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ABSTRACT Single-molecule localizationmicroscopy techniques transcend thediffraction limit ofvisible light by localizing isolated
emitters sampled stochastically. This time-lapse imaging necessitates long acquisition times, over which sample drift can become
large relative to the localization precision. Here, we present an efficient and robustmethod for estimating drift, using a simple peak-
finding algorithm based on mean shifts that is effective for single-molecule localization microscopy in two or three dimensions.
WHY IT MATTERS Drift correction is a regular part of the analysis pipeline in super-resolution fluorescence localization
microscopy because the microscope stage typically moves farther than the localization precision over the time needed to
acquire an image. This work presents a mathematically simple mean shift (MS) algorithm that allows for accurate drift
correction with high time resolution from acquired localizations in two or three dimensions.
INTRODUCTION

Stochastic super-resolution microscopy techniques,
such as STORM (1,2) and PALM (3,4), exploit photo-
switching of fluorescent probes to enable imaging of
densely labeled samples with resolutions an order of
magnitude smaller than the diffraction limit of visible
light. Sparsely distributed point spread functions
(PSFs) of single emitters are identified in individual im-
age frames, and their centroids are determined accord-
ing to an appropriate fitting algorithm. The axial
position of molecules can be encoded in their PSFs
through engineering measures utilizing astigmatism
(5,6), multifocal plane imaging (7), or a double helix
PSF (8). The final reconstruction is typically a two-
dimensional (2D) or three-dimensional (3D) histogram
of these single-molecule positions.

Drift due to thermal expansion or mechanical insta-
bilities can degrade image quality over the course of
image acquisition, which typically occurs on the time-
scale of minutes. Drift compensation requires either
active stabilization of the microscope (9–13) or a pos-
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teriori computation of the drift curves, either using
fiducial markers (14–18) or the acquired single-mole-
cule localizations (19–26). In this report, we present
a mathematically simple approach to drift correction
using a mean shift (MS) algorithm (27–29) for static
single-molecule localization microscopy (SMLM)
data sets without fiducial markers, with some advan-
tages over past approaches that use nonlinear least-
squares (NLLS) fitting of image-based cross-correla-
tions (19–21).
RESULTS

A graphical illustration of the MS algorithm as applied
to sample 2D localizations is presented in Fig. 1. The
localizations all lie in one of two data sets which sam-
ple the same uniformly distributed emitters, but with a
constant relative shift rshift in space. The first step of
the algorithm is to extract pairwise displacements be-
tween all localizations across the two data sets. When
individual displacements are plotted as points (Fig. 1
b), displacements arising from the same labeled ob-
jects (magenta points) cluster around rshift, whereas
displacements arising from different objects (green
points) distribute randomly over space. The MS algo-
rithm determines the center of the peak of the distribu-
tion through iteration (27–29). At each iteration, all
pairs within the radius of consideration are extracted,
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FIGURE 1 Demonstration of the MS algorithm.
(a) A sample 2D image containing two mole-
cules (filled red symbols) that are each localized
one time (filled blue symbols). At a later time, the
molecules are translated 25 nm in both dimen-
sions (open red symbols) and two additional lo-
calizations are acquired (open blue symbols).
Red contours indicate one and two times the
localization precision around molecule centers.
Straight lines show displacements between lo-
calizations acquired at distinct times. Some
connect localizations from the same displaced
molecule (magenta), whereas others connect
different molecules (green). (b) Displacements
like those shown in (a) displayed as points.
Points connecting the same molecules cluster
around the displacement, whereas points con-
necting different molecules produce a uniform
background. (c) Three iterations of the MS algo-
rithm showing the displacements as histograms
in one dimension and as points in 2D in the
inset. (Left) Initially, a region of interest (circle
in inset) is centered at zero shift. The mean
displacement of this subset of points is found
(arrow inmain graph and cross in inset). (Middle)
A new region of interest is drawn around the
mean from the initial iteration. The mean
displacement from this subset of points (arrow)
is shifted to slightly more positive values than
the previous mean. (Right) At the final iteration,
the tabulated mean (arrow) is equivalent to the
starting point (dashed line) because the peak
is centered within the region of interest.
and the updated shift estimate is the centroid of these
pairs. The uniformly distributed background will tend
to bias the centroid toward the center of the observa-
tion window, whereas the peak moves the mean to-
ward rshift. The observation window is then redrawn
around the new mean and the process is repeated un-
til the peak is centered in the observation window.
Three iterations of the algorithm are visualized in
Fig. 1 c.

Although the emitters of Fig. 1 are distributed uni-
formly in space, leading to the uniform distribution
of the pairs from different emitters, the MS method
does not depend on this assumption. In samples in
which emitters are organized into structures or
randomly clustered, the pairs arising from different
emitters are also more likely to be at shorter dis-
tances, so that the distribution of green points in
Fig. 1 b will also be peaked at rshift. However, in our
experience, pairs of localizations from the same
emitter are more important for the MS and other drift
estimates. We also note that our analysis assumes
that emitters that are localized in one data set remain
within the field of view in the second data set, and
vice versa. This may not always be the case, and
could in principle lead to bias in shift estimates, but
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in practice this is typically a negligible effect.
Roughly, the contribution of fluorophores near the
edge of the field of view may be biased by up to
about the localization precision, and the fraction of
fluorophores that are affected is restricted to those
that lie within about a localization precision from
the edge of the field of view, in the direction of the
drift. So, for example, in a 100 mm field of view with
localization precision of 15 nm, we would expect
this bias to be on the order of a picometer.

To benchmark this MS approach, we evaluated the
ability of the algorithm to detect known shifts of
simulated data sets of a circular test cell, as summa-
rized in Fig. 2. Shifts were estimated by both the MS
algorithm and by NLLS fitting of a Gaussian to the
spatial cross-correlation function of the two data
sets, as implemented in the supporting software pro-
vided with (21). The performance of each algorithm
was similar for easy cases that produce a well-
defined peak at rshift. An extremely easy case is de-
picted at the top of Fig. 2 a, in which single molecules
are well spaced (surface density ¼ 5/mm2) and their
positions are well sampled in both frames (twice
per molecule on average). In this case, the shift can
be clearly identified by eye, and both algorithms



FIGURE 2 Evaluating the MS algorithm on simulated data translated in two dimensions, compared with nonlinear least-squares (NLLS) fitting
approach. Simulations and displacement determination approaches are described in Supporting methods and materials. (a) Two examples of
simulated data sets. Scatter plots on the left show a representative configuration for an extremely easy case, 5 mol/mm2, with an average of two
localizations per molecule (top) and a relatively hard case 20mol/mm2, with an average of 0.05 localizations per molecule (bottom). Scale bars, 2
mm (large image) and 150 nm (inset). The simulated localization precision is s¼ 15nm. Histograms on the right show errors evaluated for the MS
and NLLS approaches for the two cases considered, evaluated from 500 simulations with random displacements between 0 and 150 nm (10s).
The precision of each method (Prec.) is evaluated as the standard deviation (SD) of a Gaussian fit to the central peak of the histogram (solid
line). The “failure rate” is the fraction of simulations for which the error exceeds twice the localization precision s, indicated as a dashed line for
the hard case. (b) Performance comparison of the MS and NLLS approaches over a broad range of simulated conditions. Each point summa-
rizes 500 simulations of the indicated average density and localizations per molecule, with precision and failure rate evaluated as described in
(a), along with the average computation time per calculation. (c) The measured precision plotted as a function of an error in the displacement
estimated from data, as derived in Supporting methods and materials. MS failure rate versus error estimate shows that the MS algorithm loses
robustness when the estimated error exceeds s/4 (dashed line).
reliably and accurately identify the displacement be-
tween frames. The simulation depicted at the bottom
of Fig. 2 a represents a much harder case, in which
molecules are present at higher surface density
(20/mm2) and only 1 in 20 molecules are imaged on
average in a given data set. In this case, MS modestly
outperforms NLLS fitting, both by locating the peak
with improved precision and by more reliably finding
the peak overall. These trends hold over simulations
conducted over a broad range of molecular densities
and localizations per molecule (Fig. 2 b). We also
estimated shifts from the overall center of mass of
each data set, which yielded precisions more than
an order of magnitude worse than both the MS and
NLLS methods. Moreover, MS is more computation-
ally efficient than NLLS, largely because fast Fourier
transforms are not computed in the MS approach.
This improvement in speed is enabled through the
use of a particularly efficient algorithm from the R
package spatstat (30) to extract pairwise displace-
ments between nearby points (see Supporting
methods and materials).
For large displacements, both the MS and NLLS algo-
rithms applied in Fig. 2 require an initial step to identify
an approximate starting point for the higher accuracy
calculation. Fig. S1 shows the failure rate of each algo-
rithm as a function of the distance of the start point
from the true shift. MS robustly identifies the main
peak over a broad range of simulation conditions as
long as it resides within the initial observation window,
so large shifts can be identified simply using a large
window in the first iteration. This window is typically
100 nm for experimental localizations and 150 nm for
the simulations of Fig. 2. NLLS robustly identifies the
main peak when the starting point for the computation
falls within the localization precision of the peak of the
cross-correlation function. In many practical cases, the
peak is much farther from the origin than the localiza-
tion precision, so a separate method is needed to iden-
tify a suitable starting point. Here, this is accomplished
using a particularly effective algorithm that identifies
the global maximum in a smoothed cross-correlation
function, as described in the supporting material of
(21). The robustness of the NLLS fitting approach is
Biophysical Reports 1, 100008, September 8, 2021 3



dependent on the ability of this algorithm to identify a
suitable starting point over a broad range of simulation
conditions. Note that data sets for which the emitter
distribution is highly structured or clustered typically
lead to improved performance of the start point identi-
fication routine by introducing a broad peak in the
cross-correlation function in addition to the sharp
peak that represents repeat localizations of the same
fluorophore.

This MS approach is applied to SMLM localizations
that experience continuous drift by distributing locali-
zations into nonoverlapping temporal bins with equal
numbers of frames, and displacement estimates are
tabulated between all possible pairs of bins. The num-
ber of frames in each temporal bin is an important
parameter; short temporal bins have few localizations
per molecule, so individual displacements may be esti-
mated imprecisely. Long temporal bins have more lo-
calizations per molecule and more precise drift
estimates but reduce the time resolution of the drift
estimate. A linear least-squares fitting algorithm is
then used to generate a trajectory that passes through
control points positioned, at times, centered on each
temporal bin, as described previously (21), taking
advantage of the high redundancy to improve preci-
sion of the control points. We have slightly modified
this past approach by including weights in the linear
least-squares fitting, where weights are determined
directly from data using a relation that approximates
error in the mean displacement (described in Support-
ing methods and materials), as demonstrated in simu-
lated data sets (Fig. 2 c). Briefly, errors are reduced
when there are more pairs originating from the same
molecules (magenta points in Fig. 1) and errors in-
crease when more pairs originate from different mole-
cules within the observation window (green points in
Fig. 1). Estimated errors can also act as a proxy for
overall reliability of the algorithm. Fig. 2 c also shows
that MS reliably finds the desired peak when the esti-
mated error remains smaller than one-quarter of the
localization precision. This observation can act as a
guide when selecting the number of frames included
in temporal bins.

It is tempting to distribute frames into overlapping
temporal bins, which in principle could improve time
resolution while retaining a sufficient number of
localizations to accurately determine displacements.
However, we find that drift estimates from overlapping
time bins are subject to substantial bias, underesti-
mating the actual displacements accrued over time
(Fig. S2 a). This occurs because the same localiza-
tions are present in adjacent bins, biasing the result to-
ward rshift ¼ 0. Similar bias can arise even in the
absence of overlapping time bins because SMLM
data frequently contain time-correlated localizations
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arising from the finite off rates of fluorescent blinking
(PALM/dSTORM) or binding (PAINT). These factors
mean that pairs of localizations from the same fluoro-
phore are mostly from time separations that are
shorter than the time difference between the bin cen-
ters and therefore underestimate the average drift be-
tween the bins.

The MS approach is applied to a 2D experimental
data set of nuclear pore complexes (NPCs) in Fig. 3.
NPC assemblies are labeled with primary and second-
ary antibodies against Nup210 within the nuclear
envelope of intact primary mouse neurons, and Fig. 3,
a–d shows reconstructed images at various magnifica-
tions. Fig. 3 b is a reconstruction produced without drift
correction, in which localizations from single NPCs are
smeared over a large area, highlighting the importance
of drift correction.

The performance of the MS algorithm was tested
on this data set by generating multiple drift trajec-
tories through binning with different temporal resolu-
tions. These trajectories were each applied to the full
SMLM data set, and Fourier ring correlation (FRC)
(31,32) was used to quantify image resolution
(Fig. 3 e). For comparison, we conducted drift correc-
tions using the redundant cross-correlation NLLS
approach, as described previously (21). In this case,
MS modestly outperforms NLLS fitting, allowing for
accurate drift correction with smaller temporal bins
and modestly improving the resolution of the recon-
structed image. We used this data set to explore
possible bias introduced because of temporal correla-
tions of single-fluorophore blinking by running the
linear least-squares algorithm and including or
excluding adjacent pairs of bins on the data of
Fig. 2. We found no significant difference between
the two cases (Fig. S2 b), indicating that the impact
of this bias is negligible within experimental errors.
Additional diagnostics for the MS and NLLS ap-
proaches are shown in Fig. S3.

Drift trajectories are shown in Fig. 3 f for temporal bin
widths that produce accurate FRC metrics for the MS
and NLLS approaches. For MS, a temporal bin slightly
larger than the minimum from the FRC curve is used
because this produces smaller errors on individual con-
trol points. As expected, the drift trajectories follow the
same general shape, but the trajectory generated from
MS has improved time resolution. In parts of the trajec-
tory, the errors of the control points are smaller than the
distance between the trajectories. In these regions,
higher time resolution yields improved spatial resolu-
tion in the final reconstructed image. Although the dif-
ferences in the trajectories are significant, their impact
is not apparent when viewing reconstructed images of
entire nuclei or collections of NPCs, as in Fig. 3, a and c.
Differences become more apparent in images of



FIGURE 3 Demonstration of MS drift correc-
tion of a 2D SMLM data set of antibody-labeled
Nup210 in nuclear pore complexes (NPC)
within the nuclear envelope of primary mouse
neurons. This data set contained 15,500 image
frames acquired over 14 min, with an average
localization precision of 8 nm. (a) Recon-
structed image of a single nucleus that is a
subset of this data set. (b) Reconstruction
without drift correction of the region shown
within the white box in (a). (c) Same region
as in (b) but with drift correction. (d) An image
of a single complex demonstrates the modest
shifts in localizations due to drift corrections
estimated with MS and 6 s (green) or NLLS
and 17 s (magenta) temporal bins. Scale
bars, 2 mm (a), 200 nm (b and c), and 30 nm
(d). (e) Fourier ring correlation (FRC) resolution
after applying drift corrections estimated us-
ing the specified temporal bin widths for the
MS and NLLS methods. Error bars represent
the SD over 20 replicates of the FRC calcula-
tion. (f) Estimated drift trajectories evaluated
from using the method and temporal spacing
specified. Error bars represent 68% confidence
intervals from the weighted least-squares drift
estimation of each control point. Scale bars,
20 nm for the overall drift curve and 2 nm in
the inset.
individual pores, in which displacements of several
nanometers shift the relative positions of labeled sub-
units (Fig. 3 d).

The MS algorithm is easily extended to localizations
acquired in 3D, in which performance improvements
are more evident compared with the established
NLLS approach. Because the MS algorithm uses points
instead of reconstructed images and fast Fourier trans-
forms, it can be extended into 3D without needing
expanded memory resources that limit the practical
application of NLLS in 3D. Instead, the 3D application
of NLLS drift correction is typically accomplished by
generating 2D projections that contain less information
than the 3D localizations from which they are produced
(21). To see why, consider a pair of emitters that are
close together in x-y but far apart in z. Pairs of localiza-
tions from this pair of fluorophores will be included in
2D MS drift estimation when using data projected
into the x-y plane but excluded from the full 3D drift
estimation method by virtue of their large separation
in z. We compare the precision and robustness of 3D
MS and NLLS on simulated localizations spread over
a cylindrical volume in Fig. S4, in which the NLLS
correction is performed on projections into the x-y,
x-z, and y-z planes, as described in (21). We also
directly compare the x-y performance of the full 3D
MS method with the 2D MS method performed on
data projected into the x-y plane (Fig. S5).

Fig. 4 applies the MS approach to an experimental
SMLM data set of labeled B cell receptors on the
ventral membrane of B cells imaged using a phase
mask in the emission path to localize fluorophores in
3D (8). As was the case for simulated data sets, the dif-
ferences in the performance of the MS and NLLS fitting
methods are more pronounced than in the 2D data set
of Fig. 3. Additional diagnostics for the 3D case are
shown in Fig. S6.

In summary, a mathematically simple MS algorithm
modestly outperforms cross-correlation-based esti-
mates of drift correction in 2D and more significantly
improves the time resolution of drift corrections in
3D. The approach is computationally efficient, is
robust without sophisticated methods to estimate
starting points, and does not require image recon-
struction with memory and pixelation limitations.
The metric provided to estimate error and predict
robustness directly from data provides users with a
means to evaluate the quality of a drift correction
within an SMLM analysis pipeline. For the example
data sets explored, modest improvements in
Biophysical Reports 1, 100008, September 8, 2021 5



FIGURE 4 Demonstration of MS drift correction of a 3D SMLM data
set of B cell receptors at the ventral plasma membrane of CH27 B
cells. This data set contained more than 400,000 localizations ac-
quired over 15 min, with an average localization precision of 17 nm
in the lateral (x-y) dimension and 31 nm in the axial (z) dimension.
(a) Reconstructed image of a subset of this data set showing the
average z position within each x-y pixel, as indicated in the color
bar. x-z slice at the position drawn as a white line is shown below.
Scale bars, 5 mm for x-y and 200 nm for z. (b) Fourier ring correlation
(FRC) estimates of image resolution after applying drift corrections
estimated using the specified temporal bin widths for the MS and
NLLS methods. Error bars represent the SD over five replicates of
the FRC calculation. (c) Estimated drift trajectories evaluated with
the specified temporal spacing. Error bars represent 68% confidence
intervals from the weighted least-squares drift estimation of each
control point. Scale bars, 50 nm (10 nm in the inset).
resolution lead to adjustments of localized molecule
positions relevant for evaluating the structure of pro-
tein complexes in cells.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.
bpr.2021.100008.
AUTHOR CONTRIBUTIONS

The method was devised by T.R.S. in consultation with F.J.F. and
S.L.V. F.J.F. wrote the majority of the code and performed the major-
ity of analyses in consultation with T.R.S. and S.L.V. F.J.F., T.R.S., and
S.L.V. wrote the text. S.K. prepared and imaged nuclear pore complex
6 Biophysical Reports 1, 100008, September 8, 2021
samples for Fig. 3. R.A.B. prepared and imaged B cell samples for
Fig. 4.
DECLARATION OF INTERESTS

The authors declare no competing interests.
ACKNOWLEDGMENTS

We thank Kathleen Wisser and Sarah Shelby for assistance with ex-
periments.

This work was supported by grants from the U.S. National Science
Foundation (MCB1552439) and National Institutes of Health
(GM129347 and GM110052).
SUPPORTING CITATIONS

References (33–39) appear in the Supporting material.
REFERENCES

1. Rust, M. J., M. Bates, and X. Zhuang. 2006. Sub-diffraction-limit
imaging by stochastic optical reconstruction microscopy
(STORM). Nat. Methods. 3:793–795.

2. Heilemann, M., S. van de Linde, ., M. Sauer. 2008. Subdiffrac-
tion-resolution fluorescence imaging with conventional fluores-
cent probes. Angew. Chem. Int. Ed. Engl. 47:6172–6176.

3. Betzig, E., G. H. Patterson, ., H. F. Hess. 2006. Imaging intracel-
lular fluorescent proteins at nanometer resolution. Science.
313:1642–1645.

4. Hess, S. T., T. P. K. Girirajan, and M. D. Mason. 2006. Ultra-high
resolution imaging by fluorescence photoactivation localization
microscopy. Biophys. J. 91:4258–4272.

5. Kao, H. P., and A. S. Verkman. 1994. Tracking of single fluores-
cent particles in three dimensions: use of cylindrical optics to
encode particle position. Biophys. J. 67:1291–1300.

6. Holtzer, L., T. Meckel, and T. Schmidt. 2007. Nanometric three-
dimensional tracking of individual quantum dots in cells. Appl.
Phys. Lett. 90:053902.

7. Juette, M. F., T. J. Gould, ., J. Bewersdorf. 2008. Three-dimen-
sional sub-100 nm resolution fluorescence microscopy of thick
samples. Nat. Methods. 5:527–529.

8. Pavani, S. R. P., M. A. Thompson, ., W. E. Moerner. 2009. Three-
dimensional, single-molecule fluorescence imaging beyond the
diffraction limit by using a double-helix point spread function.
Proc. Natl. Acad. Sci. USA. 106:2995–2999.

9. Carter, A. R., G. M. King,., T. T. Perkins. 2007. Stabilization of an
optical microscope to 0.1 nm in three dimensions. Appl. Opt.
46:421–427.

10. Grover, G., W. Mohrman, and R. Piestun. 2015. Real-time adaptive
drift correction for super-resolution localization microscopy. Opt.
Express. 23:23887–23898.

11. Tafteh, R., L. Abraham, ., K. C. Chou. 2016. Real-time 3D stabi-
lization of a super-resolution microscope using an electrically
tunable lens. Opt. Express. 24:22959–22970.

12. Schmidt, P. D., B. H. Reichert, ., S. Sivasankar. 2018.
Method for high frequency tracking and sub-nm sample sta-
bilization in single molecule fluorescence microscopy. Sci.
Rep. 8:13912.

13. Coelho, S., J. Baek, ., K. Gaus. 2021. 3D active stabilization for
single-molecule imaging. Nat. Protoc. 16:497–515.

https://doi.org/10.1016/j.bpr.2021.100008
https://doi.org/10.1016/j.bpr.2021.100008
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref1
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref1
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref1
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref2
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref2
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref2
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref3
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref3
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref3
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref4
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref4
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref4
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref5
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref5
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref5
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref6
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref6
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref6
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref7
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref7
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref7
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref8
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref8
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref8
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref8
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref9
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref9
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref9
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref10
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref10
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref10
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref11
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref11
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref11
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref12
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref12
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref12
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref12
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref13
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref13


14. Huang, B., W. Wang, ., X. Zhuang. 2008. Three-dimensional su-
per-resolution imaging by stochastic optical reconstruction mi-
croscopy. Science. 319:810–813.

15. Bon, P., N. Bourg, ., S. L�evêque-Fort. 2015. Three-dimensional
nanometre localization of nanoparticles to enhance super-resolu-
tion microscopy. Nat. Commun. 6:7764.

16. Colomb, W., J. Czerski, ., S. K. Sarkar. 2017. Estimation of mi-
croscope drift using fluorescent nanodiamonds as fiducial
markers. J. Microsc. 266:298–306.

17. Ma, H., J. Xu,., Y. Liu. 2017. A simple marker-assisted 3D nano-
meter drift correction method for superresolution microscopy.
Biophys. J. 112:2196–2208.

18. Balinovic, A., D. Albrecht, and U. Endesfelder. 2019. Spectrally
red-shifted fluorescent fiducial markers for optimal drift correc-
tion in localization microscopy. J. Phys. D Appl. Phys. 52:204002.

19. Mlodzianoski, M. J., J. M. Schreiner, ., J. Bewersdorf. 2011.
Sample drift correction in 3D fluorescence photoactivation local-
ization microscopy. Opt. Express. 19:15009–15019.

20. Geisler, C., T. Hotz, ., A. Egner. 2012. Drift estimation for single
marker switching based imaging schemes. Opt. Express.
20:7274–7289.

21. Wang, Y., J. Schnitzbauer, ., B. Huang. 2014. Localization
events-based sample drift correction for localization microscopy
with redundant cross-correlation algorithm. Opt. Express.
22:15982–15991.

22. Elmokadem, A., and J. Yu. 2015. Optimal drift correction for
superresolution localizationmicroscopy with Bayesian inference.
Biophys. J. 109:1772–1780.

23. Schlangen, I., J. Franco, ., C. Rickman. 2016. Marker-less stage
drift correction in super-resolution microscopy using the single-
cluster PHD filter. IEEE J. Sel. Top. Signal Process. 10:193–202.

24. Han, R., L. Wang, ., F. Zhang. 2015. Drift correction for single-
molecule imaging by molecular constraint field, a distance mini-
mum metric. BMC Biophys. 8:1.

25. Wester, M. J., D. J. Schodt,., K. A. Lidke. 2021. Robust, fiducial-
free drift correction for super-resolution imaging. bioRxiv https://
doi.org/10.1101/2021.03.26.437196.

26. Cnossen, J., T. J. Cui, ., C. Smith. 2021. Drift correction in local-
ization microscopy using entropy minimization. Opt. Express.
27. Fukunaga, K., and L. Hostetler. 1975. The estimation of the
gradient of a density function, with applications in pattern recog-
nition. IEEE Trans. Inf. Theory. 21:32–40.

28. Cheng, Y. 1995. Mean shift, mode seeking, and clustering. IEEE
Trans. Pattern Anal. Mach. Intell. 17:790–799.

29. Comaniciu, D., and P. Meer. 2002. Mean shift: a robust approach
toward feature space analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 24:603–619.

30. Baddeley, A., E. Rubak, and R. Turner. 2016. Spatial Point Pat-
terns: Methodology and Applications with R. CRC Press, Taylor
& Francis Group, Boca Raton; London; New York.

31. Nieuwenhuizen, R. P. J., K. A. Lidke, ., B. Rieger. 2013.
Measuring image resolution in optical nanoscopy. Nat. Methods.
10:557–562.

32. Banterle, N., K. H. Bui, ., M. Beck. 2013. Fourier ring correlation
as a resolution criterion for super-resolution microscopy.
J. Struct. Biol. 183:363–367.

33. Hilgenberg, L. G. W., and M. A. Smith. 2007. Preparation of disso-
ciated mouse cortical neuron cultures. J. Vis. Exp. 2007:562.

34. Pappas, S. S., C.-C. Liang,., W. T. Dauer. 2018. TorsinA dysfunc-
tion causes persistent neuronal nuclear pore defects. Hum. Mol.
Genet. 27:407–420.

35. Haughton, G., L. W. Arnold, ., T. J. Mercolino. 1986. The CH se-
ries of murine B cell lymphomas: neoplastic analogues of Ly-1þ
normal B cells. Immunol. Rev. 93:35–51.

36. Stone, M. B., S. A. Shelby, ., S. L. Veatch. 2017. Protein sorting
by lipid phase-like domains supports emergent signaling function
in B lymphocyte plasma membranes. eLife. 6:e19891.

37. Izeddin, I., J. Boulanger, ., J. B. Sibarita. 2012. Wavelet analysis
for single molecule localization microscopy. Opt. Express.
20:2081–2095.

38. Smith, C. S., N. Joseph, ., K. A. Lidke. 2010. Fast, single-mole-
cule localization that achieves theoretically minimum uncer-
tainty. Nat. Methods. 7:373–375.

39. Li, Y., M. Mund, ., J. Ries. 2018. Real-time 3D single-molecule
localization using experimental point spread functions. Nat.
Methods. 15:367–369.
Biophysical Reports 1, 100008, September 8, 2021 7

http://refhub.elsevier.com/S2667-0747(21)00008-2/sref14
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref14
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref14
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref15
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref15
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref15
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref15
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref16
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref16
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref16
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref17
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref17
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref17
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref18
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref18
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref18
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref19
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref19
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref19
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref20
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref20
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref20
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref21
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref21
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref21
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref21
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref22
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref22
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref22
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref23
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref23
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref23
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref24
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref24
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref24
https://doi.org/10.1101/2021.03.26.437196
https://doi.org/10.1101/2021.03.26.437196
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref26
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref26
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref27
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref27
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref27
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref28
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref28
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref29
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref29
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref29
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref30
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref30
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref30
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref31
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref31
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref31
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref32
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref32
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref32
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref33
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref33
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref34
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref34
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref34
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref35
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref35
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref35
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref36
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref36
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref36
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref37
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref37
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref37
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref38
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref38
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref38
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref39
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref39
http://refhub.elsevier.com/S2667-0747(21)00008-2/sref39

	A mean shift algorithm for drift correction in localization microscopy
	Introduction
	Results
	Supporting material
	Author contributions
	Acknowledgments
	flink6
	References


