Skip to main content
. 2022 Apr 4;221:115824. doi: 10.1016/j.poly.2022.115824

Table 5.

QSAR equations and obtained statistical parameters from QSAR models.

No QSAR equations Training
Validation
Rt2 RMSEt Q2LOO RMSELOO R2LMO RMSELMO
Model 1 (△G) = 40.7407 + 98.3112(Gap)-2.4502(S)-10.7921(X) 0.935 0.101 0.858 0.264 0.807 0.189
Model 2 (△G) = -5.445 + 7.772(X) + 0.059(Ss)-0.234(nN)-0.266 (nB0) −0.199(nHACC) 0.700 0.351 0.664 0.427 0.615 0.422
Model 3 (△G) = 6.904–0.975(AMW) −2.003(nCIR) 0.861 0.526 0.829 0.5468 0.753 0.587
Model 4 (△G) = -2.732–0.089 nHAcc −0.412 SNar −17.240 X - 0.085 Ss + 0.165 D + 0. 102 μ 0.843 0.341 0.788 0.397 0.732 0.387

R2t is a correlation coefficient of the training set; RMSEt is a root mean square error of the training set; Q2LOO is a correlation coefficient of leave-one-out cross-validation; RMSELOO is a root mean square error LOO–CV.