Table 5.
No | QSAR equations | Training |
Validation |
||||
---|---|---|---|---|---|---|---|
Rt2 | RMSEt | Q2LOO | RMSELOO | R2LMO | RMSELMO | ||
Model 1 | (△G) = 40.7407 + 98.3112(Gap)-2.4502(S)-10.7921(X) | 0.935 | 0.101 | 0.858 | 0.264 | 0.807 | 0.189 |
Model 2 | (△G) = -5.445 + 7.772(X) + 0.059(Ss)-0.234(nN)-0.266 (nB0) −0.199(nHACC) | 0.700 | 0.351 | 0.664 | 0.427 | 0.615 | 0.422 |
Model 3 | (△G) = 6.904–0.975(AMW) −2.003(nCIR) | 0.861 | 0.526 | 0.829 | 0.5468 | 0.753 | 0.587 |
Model 4 | (△G) = -2.732–0.089 nHAcc −0.412 SNar −17.240 X - 0.085 Ss + 0.165 D + 0. 102 μ | 0.843 | 0.341 | 0.788 | 0.397 | 0.732 | 0.387 |
R2t is a correlation coefficient of the training set; RMSEt is a root mean square error of the training set; Q2LOO is a correlation coefficient of leave-one-out cross-validation; RMSELOO is a root mean square error LOO–CV.