 
compliance. There was 85% compliance for silicone wristbands mailed 
and worn by people in Houston, Texas, USA less than one month after 
Hurricane Harvey made landfall (Dixon et al. 2020) and 85% compli-
ance for military-style silicone dog tags collected from on-duty fire-
fighters in Kansas, USA (Poutasse et al. 2020). There has also been 
success integrating silicone wearables into studies requiring quick 
deployment (Dixon et al. 2020). Oregon State University developed a 
disaster Institutional Review Board (IRB) application in 2017 that has 
allowed researchers to respond quickly to unexpected events with sili-
cone wearables (https://superfund.oregonstate.edu/disaster-irb), 
including Hurricane Harvey and Hurricane Florence (Rohlman et al. 
2017). 

To date, researchers have compared levels of chemicals in silicone 
wristbands (hereafter referred to as ‘wristbands’) to human biomarkers 
in seven studies. Each of these studies reported significant correlations 
between chemical concentrations in wristbands and the respective bio-
logical metabolite concentration (urine or serum), providing evidence 
that wristbands can capture the fraction of organic chemicals in the 
personal environment that are absorbed into the body (Dixon et al. 
2018; Hammel et al. 2016; Hammel et al. 2018; Hammel et al. 2020; 
Hoffman et al. 2021; Levasseur et al. 2021; Quintana et al. 2019). 

1.3. Study objective 

Previously, our research group conducted a cohort study at CCCEH in 
New York City, USA where 22 pregnant women wore wristbands and 
provided spot urine samples (Dixon et al. 2018). Concentrations of PAHs 
in the wristbands strongly correlated with paired concentrations of OH- 
PAHs in urine (Spearman’s r = 0.44 to 0.76, p = 0.04 to <0.001), 
demonstrating that wristband data can align with urine OH-PAH data 
(Dixon et al. 2018). Here, we expanded our 2018 study to include over 
100 paired sets of wristband and urine data. We used this larger sample 
size to capture wider ranges of PAH exposures and validate our previous 
findings based on the smaller cohort. The larger sample size also allowed 
for the use of supervised statistical learning. Our objective was to 
compare wristband PAH concentrations and urine OH-PAH concentra-
tions as measures of personal PAH exposure. We hypothesized that 
descriptive statistics, a linear regression model, and a linear discrimi-
nant analysis model would reveal shared information between PAH and 
OH-PAH concentrations. To our knowledge, this is the first time that 
wristband data has been used to build supervised statistical models to 
predict human urinary biomarker concentrations. The seven OH-PAHs 
included in this study are regularly used as PAH biomarkers because 
they are excreted preferentially in the urine. This study provides critical 
data to environmental health researchers looking for the flexibility to 
use both urine samples and wristbands to assess personal exposure for 
select PAHs. 

2. Materials and methods 

2.1. Study cohort and design 

This study leverages an ongoing longitudinal epidemiological birth 
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cohort study at the CCCEH in New York City, USA. One hundred and 
nine women in their third trimester of pregnancy each wore one wrist-
band for 48 h between 2013 and 2018. Wristbands were collected year- 
round (see Supplemental Material, Table S1). We also collected a spot 
urine sample from each woman at the end of the 48-hour period. Study 
participants could remove their wristband at night and place it near 
their bed, and were instructed not to place lotion or other personal care 
products directly on the wristbands. Participants ranged in age from 18 
to 42, and 83% of the women were of Dominican origin (Table 1). 

2.2. Wristband methodology 

2.2.1. Preparation and deployment 
We purchased the wristbands from 24hourwristbands.com (Houston, 

Texas, US). To remove any chemicals in the silicone left over from the 
manufacturing process, we rinsed the wristbands with deionized water 
and placed them in a vacuum oven (300 ◦C for 12 h at 0.1 Torr; Blue M 
vacuum oven, no. POM18VC; Welch® DuoSeal pump, no. 1405, Mt. 
Prospect, Illinois, USA) as previously described (Dixon et al. 2018). 

To ship the wristbands to the CCCEH, we packed the wristbands 
individually in airtight polytetrafluoroethylene (PTFE) bags (Welch 
Fluorocarbon, Dover, New Hampshire, US). After the 48-hour deploy-
ment period, wristbands were returned to the PTFE bags, sealed, and 
mailed back to Oregon State University (OSU). 

2.2.2. Cleaning and extraction 
We only extracted PAHs sequestered in the wristbands because this 

reflects the PAH fraction available to be absorbed into the body. 
Therefore, particles on the silicone surface were removed by cleaning 
the wristbands twice with 18 MΩ cm water and once with isopropanol 
(Dixon et al. 2018; O’Connell et al., 2014). To extract the PAHs of in-
terest from the cleaned silicone, we followed the process described in 
O’Connell et al. (2014), Anderson et al. (2017), and Dixon et al. (2018). 
We added deuterated PAH surrogates to the wristbands after cleaning 
and before extraction, which were used to account for chemical recovery 
during the extraction process and to quantify the PAHs most similar in 
analytical behavior (Anderson et al. 2015). Briefly, we added two 
separate 50 mL volumes of ethyl acetate at room temperature to the 
wristbands and then concentrated the extracts to one mL under nitrogen 
(Turbo-Vap L, Biotage, Charlotte, North Carolina, US; RapidVap, Lab-
Conco, Kansas City, Missouri, US; N-EVAP 111, Organomation Associ-
ates, Berlin, Massachusetts, US). Additional details about laboratory 
equipment and chemicals are in the supplementary information 
document. 

2.2.3. PAH quantification 
We added the internal standard (perylene-d12) to each wristband 

extract prior to analysis. We analyzed wristband extracts for 61 PAHs 
with an Agilent 7890B gas chromatograph (GC) paired with a 7000C 
triple-quadrupole mass spectrometer (MS/MS, Santa Claire, California, 
US) (Anderson et al. 2015; Dixon et al. 2018). The instrument parame-
ters are detailed in Anderson et al. (2015). Deuterated PAH surrogates 
were quantified relative to the internal standard and target PAHs were 
quantified relative to the most appropriate deuterated surrogate 
(Anderson et al. 2015). The limits of detection (LODs) for all 61 PAHs 
ranged from 7.36 to 11.9 log2 pmol/g wristband (calculated using a 
wristband mass of 5.71 g; Table S2). The PAH LODs are described in 
Anderson et al. and were calculated by taking repeated measurements of 
low concentration standards, calculating the standard deviation, and 
multiplying it by the Student’s t value for the 99% confidence interval 
(2015). The list of target PAHs and LODs are in Table S2 on the log2 
pmol/g scale and in Table S3 on the pmol/g scale for all 61 PAHs, and in 
Table 2 for the four PAHs that correspond to OH-PAHs in this study. 
Hereafter, naphthalene, fluorene, phenanthrene, and pyrene are 
referred to as NAPH, FLU, PHEN, and PYR, respectively. 

Due to matrix interference in a minority of wristband samples, we 
were unable to detect the deuterated PAH surrogates. Consequently, we 
were unable to quantify the target analytes related to the undetected 
surrogate, so they were removed from further analyses. Matrix inter-
ference could be due to many factors such as compounds in personal care 
products or sweat. We report the number of wristbands for each target 
analyte that did not have matrix interference in Table 2 and Table S2. 

2.2.4. Wristband quality control (QC) summary 
Quality control and data quality objectives are described in Dixon 

et al. (2018). To identify and account for potential chemical contami-
nation during preparation, transport, and laboratory processing, we 
created and analyzed several QC samples. Briefly, we collected blank 
wristbands from each group of prepared wristbands and we analyzed 
them using GC–MS. We collected and analyzed blank wristbands that 
traveled to and from study locations in the airtight PTFE bags. We 
collected and analyzed solvent extraction blanks by performing the 
extraction process without wristbands. We also collected and analyzed 
laboratory processing blank wristbands that went through all the labo-
ratory processes (i.e., cleaning, extraction, and instrument analysis). 
During PAH quantification, we analyzed instrument blanks and cali-
bration verifications (CVs) before and after approximately every ten 
samples to ensure our PAH method was meeting data quality objectives. 
Instrument blanks are GC vials filled with either hexane or ethyl acetate. 
We averaged and subtracted detected concentrations in the quality 
control samples from sample concentrations. Quality control samples 
were below the LODs for 51 of the 61 PAHs. All target chemicals were 
below the LODs for the instrument blanks. Surrogate recoveries aver-
aged 84% across the study. 

2.3. Urine sample methodology 

2.3.1. Collection and storage 
We froze spot urine samples (− 80 ◦C) at CCCEH and then shipped the 

samples overnight on dry ice to the Centers for Disease Control and 
Prevention (CDC). 

2.3.2. OH-PAH metabolite quantification 
We added 100 μL of 13C-labeled OH-PAH internal standards, sodium 

acetate buffer containing β-glucuronidase/arylsulfatase enzyme, and 
ascorbic acid solution (Dixon et al. 2018; Wang et al. 2017). Overnight, 
enzymatic deconjugation yielded free OH-PAHs. Then we added 
ethanol, centrifuged the urine, and diluted the supernatant with 
deionized water. 

To quantify the concentrations of OH-PAH metabolites in the urine, 
we used a Spark Holland Symbiosis online solid-phase extraction system 

Table 1 
Study participant demographics.  

Continuous Characteristic Range (n = 109) Mean ± SD 

Age (years) 18–42 29.2 ± 6.1 
Categorical Characteristics Number of Women (n 

= 106a) 
Percent out of 
106a 

On Medicaid 105 99.1% 
Maternal Education  
More than high school 60 56.6% 
High school graduate/GED 24 22.6% 
Did not complete high school 22 20.8% 
Maternal Ethnicity  
African/African American 4 3.8% 
Asian 2 1.9% 
Caucasian 0 0.0% 
Dominican 88 83.0% 
Mexican/Mexican American 3 2.8% 
Other Hispanic 2 1.9% 
Other 7 6.6% 
Smoker in the home (environmental 

tobacco smoke) 
24 22.6%  

a Categorical characteristic data is only available for 106 participants (data 
were unavailable for three participants). 
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(Emmen, Netherlands) paired with an AB Sciex 5500/6500 high- 
performance liquid chromatography isotope dilution tandem mass 
spectrometer (HPLC-MS/MS, Framingham, Massachusetts, USA) under 
negative electrospray ionization mode (Wang et al. 2017). We measured 
seven OH-PAH metabolites, which are the standard OH-PAHs currently 
included in the CDC’s U.S. National Health and Nutrition Examination 
Survey (NHANES): 1-OH-naphthalene (1-OH-NAPH), 2-OH-naphtha-
lene (2-OH-NAPH), 2-OH-fluorene (2-OH-FLU), 3-OH-fluorene (3-OH- 
FLU), 1-OH-phenanthrene (1-OH-PHEN), 2-and-3-OH-phenanthrene (2- 
OH- & 3-OH-PHEN), and 1-OH-pyrene (1-OH-PYR). The OH-PAH LODs 
were estimated by repeated measurement of low concentration stan-
dards and by plotting the standard deviation of the measured concen-
tration versus the standard concentration. The standard deviation at 
zero concentration, S0, was determined by the y-intercept of a linear 
regression analysis of the plot. The LODs, calculated as three times S0 
(Taylor 1987), ranged from 0.0008 to 0.09 ng/mL (Wang et al. 2017), 
and are listed in Table 3. We used an enzymatic reaction on a Roche 
chemistry analyzer (Basel, Switzerland) to measure creatinine. 

2.3.3. Urine QC summary 
The QC process is described in Wang et al. (2017) and Dixon et al. 

(2018). The CDC laboratory complies with the Clinical Laboratory 
Improvement Amendments of 1988 (CLIA) and is recertified every two 
years. The CDC laboratory follows strict quality control and assurance 
guidelines as mandated by CLIA. For example, each group of samples is 
analyzed alongside high- and low-concentration QC materials and re-
agent blanks to assure the accuracy and reliability of the data. 

2.4. Data analysis 

2.4.1. Wristband and urine data processing 
We converted PAH concentrations to moles per gram wristband and 

log transformed the values (log2 pmol/g wristband). We did not include 
a concentration for a PAH if there was matrix interference. 

We applied a creatinine correction to OH-PAH concentrations to 
adjust for urine dilution and log transformed the values (log2 ng/g 

creatinine). We excluded a urine sample if the creatinine concentration 
was greater than 300 mg/dL based on World Health Organization 
(WHO) guidelines (1996), which resulted in the exclusion of one urine 
sample (0.9% of total urine samples collected). We did not exclude 
creatinine values less than 30 mg/dL, even though this is also part of 
WHO’s guidelines, because analytical technology for measuring low 
levels of target analytes in dilute samples has vastly improved since the 
WHO guidelines were issued in 1996 (Barr et al. 2005). 

We created low, medium, and high tertile categories for both the 
PAH and OH-PAH data as another way to compare wristbands and urine 
exposure assessment methodologies. The tertile categories were created 
by calculating the 33 and 66 percentile thresholds and the cutoffs are 
listed in Table S4. Researchers often use exposure tertiles to reveal as-
sociations between PAH exposures and health outcomes (Han et al. 
2010; Jedrychowski et al. 2015; Rundle et al. 2019; Xia et al. 2009; Xu 
et al. 2010; Xu et al. 2013). Tertile comparisons have also been used to 
characterize how well a spot urine sample can predict urine levels 
collected in repeated samples (Mahalingaiah et al. 2008). 

2.4.2. Statistical analysis 
We conducted statistical analyses using the statistical software R, 

version 4.0.2 (R Development Core Team 2020). We excluded PAH and 
OH-PAH measurements with values below the LOD from statistical an-
alyses in order to maintain the distributional properties of the datasets 
and ensure that statistical model assumptions were not violated. All 
statistical quantities and models were calculated and fitted to each pair 
of PAH and OH-PAH measurements (pairs are listed in Table 3). 

We computed Pearson’s correlation coefficients to evaluate the 
linear relationship between PAH concentrations in the wristband and 
their associated OH-PAH concentrations in the urine. Student’s t-tests 
were used to test the null hypothesis that the correlation between 
wristband and urine measurements were equal to zero. In order to 
determine whether exposure categories assigned to each sample based 
on wristband PAH and urine OH-PAH tertile thresholds were associated 
with one another, Pearson’s chi-square test of independence was run to 
test the null hypothesis that PAH tertile categories were independent of 

Table 2 
PAH method information and summary statistics for PAHs that correspond to OH-PAHs. Method information includes the Chemical Abstracts Service (CAS) number, 
molecular weight, and limit of detection (LOD).  

Target PAH CAS 
Number 

Molec-ular 
Weight (g/ 
mol) 

Instrument 
LODa 

(log2 pmol/g 
wristband) 

Number of Wristbands 
Without Matrix 
Interferenceb 

Detection 
Frequency (%)c 

Median (log2 

pmol/g 
wristband) 

Range 
(log2 pmol/g 
wristband) 

Interquartile 
Range 
(log2 pmol/g 
wristband) 

Naphthalene 91–20-3  128.2  10.5 109 100%  16.4 11.0 – 21.5  1.48 
Fluorene 86–73-7  166.2  9.70 80 96%  16.2 <LOD – 18.9  0.96 
Phenanthrene 85–01-8  178.2  8.82 80 99%  18.1 <LOD – 20.8  0.83 
Pyrene 129–00-0  202.3  8.51 100 76%  15.3 <LOD – 17.8  1.37  

a Wristband mass was used to convert instrument LODs into log2 pmol/g wristband units. We used the 5.71 g wristband mass value in the LOD unit conversion to 
present the lowest range of values. In subsequent data analysis, the appropriate corresponding LOD was compared to each PAH concentration. 

b In some cases, we were unable to detect a surrogate due to matrix interference and, therefore, were unable to quantify the target analytes related to the undetected 
surrogate. We report the number of wristbands for each target analyte that did not have matrix interference. 

c Detection frequency was calculated by dividing the number of wristbands with the target analyte detected by the number of wristbands in the study without matrix 
interference. Results rounded to the nearest percentage point. 

Table 3 
OH-PAH method information and summary statistics on the log2 ng/g creatinine scale. Parent PAH and limit of detection (LOD) are provided for the seven OH-PAHs in 
the analytical method.  

Parent PAH Target OH-PAH OH-PAH LOD 
(ng/mL) 

Detection Frequency 
(% of 109 urine samples) 

Median 
(log2 ng/g creatinine) 

Range 
(log2 ng/g creatinine) 

Interquartile Range 
(log2 ng/g creatinine) 

Naphthalene (NAPH) 1-OH-NAPH  0.06 100%  9.73 7.84–12.5  1.19 
2-OH-NAPH  0.09 100%  13.6 11.1–16.8  1.62 

Fluorene (FLU) 2-OH-FLU  0.008 100%  7.74 5.55–9.65  0.88 
3-OH-FLU  0.008 100%  5.79 4.20–7.91  0.83 

Phenanthrene (PHEN) 1-OH-PHEN  0.009 100%  8.11 6.32–10.9  1.09 
2-OH- & 3-OH-PHEN  0.01 100%  7.57 6.45–10.2  0.84 

Pyrene (PYR) 1-OH-PYR  0.07 96%  7.58 <LOD–10.0  0.94  
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OH-PAH tertile categories. 
We fit two different types of supervised statistical models, a linear 

regression model and a linear discriminant analysis (LDA) model, to the 
data to further investigate the relationship and quantify the predictive 
relationship and efficacy between urine and wristband measurements. 
Unlike descriptive statistics, such as correlation, the results of supervised 
statistical models are conditional on which data are used as the response 
and which are used as the explanatory variables. Therefore, we ran each 
model twice, first, using the wristband data as the explanatory variable 
to predict urine data and, second, using the urine data as the explanatory 
variable to predict wristband data. 

We fit linear regression models (Faraway 2014) using the log2 con-
centration values. We used the relative prediction error, on values on the 
original scales of pmol/g wristband and ng/g creatinine, as a measure of 
predictive performance of the linear regression models. We calculated 
the median relative prediction error as the median of ratios of the ab-
solute difference between the observed and predicted concentration 
values and the observed concentration value, multiplied by 100. 

We fit LDA models (Friedman et al. 2001) with the exposure category 
(low, med, high) from one data source as the response variable and the 
log2 concentration values of the other respective data source as the 
explanatory variable. For each sample, the model returned a predicted 
probability for each exposure group, and the predicted group was taken 
as the category with the highest predicted probability. We measured the 
predictive efficacy of each model using the prediction accuracy, defined 
as the ratio of the number of correct category predictions and the total 
number of predictions. We used the predicted probability values to 
calculate relative probabilities, defined as the predicted probability 
divided by the probability of a correct prediction by random chance (i.e., 
1/3). We used leave-one-out cross-validation (Stone 1974) to calculate 
predictive performance metrics for all models. 

We checked for potential seasonal effects, by fitting the supervised 
statistical models including an interaction between season of collection 
and log2 concentration. The season variable was defined as a categorical 
variable with four levels: winter (Dec - Feb), spring (Mar - May), summer 
(June - Aug), and fall (Sep - Nov). 

3. Results and discussion 

3.1. PAHs in the wristbands 

We detected parent compounds NAPH, PHEN, FLU, and PYR in 
100%, 99%, 96%, and 76% of wristbands without matrix interference, 
respectively (Table 2). We captured information on an additional 53 
PAHs compared to the urinary OH-PAH method. Of the 61 PAHs tested 
in the wristbands, we detected 57 PAHs at least once. PAH detections 
ranged from three to 42 per wristband, with a median of 13. NAPH, 1- 
methylnaphthalene, and 2-methylnaphthalene were the most 
frequently detected PAHs (Table S2). The median PAH concentrations 
from all wristbands were highest for perylene (19.3 log2 pmol/g wrist-
band), phenanthrene (18.1 log2 pmol/g wristband), and naphthalene 
(16.4 log2 pmol/g wristband; Table S2). This information on perylene, 1- 
methylnaphthalene, and 2-methylnaphthalene would not be captured 
with our OH-PAH method alone. Matrix interference numbers, detection 
frequency, median, and range information for all 61 PAHs is listed in 
Table S2 on the log2 pmol/g scale and in Table S3 on the pmol/g scale. 

No two wristbands had identical PAH exposure profiles; concentra-
tions were different for one or more PAHs between each pair of wrist-
bands. Concentration profiles normalized (based on log2 concentrations 
to ensure normality) within each PAH are shown in Fig. S1. 

3.2. OH-PAHs in the urine 

We detected all seven OH-PAHs in 96% of urine samples. The four 
urine values below the LOD were 1-OH-PYR values (Table 3). Creatinine 
ranged from 16.7 to 295.6 mg/dL with a median value of 104.3 mg/dL 

after removing one urine sample with a creatinine value of 325.8 mg/dL. 
Concentration profiles normalized (based on log2 concentrations to 
ensure normality) within each OH-PAH are shown in Fig. S2. 

Median OH-PAH concentrations were highest for 2-OH-NAPH (13.6 
log2 ng/g creatinine), 1-OH-NAPH (9.73 log2 ng/g creatinine), and 1- 
OH-PHEN (8.11 log2 ng/g creatinine; Table 3). For NAPH, FLU, and 
PHEN, the related metabolites highest in concentration were 2-OH- 
NAPH, 2-OH-FLU, and 1-OH-PHEN, respectively, which is consistent 
with the results reported in Dixon et al. (2018). Detection frequency, 
median, and range information for each OH-PAH is listed in Table 3 in 
the log2 ng/g creatinine scale and in Table S5 in the ng/g creatinine 
scale. 

3.3. Quantifying associations between PAHs and OH-PAHs 

3.3.1. Correlations 
A statistically significant linear relationship was observed for six out 

of the seven PAH and OH-PAH comparisons (Table 4). We saw no evi-
dence of a linear association between NAPH and 2-OH-NAPH (r = 0.09, 
p = 0.38). Although the p-value for the association between FLU and 3- 
OH-FLU was significant (p = 0.02), the correlation was weaker (r =
0.26) relative to the other significant correlations. 

In Fig. 1, the scatterplots corresponding to the four highest correla-
tion coefficients are displayed; these four correlation coefficients ranged 
from 0.41 (NAPH and 1-OH-NAPH) to 0.64 (PHEN and 2-OH- & 3-OH- 
PHEN). The remaining three scatterplots are in Fig. S3. 

No evidence of seasonal effects in overall concentration or trend was 
found, as all marginal and interaction model terms related to season had 
p-values > 0.16. We also explored summing the OH-PAHs from the same 
parent PAH; however, we did not observe improvement in the associa-
tions between PAHs and OH-PAHs. 

3.3.2. Comparison of correlations to prior pilot study (Dixon et al. 2018) 
Here, we observed similar correlation trends as in 2018. However, a 

notable difference is that we observed statistically significant linear 
relationships between PHEN and 2-OH- & 3-OH-PHEN (p < 0.001), FLU 
and 2-OH-FLU (p < 0.001), and FLU and 3-OH-FLU (p = 0.02) in this 
study and that was not observed in the Dixon et al. study (2018), which 
could be due to the larger sample size (22 participants in the 2018 study 
compared to 109 participants in this study). 

Another difference is that there was a significant correlation for the 
relationship between NAPH in the wristbands and 2-OH-NAPH in the 
urine (p = 0.04) in Dixon et al., although the correlation was weaker 
(Spearman’s r = 0.44) relative to the other significant correlations 
(2018). In our larger study with 109 participants, we did not see a 
correlation for the relationship between NAPH and 2-OH-NAPH (Pear-
son’s r = 0.09, p = 0.38). This shift in results could be due to having a 
larger range in observed PAH concentrations (14.4–21.5 log2 pmol/g 
wristband in the 2018 study vs. 11.0–21.5 log2 pmol/g wristband in this 
study) from a larger sample size. 

Table 4 
Correlation and chi-square test of independence test statistics for PAH concen-
trations in wristbands and OH-PAH concentrations in urine.  

PAH in 
Wristbands 

OH-PAH in 
Urine 

Pearson Coefficient 
(p-value) 

Chi-Square Test of 
Independence 
p-value 

Phenanthrene 
(PHEN) 

2-OH- & 3- 
OH-PHEN 

0.64 (<0.001)  0.009 

PHEN 1-OH-PHEN 0.60 (<0.001)  0.002 
Fluorene (FLU) 2-OH-FLU 0.56 (<0.001)  <0.001 
Naphthalene 

(NAPH) 
1-OH-NAPH 0.41 (<0.001)  0.003 

Pyrene (PYR) 1-OH-PYR 0.35 (0.003)  0.001 
FLU 3-OH-FLU 0.26 (0.02)  0.73 
NAPH 2-OH-NAPH 0.09 (0.38)  0.003  
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3.3.3. Chi-square test of independence 
The tertiles for six of the seven comparisons showed statistically 

significant associations, with p-values < 0.05 (Table 4). For those six, 
there was significantly more agreement in the assigned exposure level 
categories (low, medium, and high) between the wristbands and urine 
datasets than expected by agreement if assignment was done randomly. 

Five of the seven PAH and OH-PAH comparisons had both significant 
correlations and associations between exposure categories. The weak 
relationship observed between FLU and 3-OH-FLU translates into very 
little agreement between exposure category assignments (p = 0.73). 
Despite no evidence of a linear correlation between NAPH and 2-OH- 
NAPH, the chi-square test of independence was significant (p =
0.003), driven primarily by several samples which fell very close to the 
lower tertile threshold for either the urine or wristband datasets 
(Fig. S4). 

3.4. Evaluating predictions between PAHs and OH-PAHs 

3.4.1. Linear regression prediction model 
The distribution of relative prediction error percentages was skewed; 

thus, a median summary value was used to describe the error central 
tendencies. The median relative predictive error percentage describes 
the typical distance of predictions from the respective observed values. 
For example, when using an observed PHEN concentration, 2-OH- & 3- 
OH-PHEN could be predicted within 20.8%, or less, of the observed 
concentration for 50% of observations when leave-one-out cross-vali-
dation was used (Table 5). 

The median relative prediction error percentages were within 36.7% 
of observed values for all pairs of PAH and OH-PAH measurements 
(Table 5) with the exception of pairs involving NAPH. The full distri-
butions of relative prediction error percentages for the pairs of PAH and 

OH-PAH measurements that had the four highest correlation coefficients 
are displayed in Fig. 2, and the distributions of the remaining pairs are 
visualized in Fig. S5. For the five PAH, OH-PAH comparisons with 

Fig. 1. Scatterplots of PAH concentrations in the wristbands plotted against OH-PAH concentrations in the urine for the four comparisons with the highest observed 
Pearson’s correlation coefficients: (a) phenanthrene (PHEN) and 2-OH– & 3-OH-PHEN, (b) PHEN and 1-OH-PHEN, (c) fluorene (FLU) and 2-OH-FLU, and (d) 
naphthalene (NAPH) and 1-OH-NAPH. 

Table 5 
Median relative error percentages and prediction accuracy of supervised sta-
tistical model predictions for OH-PAH concentrations (conc.) in urine and PAH 
conc. in wristbands.  

PAH in 
Wristbands 

OH- 
PAH in 
Urine 

Median Relative Error 
Percentage for Linear 
Model Predictions 

Prediction Accuracy of 
Linear Discriminant 
Analysis Model 

Using 
PAH 
Conc. to 
Predict 
OH-PAH 
Conc. 

Using OH- 
PAH 
Conc. to 
Predict 
PAH 
Conc. 

Using PAH 
Conc. to 
Predict 
OH-PAH 
Tertiles 

Using OH- 
PAH Conc. 
to Predict 
PAH 
Tertiles 

Phenanthrene 
(PHEN) 

2-OH- 
& 3- 
OH- 
PHEN  

20.8  27.7  0.47  0.49 

PHEN 1-OH- 
PHEN  

33.1  28.4  0.49  0.49 

Fluorene (FLU) 2-OH- 
FLU  

23.9  27.3  0.53  0.49 

Naphthalene 
(NAPH) 

1-OH- 
NAPH  

42.7  46.7  0.49  0.43 

Pyrene (PYR) 1-OH- 
PYR  

33.8  36.7  0.45  0.48 

FLU 3-OH- 
FLU  

31.8  36.3  0.37  0.36 

NAPH 2-OH- 
NAPH  

49.2  50.4  0.35  0.30  
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significant observed Pearson’s correlation coefficients and significant 
chi-square tests, the observed PAH or OH-PAH concentration could 
predict the other concentration within a factor of 1.47 for 50–85% of the 
measurements, depending on the pair. 

3.4.2. Tertile predictions 
The cross-validation prediction accuracies are in Table 5. For the five 

PAH and OH-PAH pairs with both significant correlations and chi- 
squared tests, prediction accuracies were significantly better (p <
0.05) than expected compared to random chance (0.33) by at least 10% 
(Table 5). The number of correct and incorrect classifications by expo-
sure category for each model are shown in Fig. 3 and Fig. S6, and each 
cell is colored by the mean relative prediction probability. For example, 
in Fig. 3a, of the 26 individuals with observed 2-OH– & 3-OH-PHEN in 
the high tertile, 13 were correctly predicted to be in the high tertile and 
seven were incorrectly predicted to be in the medium tertile based on 
wristband PHEN data. Fig. S7 shows an example of what predictions 
look like when a model provides perfect classifications and what average 
predictions look like under a model making random predictions. 

Although NAPH and 2-OH-NAPH were significantly associated ac-
cording to the chi-squared test, the prediction accuracy for this pair was 
commensurate with the expected classification accuracy by random 
chance, due to difficulty in predicting categories close to tertile 
thresholds. 

For all PAH and OH-PAH pairs, the large majority of correct classi-
fications were samples from the high and low exposure categories, while 
most misclassifications were from the medium exposure category. The 
classification accuracies based on the high exposure category are given 
for each pair in Table 6. Additionally, the distributions of relative pre-
diction probabilities for each exposure category are given in Fig. 4 and 
Fig. S8. Prediction accuracies for the high exposure category were 1.5 
times higher or more compared to accuracies based on random chance 
for the five PAH and OH-PAH pairs with both significant correlations 
and chi-squared tests, and these predictions had relative prediction 
probabilities significantly higher than other categories. 

3.5. Potential sources of variation when comparing PAHs in wristbands 
and OH-PAHs in urine 

While we saw evidence of significant relationships between PAHs 
and OH-PAHs, we also observed differences between the data for some 

pairs of PAHs and OH-PAHs. For example, the linear discriminant 
analysis models identified exposure category misclassifications, espe-
cially with the medium exposure category (Fig. 3). We also observed 
evidence of a weak correlation for FLU and 3-OH-FLU and no evidence 
of a linear association between NAPH and 2-OH-NAPH (Table 4). 
However, we did not expect exposure data collected from wristband and 
urine to match perfectly. Even concentrations of the same metabolite in 
different biological matrices do not always correlate well (Genuis et al. 
2012; Kuwayama et al. 2013). 

The following factors described in subsections 3.5.1 to 3.5.3 (i.e., 
exposure routes, types of PAHs, PAH metabolism, OH-PAHs, and spot 
urine samples) could be part of the reason why we observed differences 
between PAHs and OH-PAHs. 

3.5.1. Exposure routes and types of PAHs 
Chemical concentrations in wristbands and metabolite concentra-

tions in urine are both used as proxies for personal chemical exposure; 
however, they reflect different types of exposure and PAHs. Chemicals 
absorbed by wristbands include contributions from inhalation, dermal 
contact, and potentially some ingestion exposure (Aerts et al., 2018; 
Dixon et al. 2020). Aerts et al. hypothesizes that some chemicals are 
excreted through sweat and absorbed by the wristband (2017). There is 
a lack of information on what proportion of chemical exposure is 
excreted through sweat, both for PAHs (Li et al. 2021) and for other 
types of chemicals (Genuis et al. 2011). Although there are unknowns 
about the sweat excretion route, wristband concentrations largely reflect 
chemical exposure in a person’s external environment. 

In contrast, metabolite concentrations in urine reflect chemical 
exposure in a person’s internal environment from all exposure routes 
(Needham et al. 2005). Further, urine metabolites represent the pro-
portion of those chemicals that were metabolized within the body and 
excreted in the urine. For instance, PAH metabolites with lower mo-
lecular weights (such as two and three rings) are excreted preferentially 
in the urine, while metabolites with relatively higher molecular weights 
are excreted preferentially in the feces (Ramesh et al. 2004). Urinary 
metabolite concentrations reflect both inter- and intra-variability as well 
(Aylward et al. 2014; Grimmer et al. 1997; Li et al. 2010). For example, 
OH-PAH concentrations can be influenced by variation in physiological 
characteristics (e.g., urinary flow rate) and inter-individual variation in 
chemical toxicokinetics (e.g., health conditions, age, and medications 
can impact metabolic capacity) (Grimmer et al. 1997). 

Fig. 2. Relative prediction error percentages 
based on linear regression models for PAH con-
centrations in wristbands predicting OH-PAH 
concentration in urine (blue) and for OH-PAH 
concentrations in urine predicting PAH concen-
trations in wristbands (red) for the four compar-
isons with the highest observed Pearson’s 
correlation coefficients: phenanthrene (PHEN) 
and 2-OH– & 3-OH-PHEN, PHEN and 1-OH- 
PHEN, fluorene (FLU) and 2-OH-FLU, and naph-
thalene (NAPH) and 1-OH-NAPH. (For interpre-
tation of the references to color in this figure 
legend, the reader is referred to the web version 
of this article.)   
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3.5.2. PAH metabolism and OH-PAHs 
Additionally, wristband results may not exactly match urine results 

because of PAH metabolism. For instance, there is not always a direct 
link between parent PAH exposure (e.g., naphthalene) and the related 
OH-PAH [e.g., 1-OH-naphthalene; (CDC 2017)]. In particular, the 
evaluation of 1-OH-naphthalene and 2-OH-naphthalene does not ac-
count for metabolites derived through the glutathione pathway, poten-
tially leading to underestimations of true naphthalene exposure (Ayala 
et al. 2015). OH-PAHs can also be generated by other parent com-
pounds. For example, in addition to naphthalene, the insecticide 
carbaryl can also generate 1-OH-naphthalene in the body (Meeker et al. 
2007; Wheeler et al. 2014). Lastly, OH-PAHs are not only formed from 
human metabolism. OH-PAHs can also be formed in ice, water, and the 
atmosphere, and have been reported in the environment (Barrado et al. 

2012; Ge et al. 2016; Wang et al. 2007). 

3.5.3. Spot urine sample limitations 
The comparison between wristbands and urine may be further 

complicated because we analyzed one spot urine sample. Spot urine 
samples reflect a shorter window of PAH exposure than the wristbands. 
Forty-eight-hour urine voids or pooling spot urine samples could 
potentially correlate better with the wristbands in this study compared 
to spot urine samples. We collected a spot urine sample because they are 
regularly collected to research PAH exposure in epidemiologic studies 
and it is less of a burden for participants than a 48-hour urine void or 
collecting multiple spot urine samples. Despite the limitations of spot 
urine samples, we observed significant results when quantifying asso-
ciations between PAH and OH-PAH concentrations and we were able to 

Fig. 3. Classification matrices for tertile category 
agreement between observed and predicted 
exposure categories in the urine for the four 
comparisons with the highest observed Pearson’s 
correlation coefficients: (a-b) 2-OH- & 3-OH- 
PHEN and PHEN, (c-d) 1-OH-PHEN and PHEN, 
(e-f) 2-OH-FLU and FLU, and (g-h) 1-OH-NAPH 
and NAPH. Color indicates relative mean pre-
diction probability. Observed exposure tertile is 
given on the x-axis and predicted exposure tertile 
based on associated compound data, on the y- 
axis.   
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predict data from observed data using spot urine. 

3.6. Limitations and additional considerations 

Study participants may not be representative of the larger U.S. adult 
population. Participants were in their third-trimester of pregnancy in the 
largest U.S. city and had volunteered to participate in a longitudinal 
birth cohort study. Future research with random or probability-based 
sampling may reflect a stronger relationship between wristbands and 
urine due to potentially increased metabolic variability in pregnant 
women. However, there are visually similar concentration distributions 
between creatinine concentrations in this study and the 2013–2016 
NHANES (data accessed 8/24/2020 from cdc.gov/nchs/nhanes; 
Fig. S9). In addition, despite the potentially increased variability in data 
from our convenience sample, we still observed evidence of significant 
relationships between PAH and OH-PAH concentrations in our study. 

We looked for 61 PAHs in wristbands and seven OH-PAHs in urine. 
The additional PAHs in the wristbands provide additional insight into 
personal PAH exposure. For instance, we detected an additional 53 PAHs 
that we would not capture if we only focused on the four PAHs 

corresponding to the seven OH-PAHs. Our wristband PAH method was 
able to include more target analytes than the urine OH-PAH method 
since higher molecular weight PAH metabolites are excreted preferen-
tially in the feces rather than the urine (Ramesh et al. 2004). The 
additional PAH information captured by the wristbands can be helpful 
for future research needs, such as evaluating the toxicity of the mixture 
of chemicals that might affect this study population’s health and 
providing additional wristband data that can be compared to other 
wristband studies. 

3.7. Conclusions 

Wristbands can provide particular advantages in situations when it 
may be difficult or impossible to collect urine. These situations may 
include studies in the wake of pandemics, hurricanes, fires, earthquakes, 
tornados, civil/political unrest, and power outages. Previously, wrist-
bands have been used to collect personal chemical exposure data less 
than one month after a category four hurricane made landfall in Texas 
(Hurricane Harvey), which led to widespread flooding (Dixon et al. 
2019). Study participants wore a wristband for seven days and then 
mailed it to Oregon State University for analysis. 

To our knowledge, this is the first application of supervised statistical 
learning to evaluate the relationship between chemical concentrations 
in wristbands and metabolite concentrations in biological samples. 
Previously, other studies have relied on evaluating correlation co-
efficients and significance to compare data from wristbands and other 
personal exposure assessment methods (Dixon et al. 2018; Hammel et al. 
2016; Hammel et al. 2018; Hammel et al. 2020; Quintana et al. 2019). 
However, metrics such as correlation are limited in capturing the un-
certainty with making real-world inference and predictions on unseen 
test cases. Therefore, we ran supervised statistical models, with cross- 
validation, to further examine and quantify the full relationship be-
tween different exposure assessment methods and predictive efficacy for 
unseen observations. 

Due to the inherent differences in the exposure assessment methods 
and collection of spot urine samples, we did not expect complete 
agreement between all PAH concentrations in wristbands and OH-PAH 
concentrations. However, our significant results from quantifying the 
associations between PAHs and OH-PAHs, paired with our ability to 

Table 6 
Prediction accuracy of linear discriminant analysis model predictions for the 
highest exposure category for OH-PAH concentrations (conc.) in urine and PAH 
conc. in wristbands.  

PAH in 
Wristbands 

OH-PAH 
in Urine 

Prediction Accuracy of Linear Discriminant 
Analysis Model 

Using PAH Conc. to 
Predict Highest OH- 
PAH Tertile 

Using OH-PAH Conc. 
to Predict Highest 
PAH Tertile 

Phenanthrene 
(PHEN) 

2-OH- & 3- 
OH-PHEN  

0.58  0.50 

PHEN 1-OH- 
PHEN  

0.58  0.58 

Fluorene (FLU) 2-OH-FLU  0.57  0.68 
Naphthalene 

(NAPH) 
1-OH- 
NAPH  

0.64  0.67 

Pyrene (PYR) 1-OH-PYR  0.68  0.71 
FLU 3-OH-FLU  0.50  0.44 
NAPH 2-OH- 

NAPH  
0.06  0.28  

Fig. 4. Relative probability boxplots by 
observed exposure category based on pre-
diction for PAH concentrations in wristbands 
(red) or OH-PAH concentrations in urine 
(blue) for the four comparisons with the 
highest observed Pearson’s correlation co-
efficients: phenanthrene (PHEN) and 2-OH– 
& 3-OH-PHEN, PHEN and 1-OH-PHEN, flu-
orene (FLU) and 2-OH-FLU, and naphthalene 
(NAPH) and 1-OH-NAPH. (For interpretation 
of the references to color in this figure 
legend, the reader is referred to the web 
version of this article.)   
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predict data from observed data using linear regression models and LDA 
models, demonstrates that urine and wristbands can be used to gather 
complementary information for PAH personal exposure assessment. 

4. Ethics approval 

We obtained informed consent from study participants in accordance 
with the Columbia University Institutional Review Board (IRB: 
AAAK6753). The involvement of the CDC laboratory did not constitute 
engagement in human subject research. All participants included in this 
study provided informed written consent to participate. All participants 
included in this study provided informed written consent for publication 
of the aggregate data. 
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