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BACKGROUND: Glyphosate is the most commonly used herbicide in the world and is purported to have a variety of health effects, including endocrine
disruption and an elevated risk of several types of cancer. Blood DNA methylation has been shown to be associated with many other environmental
exposures, but to our knowledge, no studies to date have examined the association between blood DNA methylation and glyphosate exposure.
OBJECTIVE:We conducted an epigenome-wide association study to identify DNA methylation loci associated with urinary glyphosate and its metabo-
lite aminomethylphosphonic acid (AMPA) levels. Secondary goals were to determine the association of epigenetic age acceleration with glyphosate
and AMPA and develop blood DNA methylation indices to predict urinary glyphosate and AMPA levels.
METHODS: For 392 postmenopausal women, white blood cell DNA methylation was measured using the Illumina Infinium MethylationEPIC
BeadChip array. Glyphosate and AMPA were measured in two urine samples per participant using liquid chromatography–tandem mass spectrometry.
Methylation differences at the probe and regional level associated with glyphosate and AMPA levels were assessed using a resampling-based
approach. Probes and regions that had an false discovery rate q<0:1 in ≥90% of 1,000 subsamples of the study population were considered differen-
tially methylated. Differentially methylated sites from the probe-specific analysis were combined into a methylation index. Epigenetic age acceleration
from three epigenetic clocks and an epigenetic measure of pace of aging were examined for associations with glyphosate and AMPA.
RESULTS:We identified 24 CpG sites whose methylation level was associated with urinary glyphosate concentration and two associated with AMPA.
Four regions, within the promoters of the MSH4, KCNA6, ABAT, and NDUFAF2/ERCC8 genes, were associated with glyphosate levels, along with
an association between ESR1 promoter hypomethylation and AMPA. The methylation index accurately predicted glyphosate levels in an internal vali-
dation cohort. AMPA, but not glyphosate, was associated with greater epigenetic age acceleration.

DISCUSSION: Glyphosate and AMPA exposure were associated with DNA methylation differences that could promote the development of cancer and
other diseases. Further studies are warranted to replicate our results, determine the functional impact of glyphosate- and AMPA-associated differential
DNA methylation, and further explore whether DNA methylation could serve as a biomarker of glyphosate exposure. https://doi.org/10.1289/
EHP10174

Introduction
Glyphosate is the most used pesticide in the world,1 used in both
agricultural (for weed control and preharvest desiccation) and non-
agricultural settings.1,2,3 Studies have detected glyphosate in the
air, soil, drinking water, and food.4 Use of glyphosate-based herbi-
cides has increased dramatically since their introduction,1 largely
due to the growing use of genetically modified glyphosate-
resistant crops starting in the late 1990s.5 Glyphosate and/or its pri-
mary metabolite, aminomethylphosphonic acid (AMPA), are fre-
quently detected in the food supply at different levels,6,7,8,9,10 and
recent studies in the United States have detected glyphosate in the
urine of 70%–90% of participants.11,12,13,14

Concerns have been raised about the safety of glyphosate
exposure in humans, and the topic remains controversial. In
2015 the International Agency for Research on Cancer

(IARC) classified glyphosate as a probable human carcino-
gen.15 This classification was supported by a meta-analysis
that suggested an elevated risk of non-Hodgkin’s lymphoma
associated with glyphosate exposure,16 although another large
cohort study did not find a relationship between glyphosate
and cancer risk.17 Epidemiological studies have also found
associations with other health problems, including shortened
gestational length,14 birth defects,18 endocrine disruption,12

and thyroid dysfunction.19 Animal and in vitro studies have
shown associations with endocrine disruption,20,21 fatty liver dis-
ease,22 breast cancer cell proliferation,23 changes to the micro-
biome,24,25,26,27 and increased risk of antibiotic resistance in
bacteria.28 Although limited data exists about potential adverse
effects of AMPA, some studies suggest that AMPA may have
effects similar to those of glyphosate.29,30,31 One recent study found
elevated breast cancer risk among women with high urinary
AMPA.32

Epigenetic markers, such as DNA methylation, may be a
powerful tool for understanding the potential effects of glyphosate
exposure in humans. White blood cell (WBC) DNA methylation
has been associated with environmental exposures,33,34 including
endocrine-disrupting compounds,35,36 other pesticides,37 and air
pollution.38,39,40 In addition, DNA methylation indices combining
information from multiple sites have been developed as bio-
markers of some exposures, including smoking41,42 and alcohol
consumption.43 Some smoking-associated DNA methylation
markers have also been shown to be associated with risk for lung44

and bladder45 cancers.
Recent in vitro29,46 and animal47,48 evidence (reviewed in

reference49) suggests that glyphosate and AMPA may influence
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DNA methylation, including in ways that could promote the de-
velopment of breast cancer.50 However, the association of
glyphosate and AMPA with DNA methylation differences in
humans has been rarely studied. One recent study of pesticide
applicators identified a single CpG site (cg06950346) at which
methylation was associated with history of self-reported glyph-
osate use.51 To our knowledge, no studies to date have exam-
ined direct glyphosate and AMPA measurement in association
with blood DNA methylation.

Another recent avenue of research is the development of
“epigenetic clocks” that purport to measure biological age
using DNA methylation at a selection of CpG sites.52,53,54

Epigenetic age acceleration (biological age greater than chro-
nological age) or a faster molecular pace of aging55 have been
associated with a host of adverse outcomes, including all-cause
mortality,56,57,58 risk for breast cancer,59 B-cell lymphoma,60

which have been associated with glyphosate16 and AMPA32 in
epidemiological studies. Epigenetic age acceleration has also
been associated with other environmental exposures,61,62,63,64

but to our knowledge, the association between epigenetic age
acceleration and glyphosate and AMPA measurements has not
been previously explored.

We conducted an epigenome-wide association study to iden-
tify DNA methylation loci associated with urinary glyphosate
and AMPA levels. Secondary goals were to determine the associ-
ation of epigenetic age acceleration with glyphosate and AMPA
and develop blood DNA methylation indices to predict urinary
glyphosate and AMPA levels.

Methods

Study Population
The study population consisted of postmenopausal women resid-
ing in southern California between the ages of 45 and 66 y
(N =392). All participants provided informed consent to partici-
pate, and the study was approved by the University of California,
Irvine institutional review board, HS #2016-3,127. Recruitment,
questionnaires, and specimen collection were described in detail
previously.65 Briefly, women were recruited from 2017 to 2019
via two recruitment arms: targeted mailings to members of the
Athena Breast Health Network (a cohort of women receiving
screening mammograms at University of California, Irvine health
facilities), and untargeted recruitment from the broader commu-
nity via flyers, social media, events, and word of mouth. The
study was designed to identify epigenetic markers for factors
potentially related to breast cancer risk; thus, women with a per-
sonal history of breast cancer or mastectomy were excluded from
the study.

Biospecimen Collection and Processing
Specimens were collected and processed as previously described.65

Briefly, participants self-collected first-morning urine samples
on 2 d within a 10-d period not known to them in advance to
capture their typical behaviors and exposures. Urine samples
were stored in a freezer (−20�C) until they could be trans-
ported to the laboratory. At an appointment attempted to be
scheduled within 10 d of the second urine sample collection
(median 1 d, range 0–24 d), a certified phlebotomist collected
peripheral blood in three glass Vacutainer blood collection
tubes: one containing ethylenediaminetetraacetic acid (EDTA),
one containing acid citrate dextrose (ACD), and one with no
anticoagulants. DNA was extracted from the buffy coat (from
EDTA and ACD tubes, pooled) within 6 h of collection using

the QIAamp DNA Blood Maxi Kit (Cat. No. 51,194,
QIAGEN) and stored at −80�C for later analysis.

Urinary glyphosate and AMPA were measured using liquid
chromatography–tandem mass spectrometry (LC-MS/MS) at
the Collaborative Center for Translational Mass Spectrometry
(CCTMS) (Tgen) using a Vanquish UHPLC coupled to TSQ Altis
triple quadrupole mass spectrometer (Thermo Scientific) as previ-
ously described.12 Briefly, glyphosate and AMPA assay validation
was performed in a commercially available urine pool from
LeeBio Solutions prior to analysis. The calibration curves for
glyphosate and AMPA were prepared over a linear range of
0–5 ng=mL (coefficient of determination R2 > 0:99) by spiking
variable concentrations of glyphosate and AMPA and their respec-
tive isotopically labeled internal standards, 13C2

15N-Glyphosate
and D2

13C15N-AMPA (Sigma-Aldrich) at a fixed concentration of
6:25 ng=mL. Data acquisition and processing were performed
using Xcalibur 4.1.50 and QuanBrowser, 4.1.50 (Thermo
Scientific). Both assays were linear (coefficient of determination
R2 > 0:99) over a range 0–5 ng=mL (Figure S1). The limits of
detection (LOD) for glyphosate and AMPA were 0.014 and
0:013 ng=mL, and the limits of quantitation (LOQ) were 0.041 and
0:040 ng=mL, respectively (Table S1). Creatinine was measured
using the DetectX urinary creatinine detection kit (Arbor Assays,
K002-H5) according to the manufacturer’s instructions. The data
were tested for batch effects using the Kruskal-Wallis test, and
batch correction was performed for glyphosate values using the
removeBatchEffects function in limma.66 Four samples with
implausibly low creatinine (<10 mg=dL) were excluded from
subsequent analysis. Measurements were averaged for the two
urine samples for each analyte after replacing values <LOD with
LOD=

p
2.67

Genomic DNA was bisulfite converted using the Zymo EZ
DNA methylation kit (Zymo Research), and then DNA methyla-
tion at over 850,000 CpG sites was measured using the Illumina
Infinium MethylationEPIC BeadChip (Illumina) at the University
of Southern California Molecular Genomics Core. Laboratory
staff were blinded to glyphosate and AMPA measurements.
Methylation data preprocessing was performed according to rec-
ommended steps,68 including probe filtering, normalization, and
batch correction. All data analysis was performed in R, (version
3.6.2; R Development Core Team). Probes with a detection
p>0:05 were considered missing, and other low-quality probes
were removed as follows: missing in at least 20% of samples
(n=648); had SNPs with global minor allele frequency >1%
within 5 base pairs of the target sequence or mapping problems
with the probe sequence (n=99,109);69 hybridized to multiple
locations (n=15);70 or located on the X or Y chromosome
(n=16,927). All samples passed quality control, including effi-
ciency of bisulfite conversion, verification of reported sex and
identity, and having <1% failed probes (maximum value: 0.13%),
and were included in the final data analysis. Values were normal-
ized with noob normalization as implemented in the minfi package
(version 1.32.0)71 for background correction and dye bias adjust-
ment followed by beta mixture quantile normalization (BMIQ) to
correct for type II probe bias.72 Except where noted, filtering and
normalization was completed using the ChAMP package (version
2.12.4).73 Finally, DNA methylation measurements were corrected
for batch and position on chip using ComBat74 as implemented in
sva version 3.30.1.75 We used a reference-based method76 to esti-
mate the proportions of six WBC types in our samples, which did
not significantly differ with glyphosate or AMPA tertile (Table
S2). We used the methylation M value (the base 2 logarithm of the
ratio of methylated to unmethylated intensities) for all analyses; in
some cases, we also reported b values (percent methylation) for
ease of interpretation.77
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Covariates
Relevant covariates, including age, self-reported race/ethnicity,
height, weight, smoking status (current, former, or never smoker),
alcohol consumption, organic eating habits, physical activity, and
recent herbicide use, were collected via questionnaires. Race and
ethnicity were self-reported in response to two questions: “What is
your racial background?” (response choices: “Black or African
American,” “White,” “Asian,” “American Indian or Alaska
Native,” “Native Hawaiian or other Pacific Islander,” “Some other
race,” “Do not know,” or “Prefer not to answer”) and “Are you of
Hispanic, Latino, or Spanish origin or ancestry?” (yes/no; “yes”
responses were prompted to further self-identify as “Mexican,
Mexican American, or Chicano,” “Puerto Rican,” “Cuban,” and/or
“Other Hispanic, Latino, or Spanish origin”). Responses to these
questions were pooled into a combined race/ethnicity measure
with categories non-Hispanic White, non-Hispanic Asian, non-
Hispanic Black, Hispanic, or Other. All those who answered “yes”
to the Hispanic/Latino/Spanish origin question were placed into
the Hispanic category, regardless of response to the race question.
Multiple selections were allowed; individuals who selected more
than one race (n=7) were placed into the “Other” category.
Those who answered “American Indian or Alaska Native,”
“Native Hawaiian or other Pacific Islander,” or “Some other
race”were placed into the “Other” category due to small numbers
in the study cohort (total n including >1 race= 10). Race/ethnic-
ity was included in the analysis due to known associations with
DNAmethylation.78,79,80

Self-reported height and weight were used to calculate body
mass index (BMI) by dividing the weight in kilograms by the
height in meters squared. Organic eating habits were self-reported
as “seldom or never,” “sometimes,” or “often or always.”81 Physical
activity was reported as typical frequency and duration of moder-
ate and vigorous physical activity. These responses were con-
verted to minutes per week of moderate exercise, with eachminute
of vigorous exercise equivalent to 2 min of moderate exercise.82

Diet quality was estimated by using up to three unannounced
ASA24 24-h dietary recalls,83 completed during the 10 d prior to
blood collection, to calculate the Healthy Eating Index-2015
(HEI) averaged across all recalls. The HEI is scored on a 0–100
scale, with higher values indicating greater adherence to the
Dietary Guidelines for Americans.84 Some participants were
asked whether they had used herbicides at home or work within
the past 7 d. This question was added to the questionnaire partway
through study recruitment, so data on recent herbicide use is miss-
ing for 37% (n=144) of participants.

Statistical Analyses
Variability and correlation of urinary glyphosate and AMPA lev-
els between and within samples were characterized with the intra-
class correlation (ICC) and Pearson’s correlation, respectively.
The association between all covariates and the natural logarithm
of glyphosate and AMPA concentration (adjusted for urinary cre-
atinine) was assessed using linear regression. In all linear regres-
sion analyses, two-sided p<0:05 were considered statistically
significant. In the DNA methylation analyses, missing data for
covariates (from n=23 individuals) were substituted with the
median (numeric variables) or mode (categorical variables).

DNAMethylation Analysis
We calculated epigenetic age for each sample according to three
epigenetic clocks: Hannum,52 Horvath,53 and Levine,54 and one
epigenetic measure of pace of aging, DunedinPoAm.55 The
Hannum and Horvath clocks are designed to correlate with chro-
nological age, whereas the Levine clock also incorporates

phenotypic measures, including mortality and physical functioning.
DunedinPoAm is intended to capture the current rate of change of
biological age. Epigenetic age was calculated from the model coeffi-
cients provided by each author using normalized methylation beta
values. Values for missing probes (n=9 out of 71 for Hannum,
n=25 out of 353 for Horvath, n=10 out of 513 for Levine,
n=12 out of 46 for DunedinPoAm) were imputed using k-nearest
neighbors imputation. DunedinPoAmwas calculated using code pro-
vided by its developers.55 Epigenetic age acceleration (residuals from
a model regressing chronological age on epigenetic age from each
clock) and epigenetic pace of aging from DunedinPoAm was exam-
ined for association with glyphosate and AMPA, first in univariate
linear regressionmodels adjusted for urinary creatinine concentration
and then adjusted for age, race/ethnicity, BMI, smoking status, alco-
hol consumption, organic eating, and HEI, in addition to batch and
position on chip. A third model also included estimated WBC type
proportions predicted according to Houseman’s method.76 These
covariates were selected based on known relationships with either
DNA methylation, glyphosate/AMPA, or both; creatinine was
included to account for differences in urine concentration.

For probe- and region-specific analyses, the study samples
were divided into training (n=332) and validation (n=60) sets
stratified by glyphosate tertile. Demographic and dietary varia-
bles were compared for the training and validation sets (Table
S3). All variables except smoking were not significantly associ-
ated with the randomly assigned set; there was a larger proportion
of former smokers in the validation set (p=0:03). Because all the
former smokers in the validation set reported cessation >20 y
prior to blood sample collection, we proceeded with the planned
analysis. Using the training set, we identified differentially meth-
ylated probes (DMPs) and differentially methylated regions
(DMRs) according to a resampling-based method.85

We selected a random subsample consisting of 90%of the train-
ing set (n=299). Using this subsample, we identified candidate
DMPs using limma (version 3.44.3),66 to fit linear models and can-
didateDMRs usingDMRcate (version 2.0.7),86 with a kernel band-
width of 1,000 base pairs and scaling factor of 2. Each model was
adjusted for the same variables as in the final epigenetic aging
model. Models without adjustment for dietary variables (organic
eating and HEI) did not show substantially different results
(Pearson’s R>0:99 for test statistics from the two versions of the
model for both analytes), nor did models that used creatinine-
standardized glyphosate and AMPA concentrations instead of
including creatinine as a covariate in the model (Pearson’s
R=0:987 for glyphosate and 0.985 for AMPA). A false discovery
rate (FDR) q-value of <0:1 was considered statistically significant.
This process was repeated in a series of 1,000 subsamples of 90%
of the training set and sampling distributions for all summary sta-
tistics constructed. Probes and regions that were selected as candi-
date DMPs or DMRs in >90% of subsamples were considered
differentially methylated and carried forward for further analysis.
This approach results in a more stable list of DMPs and DMRs,
because DNAmethylation microarray results are known to be sen-
sitive to small differences in the study cohort.87,88,89,90 The median
FDR q-value was used to rank the relative significance of DMPs.
For DMRs, overlapping regions were combined, and then signif-
icance was ranked after combining median q-values for the
probes within the region using Stouffer’s method. A traditional
epigenome-wide association analysis with the entire training
set74 was also done to determine whether findings were robust to
changes in the analysis approach.

DMPs and DMRs were annotated using the Illumina manifest
(version B4) to identify associated genes and genomic context.
Probes were also mapped to ChromHMM data from ENCODE91

to determine predicted chromatin state; data from the GM12878
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lymphoblastic cell line was used because it is the tissue most sim-
ilar to leukocytes. Chromatin states were pooled into six catego-
ries as follows: promoter (active, weak, or poised promoters),
enhancer (strong or weak enhancers), transcribed (transcrip-
tional transition, transcriptional elongation, or weak transcribed),
polycomb-repressed, inactive (heterochromatin and repetitive
regions), and insulators. DMPs were examined for enrichment of
certain locations relative to CpG islands or chromatin states, in
comparison with the background of all probes included on the
array, using Fisher’s exact test. We used the “gometh” function
from the missMethyl package (version 1.16.0)92 to examine
enrichment of Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and gene ontology terms in genes associated

with DMPs and assessed enrichment of pathways using Ingenuity
Pathway Analysis (IPA) software (version 62089861; release
Date: 17 February 2021). Terms or pathways with p<0:01 and at
least three genes associated with DMPs were considered enriched.

We developed methylation indices to predict urinary glypho-
sate and AMPA levels using blood DNA methylation at the
glyphosate- and AMPA-associated DMPs. Methylation (b) val-
ues for each DMP were passed to an elastic net (alpha = 0:5)
regression model with 10-fold cross-validation repeated 100
times to estimate lambda (the penalty coefficient) and regression
coefficients for each site. The final lambda was selected as the
largest lambda within one standard error of the minimum predic-
tion error. This approach was implemented using the glmnet

Table 1.Median urinary glyphosate and AMPA concentrations, averaged for two samples collected between 2017 and 2019 from 392 postmenopausal
California women, stratified by cohort characteristics.

n (%)

Glyphosate AMPA

ng/mL
median (IQR)

lg=g creatinine
median (IQR) p-Value

ng/mL
median (IQR)

lg=g creatinine
median (IQR) p-Value

Overall 392 0.12 (0.06, 0.22) 0.20 (0.11, 0.38) NA 0.06 (0.02, 0.12) 0.10 (0.04, 0.22) NA
Race/ethnicity
Asian 43 (11.1) 0.11 (0.07, 0.23) 0.19 (0.09, 0.34) 0.30 0.08 (0.02, 0.14) 0.13 (0.03, 0.24) 0.50
Hispanic 69 (17.9) 0.12 (0.07, 0.21) 0.20 (0.11, 0.37) 0.90 0.06 (0.02, 0.11) 0.08 (0.04, 0.17) 0.41
Other 20 (5.2) 0.07 (0.04, 0.13) 0.11 (0.06, 0.24) 0.004 0.02 (0.01, 0.05) 0.04 (0.02, 0.07) 0.005
White 254 (65.8) 0.12 (0.06, 0.24) 0.21 (0.12, 0.42) Ref 0.05 (0.02, 0.12) 0.10 (0.04, 0.22) Ref
Missing 6 — — — — — —
Age (y)
45–49 27 (6.9) 0.18 (0.09, 0.24) 0.23 (0.11, 0.33) 0.72 0.11 (0.05, 0.19) 0.12 (0.05, 0.29) 0.12
50–54 85 (21.7) 0.14 (0.06, 0.19) 0.18 (0.12, 0.33) 0.07 (0.02, 0.11) 0.09 (0.04, 0.17)
55–59 155 (39.5) 0.11 (0.06, 0.21) 0.18 (0.10, 0.33) 0.05 (0.02, 0.12) 0.08 (0.03, 0.22)
60–66 125 (31.9) 0.11 (0.06, 0.29) 0.23 (0.11, 0.56) 0.05 (0.01, 0.12) 0.10 (0.04, 0.22)
Missing 0 — — — — — —
BMI (kg=m2)
<25 188 (48.0) 0.12 (0.06, 0.24) 0.21 (0.10, 0.44) 0.78 0.06 (0.02, 0.12) 0.10 (0.04, 0.21) 0.63
25–29.9 116 (29.6) 0.12 (0.06, 0.22) 0.20 (0.12, 0.33) 0.05 (0.02, 0.12) 0.09 (0.04, 0.20)
≥30 88 (22.4) 0.13 (0.07, 0.19) 0.19 (0.12, 0.31) 0.06 (0.01, 0.13) 0.09 (0.04, 0.22)
Missing 0 — — — — — —
Smoking status
Never 285 (72.9) 0.12 (0.06, 0.22) 0.22 (0.11, 0.38) Ref 0.06 (0.02, 0.13) 0.11 (0.04, 0.22) Ref
Former 89 (22.8) 0.10 (0.05, 0.22) 0.17 (0.10, 0.38) 0.52 0.04 (0.01, 0.09) 0.07 (0.03, 0.15) 0.04
Current 17 (4.3) 0.11 (0.05, 0.21) 0.17 (0.09, 0.33) 0.60 0.05 (0.02, 0.14) 0.09 (0.03, 0.26) 0.59
Missing 1 — — — — — —
Alcohol (drinks/wk)
None 107 (27.4) 0.12 (0.06, 0.22) 0.22 (0.11, 0.48) Ref 0.05 (0.02, 0.11) 0.08 (0.04, 0.22) Ref
1 or fewer 161 (41.2) 0.12 (0.05, 0.24) 0.19 (0.09, 0.37) 0.14 0.06 (0.01, 0.12) 0.08 (0.03, 0.18) 0.49
2–6 72 (18.4) 0.14 (0.07, 0.19) 0.23 (0.14, 0.41) 0.92 0.06 (0.03, 0.12) 0.13 (0.04, 0.24) 0.64
7 or more 51 (13.0) 0.10 (0.05, 0.21) 0.16 (0.12, 0.25) 0.17 0.07 (0.03, 0.15) 0.12 (0.06, 0.21) 0.16
Missing 1 — — — — — —
Organic eating
Seldom/Never 124 (31.7) 0.14 (0.07, 0.23) 0.21 (0.13, 0.38) Ref 0.07 (0.03, 0.13) 0.12 (0.05, 0.23) Ref
Sometimes 114 (29.2) 0.12 (0.05, 0.24) 0.19 (0.11, 0.38) 0.47 0.06 (0.02, 0.13) 0.10 (0.04, 0.25) 0.44
Often/Always 153 (39.1) 0.10 (0.06, 0.20) 0.19 (0.09, 0.38) 0.05 0.04 (0.01, 0.11) 0.07 (0.03, 0.18) 0.01
Missing 1 — — — — — —
HEI
Quartile 1 93 (25.1) 0.13 (0.07, 0.22) 0.22 (0.13, 0.37) 0.99 0.07 (0.02, 0.12) 0.12 (0.05, 0.22) 0.03
Quartile 2 93 (25.1) 0.10 (0.05, 0.19) 0.19 (0.09, 0.35) 0.07 (0.02, 0.13) 0.13 (0.04, 0.26)
Quartile 3 92 (24.8) 0.11 (0.06, 0.22) 0.17 (0.10, 0.41) 0.05 (0.02, 0.12) 0.08 (0.04, 0.16)
Quartile 4 93 (25.1) 0.12 (0.06, 0.25) 0.24 (0.11, 0.54) 0.04 (<LOD, 0.12) 0.06 (0.03, 0.21)
Missing 21 — — — — — —
Physical activity
≥150 min/wk 153 (40.7) 0.10 (0.05, 0.24) 0.19 (0.09, 0.38) 0.03 0.05 (0.01, 0.11) 0.08 (0.04, 0.19) 0.08
<150 min/wk 223 (59.3) 0.13 (0.07, 0.22) 0.22 (0.12, 0.41) 0.06 (0.02, 0.13) 0.11 (0.04, 0.23)
Missing 16 — — — — — —
Herbicide use (past week)
Yes 21 (8.5) 0.14 (0.08, 0.20) 0.22 (0.11, 0.44) 0.61 0.04 (<LOD, 0.11) 0.11 (0.04, 0.16) 0.39
No 227 (91.5) 0.12 (0.06, 0.24) 0.21 (0.11, 0.38) 0.06 (0.02, 0.12) 0.10 (0.03, 0.20)
Missing 144 — — — — — —

Note: p-Values are from linear regression with the natural logarithm of glyphosate or AMPA as outcome, adjusted for urinary creatinine. LOD: 0:014 ng=mL for glyphosate and
0:013 ng=mL for AMPA. Values of glyphosate or AMPA <LOD were substituted with LOD=

p
2. Age, BMI, and HEI were evaluated as continuous variables; results were comparable

when evaluated as categorical variables. —, no data; AMPA, aminomethylphosphonic acid; BMI, body mass index; HEI, Healthy Eating Index; LOD, limit of detection; min, minutes;
NA, not applicable; Ref, reference.
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package (version 2.0-18).93 The performance of the methylation
indices were assessed by calculating the Pearson correlation
between predicted and actual glyphosate and AMPA concentra-
tion in the 60 validation samples. The indices’ relationship with
glyphosate and AMPA tertile was also tested using analysis of
variance (ANOVA), and the area under the receiver operating
characteristic curve (AUC) was computed to characterize the dis-
criminatory accuracy for the highest vs. lowest tertile.

Results

Glyphosate and AMPA Concentrations
A total of 96% of study participants had detectable (>LOD)
glyphosate, and 82% had detectable AMPA in at least one urine
sample. Table 1 describes glyphosate and AMPA concentrations
stratified by various demographic, dietary, and lifestyle factors.
The median glyphosate concentration (averaged between two
urine samples for each participant) was 0:12 ng=mL (range
<LOD−1:65 ng=mL), and the median AMPA concentration was
0:06 ng=mL (range <LOD−1:36 ng=mL). Both glyphosate and
AMPA concentrations were strongly right-skewed and thus trans-
formed with the natural logarithm for all further analyses (Figure
S2). Between-sample agreement was moderate for both glypho-
sate (ICC=0:53) and AMPA (ICC=0:34), as was the within-
sample correlation between glyphosate and AMPA measure-
ments (Pearson’s R=0:48, p<0:001) (Figure S3).

Women who reported “often or always” eating organic food
had lower glyphosate [median (interquartile range, IQR) 0.10
(0.06, 0.20) ng/mL compared with 0.14 (0.07, 0.23) ng/mL for
“seldom or never,” p=0:05] and AMPA [median (IQR) 0.04
(0.01, 0.11) ng/mL compared with 0.07 (0.03, 0.13) ng/mL for
“seldom or never,” p=0:01]. Lower diet quality was associated
with elevated AMPA [median (IQR) 0.07 (0.02, 0.12) ng/mL
for highest quartile of diet quality vs. 0.04 (<LOD, 0.12) ng/
mL for lowest quartile, p=0:03], but not glyphosate (p=0:99).
Those who met the Physical Activity Guidelines for Americans
(≥150minutes of moderate-intensity exercise per week) had
lower glyphosate [median (IQR) 0.10 (0.05, 0.24) ng/mL for
those meeting guidelines vs. 0.13 (0.07, 0.22) for those not meet-
ing, p=0:03]. Former smokers had marginally lower AMPA con-
centrations in comparison with never smokers [median (IQR) 0.04

(0.01, 0.09) ng/mL vs. 0.06 (0.02, 0.13) ng/mL, p=0:04]. Women
in the “Other” race/ethnicity category had lower concentrations of
both glyphosate [median (IQR) 0.07 (0.04, 0.13) vs. 0.12 (0.06,
0.24) ng/mL, p=0:004] and AMPA [median (IQR) 0.02 (0.01,
0.05) vs. 0.05 (0.02, 0.12) ng/mL, p=0:005] in comparison with
White women, although there were only 20 women in the “Other”
category. None of the other variables examined (age, BMI, alcohol
consumption, or herbicide use) were associated with urinary
glyphosate or AMPA.

DNAMethylation Analysis
Each of the three epigenetic clocks (Hannum, Horvath, and
Levine) was well-correlated with chronologic age (Pearson’s
r=0:71, 0.64, and 0.54, respectively), although the Hannum and
Levine clocks were poorly calibrated in this sample (Figure S4).
Glyphosatewas not significantly associatedwith differences in epi-
genetic age acceleration according to any of the epigenetic clocks
(Table 2). AMPA was associated with increased epigenetic age
acceleration according to the Hannum clock [adjusted coefficient
0.36 y; 95% confidence interval (CI): 0.03, 0.70, p=0:04]. AMPA
was also associated with increased epigenetic age acceleration
according to the Horvath clock in the adjusted model (adjusted
coefficient 0.41; 95% CI: 0.02, 0.80, p=0:04) but not the univari-
ate model (p=0:24); the opposite was true for the Levine clock
(univariate coefficient 0.61; 95% CI: 0.04, 1.18, p=0:04; adjusted
p=0:32). Epigenetic pace of aging according to DunedinPoAm
was not significantly associatedwith glyphosate or AMPA concen-
tration (Table 2).

Twenty-four probes associated with urinary glyphosate con-
centration and two with urinary AMPA were identified in >90%
of subsamples and considered differentially methylated (Table
3). Seventeen of the 24 probes (71%) were hypomethylated with
higher glyphosate (Figure 1), whereas both AMPA-associated
probes were hypermethylated (Table 3). Glyphosate-associated
probes with the smallest median p-values were located within the
PEX26, SF3B2, and CHMP1A genes. The largest methylation
difference between glyphosate tertiles were observed in probes
within the VMO1, KCP, and QARS1 genes. Our findings were
robust to changes in the analysis approach: All glyphosate-
and AMPA-associated DMPs were statistically significant (FDR
q<0:05) using a traditional epigenome-wide association analysis

Table 2. Association of epigenetic age acceleration from three epigenetic clocks with urinary glyphosate and AMPA concentration in 392 postmenopausal
California women.

Glyphosate AMPA

Coefficient (95% CI) p-Value Adjusted R2 Coefficient (95% CI) p-Value Adjusted R2

Univariate
Hannum 0.08 (−0:27, 0.44) 0.64 0.0058 0.35 (0.03, 0.67) 0.03 0.017
Horvath −0:17 (−0:55 , 0.21) 0.39 −0:0025 0.21 (−0:14 , 0.56) 0.24 −0:00076
Levine 0.34 (−0:30, 0.97) 0.30 −0:0023 0.61 (0.04, 1.18) 0.04 0.0061
DunedinPoAm 0.08 (−0:02, 0.17) 0.11 0.016 0.04 (−0:05, 0.13) 0.36 0.011
Adjusted, no WBC types
Hannum −0:24 (−0:64, 0.16) 0.24 0.056 0.43 (0.07, 0.80) 0.02 0.056
Horvath −0:36 (−0:79, 0.07) 0.10 0.037 0.40 (0.001, 0.79) 0.0499 0.037
Levine 0.02 (−0:69, 0.72) 0.97 0.047 0.49 (−0:17, 1.14) 0.14 0.047
DunedinPoAm 0.08 (−0:01, 0.18) 0.09 0.25 0.02 (−0:07, 0.11) 0.64 0.25
Adjusted, with WBC types
Hannum −0:22 (−0:58, 0.15) 0.24 0.22 0.36 (0.03, 0.70) 0.04 0.22
Horvath −0:33 (−0:75, 0.10) 0.13 0.075 0.41 (0.02, 0.80) 0.04 0.075
Levine 0.03 (−0:60, 0.66) 0.93 0.26 0.30 (−0:29, 0.88) 0.32 0.26
DunedinPoAm 0.07 (−0:02, 0.16) 0.11 0.39 0.01 (−0:07, 0.09) 0.85 0.39

Note: Coefficients are from linear regression with epigenetic age acceleration (years) from the Hannum, Horvath, and Levine epigenetic clocks or DunedinPoAm (z-score) as the de-
pendent variable and the natural logarithm of glyphosate or AMPA concentration as the independent variable, adjusted for urinary creatinine. The adjusted model is additionally
adjusted for age, race/ethnicity, body mass index, smoking status, alcohol consumption, self-reported organic eating habits, diet quality (Healthy Eating Index), batch, and position on
chip. The adjusted model with WBC types is additionally adjusted for WBC type proportions estimated via Houseman’s method. Glyphosate and AMPA concentrations are averaged
for two urine samples collected within approximately 10 d of each other. Missing data for covariates (from n=23 individuals) were substituted with the median (numeric variables) or
mode (categorical variables). AMPA, aminomethylphosphonic acid; CI, confidence interval; WBC, white blood cell.
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with the entire training set, except for one AMPA-associated DMP
(cg23261070, q=0:06).

Biological and functional analyses were performed on only
glyphosate-associated probes because there were only two
AMPA-associated probes (Figure 2). In comparison with all
other probes on the array, a greater proportion of glyphosate-
associated DMPs were located within CpG islands (33.3% vs.
19.2%), although this difference was not statistically significant
(Fisher p=0:21). Glyphosate-associated DMPs were signifi-
cantly enriched for enhancer regions (29.2% vs. 12.6%, Fisher
p=0:02) and depleted for inactive/heterochromatin regions
(4.2% vs. 36.8%, Fisher p=0:0004). Three gene ontology terms
were enriched in the 20 annotated genes containing glyphosate-
associated probes: DNA metabolic process (biological process),
intracellular organelle part (cellular component), and organelle
part (cellular component), all with p<0:01. No KEGG or IPA
pathways were enriched in glyphosate-associated genes.

Four regions for glyphosate and none for AMPA were signifi-
cant in >90% of subsamples and considered differentially methyl-
ated (Table 4). Three regions were significantly associated with
AMPA at a relaxed threshold of >60% of subsamples and are also
included in Table 4. The glyphosate-associated regions were all
located within gene promoters. Three were hypomethylated with
greater glyphosate (MSH4, KCNA6, and ABAT), and the other was
hypermethylated (NDUFAF2/ERCC8). The top AMPA-associated
regions were all hypomethylated. Two were located within gene
bodies (RNF39, TRIM31) and one within a gene promoter (ESR1).

Methylation Index
All 24 DMPs were selected by the elastic net for inclusion in the
final glyphosate methylation index (Table S4). The index was
significantly correlated with urinary glyphosate in the training
(Pearson’s R=0:62; 95% CI: 0.55, 0.68, p<0:0001; Figure 3A)
and validation (R=0:35; 95% CI: 0.10, 0.55, p=0:006; Figure
3B) sets. In the validation set, the methylation index was signifi-
cantly associated with glyphosate tertile [median (IQR) −2:4
(−2:7 to −2:2) for lowest tertile vs. −2:0 (−2:3 to −1:6) for
highest tertile, ANOVA p=0:009; Figure 3C] and showed excel-
lent discrimination between the top and bottom tertiles of urinary
glyphosate (AUC=0:74, 95% CI: 0.57, 0.90; Figure 3D). A
modified index trained using only probes included on the
HumanMethylation450 BeadChip (the previous version of the
Illumina methylation array), which selected 14 probes in the final
model, achieved similar performance (Figure S5). The AMPA
index was not significantly correlated with urinary AMPA in ei-
ther the training or validation set (Figure S6).

Discussion
To our knowledge, this is the first study examining associations
between urinary glyphosate and AMPA levels and DNA methyla-
tion. Higher AMPA, but not glyphosate, was associated with
greater epigenetic age acceleration, a phenomenon which has pre-
viously been linked to the risk of all-cause mortality56,57,58 and
cancer.59,60,94 We identified 24 CpG sites whose methylation was
associated with glyphosate and two associated with AMPA. Four
regions were associated with glyphosate, within the promoters of
MSH4, KCNA6, ABAT, and NDUFAF2/ERCC8, and we found an
association between ESR1 promoter hypomethylation and elevated
AMPA. Finally, using 24 CpG sites, we developed a methylation
index that was significantly associated with glyphosate concentra-
tion in an internal validation set. The AMPA index was not signifi-
cantly associated with urinary AMPA in either set, likely due to the
use of only twoDMPs for prediction.

The significant and replicable differential DNA methylation
associated with urinary glyphosate andAMPA informs the hypoth-
esis that these compounds may have biological effects in humans,
but the mechanisms by which glyphosate and AMPA could impact
human health remain unclear. Although humans and other animals
do not possess the shikimate pathway inhibited by glypho-
sate,95,96,97 conversion of glyphosate to AMPA has been observed
in multiple types of bacteria.98 Previous studies have shown
glyphosate-induced microbiome changes in honeybees,99,100

birds,101 and rats.24,25,26,27 Because the microbiome can have
significant and wide-ranging impacts on human health,102 it is
possible that glyphosate and/or AMPA could influence various
aspects of human health via perturbations of the microbiome,
changes that could be reflected in differential peripheral blood
DNAmethylation.103,104

In our study, AMPA was associated with epigenetic age accel-
eration, which has been previously associated with other environ-
mental exposures61,62,63,64 and risk of many diseases, including
breast cancer,59 B-cell lymphoma,60 lung cancer,96 obesity and
metabolic syndrome,105,106,107 and all-cause mortality.56,57,58

The fact that this relationship was present only for AMPA supports
the hypothesis that glyphosate and AMPA have distinct effects on
the human body. This association was present for all epigenetic
clocks considered (Hannum, Horvath, and Levine), although adjust-
ment for age, race/ethnicity, BMI, smoking status, alcohol con-
sumption, self-reported organic eating habits, and diet quality
attenuated the relationship for the Levine clock, which incorporates
phenotypic information and thus may be more influenced by these
covariates. However, we observed no statistically significant

Figure 1. Results from probe-level differential methylation analysis for uri-
nary glyphosate in 332 postmenopausal California women. The volcano plot
shows delta-M (difference in methylation M value for a 1-unit increase in
the natural log of glyphosate) on the horizontal axis and −log10ðpÞ on the
vertical axis. Linear models adjusted for urinary creatinine, age, race/ethnic-
ity, BMI, smoking status, alcohol consumption, self-reported organic eating
habits, diet quality (Healthy Eating Index), estimated WBC type proportions,
batch, and position on chip, were fitted for all probes on the Illumina
HumanMethylationEPIC array, which remained after quality filtering.
Results were pooled from 1,000 random subsamples of the training set
(n=299 individuals per subsample). Probes that were statistically significant
with FDR q<0:1 in 90% or more subsamples are marked as hypermethy-
lated or hypomethylated. Note: BMI, body mass index; FDR, false discovery
rate; WBC, white blood cell.
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relationship between epigenetic pace of aging and glyphosate or
AMPAconcentrations. Pace of aging aims tomeasure a distinct bio-
logical phenomenon in comparisonwith epigenetic age acceleration
(rate of change of biological age vs. differences between chronologi-
cal and biological age).

Furthermore, the genes whose methylation was associated
with glyphosate and AMPA included those involved in various
biological pathways related to cancer. SF3B2 is involved in
RNA splicing and DNA repair108 and associated with various
types of cancer.109,110,111 A germline mutation in the mismatch
repair gene MSH4112 was described in a family with a high inci-
dence of nervous system tumors.113 ERCC8 is also involved in
DNA repair via transcription-coupled nucleotide excision repair
and double-strand break repair.114,115,116 Hypomethylation at
TRIM31, which has been shown to promote progression in a va-
riety of tumor types,117,118,119 was associated with AMPA. The
AMPA-associated hypomethylation at the ESR1 promoter is
fascinating, given the potential link between AMPA and breast
cancer risk23,32 and the potential for glyphosate-induced endo-
crine disruption.20 Perturbed expression of the ESR1 product
ERa in response to glyphosate exposure has been observed in in
vitro studies of breast cancer cells.23 Rat studies have also dem-
onstrated altered ERa expression accompanying changes in
ERa promoter methylation.48,120 However, it should be noted
that the relationship between AMPA and ESR1 promoter hypo-
methylation was only present after relaxing the original thresh-
old for significance.

To our knowledge, this is also the largest report of urinary
glyphosate and AMPA levels in the nonagricultural setting in the
United States, complementing previous studies in the general pop-
ulation in other countries121,122,123 and in limited settings in the

United States.11,12,124,125 The majority of women (>80%) had de-
tectable glyphosate and AMPA in at least one urine sample, high-
lighting the near-ubiquitous exposure to these compounds,
although the small convenience sample may not be representative
of the general population. The levels observed among partici-
pants in our study (median of 0:12 ng=mL for glyphosate and
0:06 ng=mL for AMPA) were slightly lower than those previ-
ously reported, likely due to differences in the study population
and detection assays. Our LC-MS/MS assay had a considerably
higher analytic sensitivity (LOD/LOQ 0:014=0:041 ng=mL for
glyphosate and 0:013=0:040 ng=mL for AMPA) than most assays
previously described.126,127

This study used the most recent methylation array chip and
best practices for methylation array data filtering, normalization,
and analysis alongside a resampling-based approach intended to
improve the stability and reproducibility of the results.88,89,90,91

We previously demonstrated that this method is capable of identi-
fying differentially methylated sites associated with smoking
with a minimal number of false positives in comparison with a
traditional epigenome-wide association approach.86

However, the lack of an external validation cohort is a limita-
tion of the study. To our knowledge, no other studies have meas-
ured both urinary glyphosate and AMPA andDNAmethylation, so
an external data set is not currently available. The successful per-
formance of the methylation index for glyphosate concentration in
the internal validation set suggests that the glyphosate-associated
differential methylation may be replicated in other cohorts with a
similar participant profile. Our study cohort consisted of post-
menopausal women age 45–66 y, so results may not be generaliz-
able to other populations or those residing outside California. The
power of these analyses may be limited by the relatively low
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Figure 2. Enrichment analysis for genomic context of glyphosate-associated differentially methylated probes (DMPs) identified in 332 postmenopausal
California women. The proportions of glyphosate-associated DMPs compared to other probes on the array in each genomic context were compared with
Fisher’s exact test; significant (<0:05) p-values are labeled.
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exposure levels in this population. A further limitation of our study
is the lack of gene expression data. Without this, we cannot state
whether the differential DNA methylation identified in our study
translates to differences in gene expression that could confer func-
tional impacts in the body, nor can we infer the temporal relation-
ship between DNA methylation differences and glyphosate
exposure, given the cross-sectional nature of the study. Finally,
although we did not observe a relationship between recent herbi-
cide use and glyphosate and AMPA concentrations, those data
were missing for 37% of participants, which should be considered
another limitation of the study.

DNA methylation is highly dependent on tissue type.128

Given the ambiguity of glyphosate’s impact on health and the
systemic nature of exposure, blood likely represents the best
available tissue at this time, especially considering its availability
for epidemiological study. A major concern regarding the use of
blood in epigenome-wide association studies is its heterogeneous
cell composition, which may be impacted by disease states or ex-
posure to pro-inflammatory compounds.129 However, we saw no
evidence of differences in WBC composition by glyphosate or
AMPA levels (Table S2), and all analyses were adjusted for these
proportions.
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Figure 3. Performance of methylation index using 24 CpG sites to predict the natural logarithm of urinary glyphosate concentration in the training set (A) and
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Note: ANOVA, analysis of variance; IQR, interquartile range.
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In humans, glyphosate and AMPA have short half-lives of
approximately 5–10 h,130,131 which makes accurate assessment of
long-term exposure challenging. Our choice to use two spot urine
samples from a 10-d period was intended to balance the need for a
more complete picture of typical exposure with feasibility. The
moderate between-sample ICCs of 0.53 for glyphosate and 0.34
for AMPA in our study participants highlight the pitfalls of relying
on a single urine sample and suggest that more samples per indi-
vidual may be needed to provide a better estimate of long-term ex-
posure. However, because the dates of spot urine samples were
not known in advance to the study participants, the glyphosate and
AMPA measurements should reflect their usual habits.

This study identified differential DNA methylation associated
with the herbicide glyphosate and its metabolite AMPA and
developed a methylation index that accurately predicted urinary
glyphosate concentration and tertile in an internal validation sam-
ple. Glyphosate- and AMPA-associated methylation occurred
near genes associated with cancer (SF3B2,109,110,111 MSH4,113

and TRIM31117,118,119) and endocrine disruption (ESR1132), and
AMPA was associated with greater epigenetic age acceleration.
These results suggest that exposure to these common chemicals
affects the epigenome, informing the hypothesis that glyphosate
and/or AMPA exposure might elevate the risk for disease, includ-
ing cancer. Further studies are warranted to replicate our results,
determine the functional impact of glyphosate- and AMPA-
associated differential DNA methylation, and explore whether
DNA methylation could serve as a biomarker of long-term glyph-
osate exposure.

Acknowledgments
The authors would like to thank our patient advocates (V. Lee,

D. Heditsian, and S. Brain) as well as our undergraduate students
(K. Yang, D. Thampy, A., D. Forman, M. Elyasian, and A. Kim)
for supporting this study. We also thank our study participants and
the Athena Breast Health Network for support of this study.

This work was supported by funds from the California Breast
Cancer Research Grants Program Office of the University of
California, Grant Number 22UB-2311. Support of the Athena
Breast Health Network was provided by the Safeway Foundation,
University of California Office of the President (UCOP), and
Salesforce. This reported research includes work performed in
the mass spectrometry core supported by the National Cancer
Institute of the National Institutes of Health (NIH) under grant
number P30CA033572. The content is solely the responsibility of
the authors and does not necessarily represent the official views
of the NIH.

Author contributions: Conceptualization: R.M.L., D.G., A.O.O.,
A.Z., T.M.N.K., H.L.P.; Data curation: R.M.L., W.H., H.L.P.;
Formal analysis: R.M.L., W.H., K.V.P., M.M., V.D.D., A.Z., P.P.,
T.M.N.K.; Funding acquisition: D.G., A.O.O., A.Z., P.P., T.M.N.K.,
H.L.P.; Investigation: R.M.L., W.H., K.V.P., M.M., V.D.D., A.A.,
I.M., P.P., T.M.N.K., H.L.P.; Methodology: R.M.L., W.H., K.V.P.,
M.M., V.D.D., D.G., I.M., A.O.O., A.Z., P.P., T.M.N.K., H.L.P.;
Project administration: R.M.L., A.A., I.M., P.P., H.L.P.; Resources:
P.P., H.L.P.; Software: R.M.L., W.H., T.M.N.K.; Supervision: P.P.,
H.L.P.; Visualization: R.M.L.; Writing, original draft: R.M.L.,
H.L.P.; Writing, review and editing: all authors.

Data availability: All laboratory and clinical data used in this
study are available from the authors on reasonable request. Data
are not publicly available to protect participant privacy.

References
1. Benbrook CM. 2016. Trends in glyphosate herbicide use in the United States

and globally. Environ Sci Eur 28(1):3, PMID: 27752438, https://doi.org/10.1186/
s12302-016-0070-0.

2. Duke SO. 2020. Glyphosate: uses other than in glyphosate-resistant crops,
mode of action, degradation in plants, and effects on non-target plants and
agricultural microbes. Rev Environ Contam Toxicol 255:1–65. PMID: 33895876,
https://doi.org/10.1007/398_2020_53.

3. Duke SO. 2018. The history and current status of glyphosate. Pest Manag Sci
74(5):1027–1034, PMID: 28643882, https://doi.org/10.1002/ps.4652.

4. Myers JP, Antoniou MN, Blumberg B, et al. 2016. Concerns over use of
glyphosate-based herbicides and risks associated with exposures: a consen-
sus statement. Environ Health 15:19, PMID: 26883814, https://doi.org/10.1186/
s12940-016-0117-0.

5. Duke SO, Scheffler BE, Dayan FE, Dyer WE. 2002. Genetic engineering crops
for improved weed management traits. ACS Symp Ser 829:52–66.
https://doi.org/10.1021/bk-2002-0829.ch006.

6. Kolakowski B, Miller L, Murray A, Leclair A, Bietlot H, van de Riet J. 2020.
Analysis of glyphosate residues in foods from Canadian retail markets
between 2015 and 2017. J Agric Food Chem 68(18):5201–5211, PMID: 32267686,
https://doi.org/10.1021/acs.jafc.9b07819.

7. United States Department of Agriculture. 2013. Pesticide Data Program Annual
Summary Reports, 2011 Summary. https://www.ams.usda.gov/sites/default/files/
media/2011 PDP Annual Summary.pdf [accessed 10 August 2021].

8. Zoller O, Rhyn P, Rupp H, Zarn JA, Geiser C. 2018. Glyphosate residues in
Swiss market foods: monitoring and risk evaluation. Food Addit Contam Part
B Surveill 11(2):83–91, PMID: 29284371, https://doi.org/10.1080/19393210.2017.
1419509.

9. Medina-Pastor P, Triacchini G. 2020. The 2018 European union report on pesti-
cide residues in food. EFSA J 18(4):1–103, PMID: 32874271, https://doi.org/10.
2903/J.EFSA.2020.6057.

10. U.S. Food and Drug Administration. 2017. Pesticide Residue Monitoring 2017
Report and Data. https://www.fda.gov/food/pesticides/pesticide-residue-
monitoring-2017-report-and-data [accessed 10 August 2021].

11. Mills PJ, Kania-Korwel I, Fagan J, McEvoy LK, Laughlin GA, Barrett-Connor E.
2017. Excretion of the herbicide glyphosate in older adults between 1993 and
2016. J Am Med Assoc 318(16):1610–1611, PMID: 29067413, https://doi.org/10.
1001/jama.2017.11726.

12. Lesseur C, Pirrotte P, Pathak KV, Manservisi F, Mandrioli D, Belpoggi F, et al.
2021. Maternal urinary levels of glyphosate during pregnancy and anogenital
distance in newborns in a US multicenter pregnancy cohort. Environ Pollut
280:117002, PMID: 33812205, https://doi.org/10.1016/j.envpol.2021.117002.

13. Schütze A, Morales-Agudelo P, Vidal M, Calafat AM, Ospina M. 2021.
Quantification of glyphosate and other organophosphorus compounds in
human urine via ion chromatography isotope dilution tandem mass spectrom-
etry. Chemosphere 274:129427, PMID: 33529959, https://doi.org/10.1016/j.
chemosphere.2020.129427.

14. Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, et al. 2018.
Glyphosate exposure in pregnancy and shortened gestational length: a pro-
spective Indiana birth cohort study. Environ Health 17(1):23, PMID: 29519238,
https://doi.org/10.1186/s12940-018-0367-0.

15. Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, Guha N,
et al. 2015. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon,
and glyphosate. Lancet Oncol 16(5):490–491, PMID: 25801782, https://doi.org/10.
1016/S1470-2045(15)70134-8.

16. Zhang L, Rana I, Shaffer RM, Taioli E, Sheppard L. 2019. Exposure to
glyphosate-based herbicides and risk for non-Hodgkin lymphoma: a meta-
analysis and supporting evidence. Mutat Res Rev Mutat Res 781:186–206,
PMID: 31342895, https://doi.org/10.1016/j.mrrev.2019.02.001.

17. Andreotti G, Koutros S, Hofmann JN, Sandler DP, Lubin JH, Lynch CF, et al.
2018. Glyphosate use and cancer incidence in the Agricultural Health Study. J
Natl Cancer Inst 110(5):509–516, PMID: 29136183, https://doi.org/10.1093/jnci/
djx233.

18. Rappazzo KM, Warren JL, Davalos AD, Meyer RE, Sanders AP, Brownstein
NC, et al. 2019. Maternal residential exposure to specific agricultural pesti-
cide active ingredients and birth defects in a 2003–2005 North Carolina birth
cohort. Birth Defects Res 111(6):312–323, PMID: 30592382, https://doi.org/10.
1002/bdr2.1448.

19. Piccoli C, Cremonese C, Koifman RJ, Koifman S, Freire C. 2016. Pesticide ex-
posure and thyroid function in an agricultural population in Brazil. Environ
Res 151:389–398, PMID: 27540871, https://doi.org/10.1016/j.envres.2016.08.011.

20. Muñoz JP, Bleak TC, Calaf GM. 2021. Glyphosate and the key characteristics of
an endocrine disruptor: a review. Chemosphere 270:128619, PMID: 33131751,
https://doi.org/10.1016/j.chemosphere.2020.128619.

21. Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH. 2020. Are glyphosate
and glyphosate-based herbicides endocrine disruptors that alter female fertil-
ity? Mol Cell Endocrinol 518:110934, PMID: 32659439, https://doi.org/10.1016/j.
mce.2020.110934.

22. Mesnage R, Renney G, Séralini GE, Ward M, Antoniou MN. 2017. Multiomics
reveal non-alcoholic fatty liver disease in rats following chronic exposure to

Environmental Health Perspectives 047001-12 130(4) April 2022

https://www.ncbi.nlm.nih.gov/pubmed/27752438
https://doi.org/10.1186/s12302-016-0070-0
https://doi.org/10.1186/s12302-016-0070-0
https://www.ncbi.nlm.nih.gov/pubmed/33895876
https://doi.org/10.1007/398_2020_53
https://www.ncbi.nlm.nih.gov/pubmed/28643882
https://doi.org/10.1002/ps.4652
https://www.ncbi.nlm.nih.gov/pubmed/26883814
https://doi.org/10.1186/s12940-016-0117-0
https://doi.org/10.1186/s12940-016-0117-0
https://doi.org/10.1021/bk-2002-0829.ch006
https://www.ncbi.nlm.nih.gov/pubmed/32267686
https://doi.org/10.1021/acs.jafc.9b07819
https://www
http://.ams.usda.gov/sites/default/files/media/2011 PDP Annual Summary.pdf
http://.ams.usda.gov/sites/default/files/media/2011 PDP Annual Summary.pdf
https://www.ncbi.nlm.nih.gov/pubmed/29284371
https://doi.org/10.1080/19393210.2017.1419509
https://doi.org/10.1080/19393210.2017.1419509
https://www.ncbi.nlm.nih.gov/pubmed/32874271
https://doi.org/10.2903/J.EFSA.2020.6057
https://doi.org/10.2903/J.EFSA.2020.6057
https://www.fda.gov/food/pesticides/pesticide-residue-monitoring-2017-report-and-data
https://www.fda.gov/food/pesticides/pesticide-residue-monitoring-2017-report-and-data
https://www.ncbi.nlm.nih.gov/pubmed/29067413
https://doi.org/10.1001/jama.2017.11726
https://doi.org/10.1001/jama.2017.11726
https://www.ncbi.nlm.nih.gov/pubmed/33812205
https://doi.org/10.1016/j.envpol.2021.117002
https://www.ncbi.nlm.nih.gov/pubmed/33529959
https://doi.org/10.1016/j.chemosphere.2020.129427
https://doi.org/10.1016/j.chemosphere.2020.129427
https://www.ncbi.nlm.nih.gov/pubmed/29519238
https://doi.org/10.1186/s12940-018-0367-0
https://www.ncbi.nlm.nih.gov/pubmed/25801782
https://doi.org/10.1016/S1470-2045(15)70134-8
https://doi.org/10.1016/S1470-2045(15)70134-8
https://www.ncbi.nlm.nih.gov/pubmed/31342895
https://doi.org/10.1016/j.mrrev.2019.02.001
https://www.ncbi.nlm.nih.gov/pubmed/29136183
https://doi.org/10.1093/jnci/djx233
https://doi.org/10.1093/jnci/djx233
https://www.ncbi.nlm.nih.gov/pubmed/30592382
https://doi.org/10.1002/bdr2.1448
https://doi.org/10.1002/bdr2.1448
https://www.ncbi.nlm.nih.gov/pubmed/27540871
https://doi.org/10.1016/j.envres.2016.08.011
https://www.ncbi.nlm.nih.gov/pubmed/33131751
https://doi.org/10.1016/j.chemosphere.2020.128619
https://www.ncbi.nlm.nih.gov/pubmed/32659439
https://doi.org/10.1016/j.mce.2020.110934
https://doi.org/10.1016/j.mce.2020.110934


an ultra-low dose of Roundup herbicide. Sci Rep 7(1):, PMID: 28067231,
https://doi.org/10.1038/srep39328.

23. Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J.
2013. Glyphosate induces human breast cancer cells growth via estrogen
receptors. Food Chem Toxicol 59:129–136, PMID: 23756170, https://doi.org/10.
1016/j.fct.2013.05.057.

24. Mao Q, Manservisi F, Panzacchi S, et al. 2018. The Ramazzini Institute 13-
week pilot study on glyphosate and Roundup administered at human-
equivalent dose to Sprague Dawley rats: effects on the microbiome. Environ
Heal 17(1):50, PMID: 29843725, https://doi.org/10.1186/s12940-018-0394-x.

25. Dechartres J, Pawluski JL, Gueguen M-M, Jablaoui A, Maguin E, Rhimi M,
et al. 2019. Glyphosate and glyphosate-based herbicide exposure during the
peripartum period affects maternal brain plasticity, maternal behaviour and
microbiome. J Neuroendocrinol 31(9):e12731, PMID: 31066122, https://doi.org/
10.1111/jne.12731.

26. Tang Q, Tang J, Ren X, Li C. 2020. Glyphosate exposure induces inflammatory
responses in the small intestine and alters gut microbial composition in rats.
Environ Pollut 261:114129, PMID: 32045792, https://doi.org/10.1016/j.envpol.
2020.114129.

27. Mesnage R, Teixeira M, Mandrioli D, Falcioni L, Ducarmon QR, Zwittink RD,
et al. 2021. Use of shotgun metagenomics and metabolomics to evaluate the
impact of glyphosate or Roundup MON 52276 on the gut microbiota and serum
metabolome of Sprague-Dawley rats. Environ Health Perspect 129(1):017005–
017015, PMID: 33502259, https://doi.org/10.1289/EHP6990.

28. Kurenbach B, Marjoshi D, Amábile-Cuevas CF, Ferguson GC, Godsoe W,
Gibson P, et al. 2015. Sublethal exposure to commercial formulations of the
herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause
changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica
serovar typhimurium. mBio 6(2):e00009–e00015, PMID: 25805724, https://doi.org/
10.1128/mBio.00009-15.

29. Wo�zniak E, Reszka E, Jabło�nska E, Michałowicz J, Huras B, Bukowska B.
2021. Glyphosate and AMPA induce alterations in expression of genes
involved in chromatin architecture in human peripheral blood mononuclear
cells (in vitro). Int J Mol Sci 22(6):2966, PMID: 33803994, https://doi.org/10.
3390/ijms22062966.

30. Martinez A, Al-Ahmad AJ. 2019. Effects of glyphosate and aminomethylphos-
phonic acid on an isogeneic model of the human blood-brain barrier. Toxicol
Lett 304:39–49, PMID: 30605748, https://doi.org/10.1016/j.toxlet.2018.12.013.

31. Cheron M, Brischoux F. 2020. Aminomethylphosphonic acid alters amphibian
embryonic development at environmental concentrations. Environ Res
190:109944, PMID: 32771800, https://doi.org/10.1016/j.envres.2020.109944.

32. Franke AA, Li X, Shvetsov YB, Lai JF. 2021. Pilot study on the urinary excretion
of the glyphosate metabolite aminomethylphosphonic acid and breast cancer
risk: the Multiethnic Cohort study. Environ Pollut 277:116848, PMID: 33714786,
https://doi.org/10.1016/j.envpol.2021.116848.

33. Martin EM, Fry RC. 2018. Environmental influences on the epigenome: exposure-
associated DNA methylation in human populations. Annu Rev Public Health
39(1):309–333, PMID: 29328878, https://doi.org/10.1146/annurev-publhealth-0406
17-014629.

34. Park HL. 2020. Epigenetic biomarkers for environmental exposures and per-
sonalized breast cancer prevention. Int J Environ Res Public Health
17(4):1181, PMID: 32069786, https://doi.org/10.3390/ijerph17041181.

35. Lu X, Fraszczyk E, van der Meer TP, van Faassen M, Bloks VW, Kema IP, et al.
2020. An epigenome-wide association study identifies multiple DNA methyla-
tion markers of exposure to endocrine disruptors. Environ Int 144:106016,
PMID: 32916427, https://doi.org/10.1016/j.envint.2020.106016.

36. Curtis SW, Cobb DO, Kilaru V, Terrell ML, Kennedy EM, Marder ME, et al.
2019. Exposure to polybrominated biphenyl (PBB) associates with genome-
wide DNA methylation differences in peripheral blood. Epigenetics 14(1):52–
66, PMID: 30676242, https://doi.org/10.1080/15592294.2019.1565590.

37. Furlong MA, Paul KC, Yan Q, Chuang Y-H, Cockburn MG, Bronstein JM, et al.
2020. An epigenome-wide association study of ambient pyrethroid pesticide
exposures in California’s Central Valley. Int J Hyg Environ Health 229:113569,
PMID: 32679516, https://doi.org/10.1016/j.ijheh.2020.113569.

38. Lee MK, Xu C-J, Carnes MU, Nichols CE, Ward JM, Kwon SO, et al. 2019.
Genome-wide DNA methylation and long-term ambient air pollution exposure
in Korean adults. Clin Epigenet 11(1):37, PMID: 30819252, https://doi.org/10.
1186/s13148-019-0635-z.

39. Gondalia R, Baldassari A, Holliday KM, Justice AE, Méndez-Giráldez R,
Stewart JD, et al. 2019. Methylome-wide association study provides evidence
of particulate matter air pollution-associated DNA methylation. Environ Int
132:104723, PMID: 31208937, https://doi.org/10.1016/j.envint.2019.03.071.

40. Sayols-Baixeras S, Fernández-Sanlés A, Prats-Uribe A, Subirana I, Plusquin
M, Künzli N, Marrugat J, et al. 2019. Association between long-term air pollu-
tion exposure and DNA methylation: the REGICOR study. Environ Res
176:108550, PMID: 31260916, https://doi.org/10.1016/j.envres.2019.108550.

41. Shenker NS, Ueland PM, Polidoro S, van Veldhoven K, Ricceri F, Brown R,
et al. 2013. DNA methylation as a long-term biomarker of exposure to tobacco
smoke. Epidemiology 24(5):712–716, PMID: 23867811, https://doi.org/10.1097/
EDE.0b013e31829d5cb3.

42. Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, et al. 2015.
Correlation of smoking-associated DNA methylation changes in buccal cells
with DNA methylation changes in epithelial cancer. JAMA Oncol 1(4):476–
485, PMID: 26181258, https://doi.org/10.1001/jamaoncol.2015.1053.

43. Liu C, Marioni RE, Hedman ÅK, Pfeiffer L, Tsai P-C, Reynolds LM, et al. 2018. A
DNA methylation biomarker of alcohol consumption. Mol Psychiatry 23(2):422–
433, PMID: 27843151, https://doi.org/10.1038/mp.2016.192.

44. Zhang Y, Elgizouli M, Schöttker B, Holleczek B, Nieters A, Brenner H. 2016.
Smoking-associated DNA methylation markers predict lung cancer incidence.
Clin Epigenetics 8(1):127, PMID: 27924164, https://doi.org/10.1186/s13148-016-
0292-4.

45. Jordahl KM, Phipps AI, Randolph TW, Tindle HA, Liu S, Tinker LF, et al. 2019.
Differential DNA methylation in blood as a mediator of the association
between cigarette smoking and bladder cancer risk among postmenopausal
women. Epigenetics 14(11):1065–1073, PMID: 31232174, https://doi.org/10.1080/
15592294.2019.1631112.

46. Wo�zniak E, Reszka E, Jabło�nska E, Balcerczyk A, Broncel M, Bukowska B.
2020. Glyphosate affects methylation in the promoter regions of selected tu-
mor suppressors as well as expression of major cell cycle and apoptosis driv-
ers in PBMCs (in vitro study). Toxicol In Vitro 63:104736, PMID: 31751608,
https://doi.org/10.1016/j.tiv.2019.104736.

47. Ben Maamar M, Beck D, Nilsson EE, Kubsad D, Skinner MK. 2021.
Epigenome-wide association study for glyphosate induced transgenerational
sperm DNA methylation and histone retention epigenetic biomarkers for dis-
ease. Epigenetics 16(10):1150–1167, PMID: 33296237, https://doi.org/10.1080/
15592294.2020.1853319.

48. Gomez AL, Altamirano GA, Leturia J, Bosquiazzo VL, Muñoz-de-Toro M, Kass
L. 2019. Male mammary gland development and methylation status of estro-
gen receptor alpha in Wistar rats are modified by the developmental expo-
sure to a glyphosate-based herbicide. Mol Cell Endocrinol 481:14–25, PMID:
30447247, https://doi.org/10.1016/j.mce.2018.11.005.

49. Rossetti MF, Canesini G, Lorenz V, Milesi MM, Varayoud J, Ramos JG. 2021.
Epigenetic changes associated with exposure to glyphosate-based herbi-
cides in mammals. Front Endocrinol (Lausanne) 12:671991, PMID: 34093442,
https://doi.org/10.3389/FENDO.2021.671991.

50. Duforestel M, Nadaradjane A, Bougras-Cartron G, Briand J, Olivier C, Frenel
J-S, et al. 2019. Glyphosate primes mammary cells for tumorigenesis by
reprogramming the epigenome in a TET3-dependent manner. Front Genet
10:885, PMID: 31611907, https://doi.org/10.3389/fgene.2019.00885.

51. Hoang TT, Qi C, Paul KC, Lee M, White JD, Richards M, et al. 2021.
Epigenome-wide DNA methylation and pesticide use in the Agricultural Lung
Health Study. Environ Health Perspect 129(9):097008, PMID: 34516295,
https://doi.org/10.1289/EHP8928.

52. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. 2013.
Genome-wide methylation profiles reveal quantitative views of human aging
rates. Mol Cell 49(2):359–367, PMID: 23177740, https://doi.org/10.1016/j.molcel.
2012.10.016.

53. Horvath S. 2013. DNA methylation age of human tissues and cell types.
Genome Biol 14(10):R115, PMID: 24138928, https://doi.org/10.1186/gb-2013-14-
10-r115.

54. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. 2018. An
epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY)
10(4):573–591, PMID: 29676998, https://doi.org/10.18632/aging.101414.

55. Belsky DW, Caspi A, Arseneault L, Baccarelli A, Corcoran DL, Gao X, et al.
2020. Quantification of the pace of biological aging in humans through a blood
test, the DunedinPoAm DNA methylation algorithm. Elife 9:e54870, PMID:
32367804, https://doi.org/10.7554/eLife.54870.

56. Perna L, Zhang Y, Mons U, Holleczek B, Saum KU, Brenner H. 2016.
Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause
mortality in a German case cohort. Clin Epigenet 8(1):1–7, PMID: 27274774,
https://doi.org/10.1186/s13148-016-0228-z.

57. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. 2015.
DNA methylation age of blood predicts all-cause mortality in later life.
Genome Biol 16(1):1–12, PMID: 25633388, https://doi.org/10.1186/s13059-015-
0584-6.

58. Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai P-C,
et al. 2016. DNA methylation-based measures of biological age: meta-analysis
predicting time to death. Aging (Albany NY) 8(9):1844–1865, PMID: 27690265,
https://doi.org/10.18632/aging.101020.

59. Kresovich JK, Xu Z, O’Brien KM, Weinberg CR, Sandler DP, Taylor JA. 2019.
Methylation-based biological age and breast cancer risk. J Natl Cancer Inst
111(10):1051–1058, PMID: 30794318, https://doi.org/10.1093/jnci/djz020.

Environmental Health Perspectives 047001-13 130(4) April 2022

https://www.ncbi.nlm.nih.gov/pubmed/28067231
https://doi.org/10.1038/srep39328
https://www.ncbi.nlm.nih.gov/pubmed/23756170
https://doi.org/10.1016/j.fct.2013.05.057
https://doi.org/10.1016/j.fct.2013.05.057
https://www.ncbi.nlm.nih.gov/pubmed/29843725
https://doi.org/10.1186/s12940-018-0394-x
https://www.ncbi.nlm.nih.gov/pubmed/31066122
https://doi.org/10.1111/jne.12731
https://doi.org/10.1111/jne.12731
https://www.ncbi.nlm.nih.gov/pubmed/32045792
https://doi.org/10.1016/j.envpol.2020.114129
https://doi.org/10.1016/j.envpol.2020.114129
https://www.ncbi.nlm.nih.gov/pubmed/33502259
https://doi.org/10.1289/EHP6990
https://www.ncbi.nlm.nih.gov/pubmed/25805724
https://doi.org/10.1128/mBio.00009-15
https://doi.org/10.1128/mBio.00009-15
https://www.ncbi.nlm.nih.gov/pubmed/33803994
https://doi.org/10.3390/ijms22062966
https://doi.org/10.3390/ijms22062966
https://www.ncbi.nlm.nih.gov/pubmed/30605748
https://doi.org/10.1016/j.toxlet.2018.12.013
https://www.ncbi.nlm.nih.gov/pubmed/32771800
https://doi.org/10.1016/j.envres.2020.109944
https://www.ncbi.nlm.nih.gov/pubmed/33714786
https://doi.org/10.1016/j.envpol.2021.116848
https://www.ncbi.nlm.nih.gov/pubmed/29328878
https://doi.org/10.1146/annurev-publhealth-0406%3C?A3B2 re3,j?%3E17-014629
https://doi.org/10.1146/annurev-publhealth-0406%3C?A3B2 re3,j?%3E17-014629
https://www.ncbi.nlm.nih.gov/pubmed/32069786
https://doi.org/10.3390/ijerph17041181
https://www.ncbi.nlm.nih.gov/pubmed/32916427
https://doi.org/10.1016/j.envint.2020.106016
https://www.ncbi.nlm.nih.gov/pubmed/30676242
https://doi.org/10.1080/15592294.2019.1565590
https://www.ncbi.nlm.nih.gov/pubmed/32679516
https://doi.org/10.1016/j.ijheh.2020.113569
https://www.ncbi.nlm.nih.gov/pubmed/30819252
https://doi.org/10.1186/s13148-019-0635-z
https://doi.org/10.1186/s13148-019-0635-z
https://www.ncbi.nlm.nih.gov/pubmed/31208937
https://doi.org/10.1016/j.envint.2019.03.071
https://www.ncbi.nlm.nih.gov/pubmed/31260916
https://doi.org/10.1016/j.envres.2019.108550
https://www.ncbi.nlm.nih.gov/pubmed/23867811
https://doi.org/10.1097/EDE.0b013e31829d5cb3
https://doi.org/10.1097/EDE.0b013e31829d5cb3
https://www.ncbi.nlm.nih.gov/pubmed/26181258
https://doi.org/10.1001/jamaoncol.2015.1053
https://www.ncbi.nlm.nih.gov/pubmed/27843151
https://doi.org/10.1038/mp.2016.192
https://www.ncbi.nlm.nih.gov/pubmed/27924164
https://doi.org/10.1186/s13148-016-0292-4
https://doi.org/10.1186/s13148-016-0292-4
https://www.ncbi.nlm.nih.gov/pubmed/31232174
https://doi.org/10.1080/15592294.2019.1631112
https://doi.org/10.1080/15592294.2019.1631112
https://www.ncbi.nlm.nih.gov/pubmed/31751608
https://doi.org/10.1016/j.tiv.2019.104736
https://www.ncbi.nlm.nih.gov/pubmed/33296237
https://doi.org/10.1080/15592294.2020.1853319
https://doi.org/10.1080/15592294.2020.1853319
https://www.ncbi.nlm.nih.gov/pubmed/30447247
https://doi.org/10.1016/j.mce.2018.11.005
https://www.ncbi.nlm.nih.gov/pubmed/34093442
https://doi.org/10.3389/FENDO.2021.671991
https://www.ncbi.nlm.nih.gov/pubmed/31611907
https://doi.org/10.3389/fgene.2019.00885
https://www.ncbi.nlm.nih.gov/pubmed/34516295
https://doi.org/10.1289/EHP8928
https://www.ncbi.nlm.nih.gov/pubmed/23177740
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1016/j.molcel.2012.10.016
https://www.ncbi.nlm.nih.gov/pubmed/24138928
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/gb-2013-14-10-r115
https://www.ncbi.nlm.nih.gov/pubmed/29676998
https://doi.org/10.18632/aging.101414
https://www.ncbi.nlm.nih.gov/pubmed/32367804
https://doi.org/10.7554/eLife.54870
https://www.ncbi.nlm.nih.gov/pubmed/27274774
https://doi.org/10.1186/s13148-016-0228-z
https://www.ncbi.nlm.nih.gov/pubmed/25633388
https://doi.org/10.1186/s13059-015-0584-6
https://doi.org/10.1186/s13059-015-0584-6
https://www.ncbi.nlm.nih.gov/pubmed/27690265
https://doi.org/10.18632/aging.101020
https://www.ncbi.nlm.nih.gov/pubmed/30794318
https://doi.org/10.1093/jnci/djz020


60. Dugué PA, Bassett JK, Joo JE, Jung CH, Ming Wong E, Moreno-Betancur M,
et al. 2018. DNA methylation-based biological aging and cancer risk and sur-
vival: pooled analysis of seven prospective studies. Int J Cancer 142(8):1611–
1619, PMID: 29197076, https://doi.org/10.1002/ijc.31189.

61. Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, et al. 2019.
Environmental exposure to polybrominated biphenyl (PBB) associates with an
increased rate of biological aging. Aging (Albany NY) 11(15):5498–5517, PMID:
31375641, https://doi.org/10.18632/aging.102134.

62. Gensous N, Garagnani P, Santoro A, Giuliani C, Ostan R, Fabbri C, et al. 2020.
One-year Mediterranean diet promotes epigenetic rejuvenation with country-
and sex-specific effects: a pilot study from the NU-AGE project. GeroScience
42(2):687–701, PMID: 31981007, https://doi.org/10.1007/s11357-019-00149-0.

63. Lind PM, Salihovic S, Lind L. 2018. High plasma organochlorine pesticide lev-
els are related to increased biological age as calculated by DNA methylation
analysis. Environ Int 113:109–113, PMID: 29421399, https://doi.org/10.1016/j.
envint.2018.01.019.

64. White AJ, Kresovich JK, Keller JP, Xu Z, Kaufman JD, Weinberg CR, et al.
2019. Air pollution, particulate matter composition and methylation-based bio-
logic age. Environ Int 132:105071, PMID: 31387022, https://doi.org/10.1016/j.
envint.2019.105071.

65. Lucia RM, Huang WL, Alvarez A, Thampy D, Elyasian M, Hidajat A, et al. 2020.
Rationale, study design, and cohort characteristics for the Markers for
Environmental Exposures (MEE) Study. Int J Environ Res Public Health
17(5):1774, PMID: 32182891, https://doi.org/10.3390/ijerph17051774.

66. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. 2015. Limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res 43(7):e47, PMID: 25605792, https://doi.org/10.1093/
nar/gkv007.

67. Hornung RW, Reed LD. 1990. Estimation of average concentration in the pres-
ence of nondetectable values. Appl Occup Environ Hyg 5(1):46–51,
https://doi.org/10.1080/1047322X.1990.10389587.

68. Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks F. 2014.
A comprehensive overview of Infinium HumanMethylation450 data process-
ing. Brief Bioinform 15(6):929–941, PMID: 23990268, https://doi.org/10.1093/bib/
bbt054.

69. Zhou W, Laird PW, Shen H. 2017. Comprehensive characterization, annotation
and innovative use of Infinium DNA methylation BeadChip probes. Nucleic
Acids Res 45(4):e22, PMID: 27924034, https://doi.org/10.1093/nar/gkw967.

70. Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC, Eloranta M-L,
et al. 2013. Genome-wide signatures of differential DNA methylation in pediat-
ric acute lymphoblastic leukemia. Genome Biol 14(9):r105, PMID: 24063430,
https://doi.org/10.1186/gb-2013-14-9-r105.

71. Fortin J-P, Triche TJ, Hansen KD. 2017. Preprocessing, normalization and inte-
gration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics
33(4):558–560, PMID: 28035024, https://doi.org/10.1093/bioinformatics/btw691.

72. Teschendorff AE,Marabita F, LechnerM, Bartlett T, Tegner J, Gomez-Cabrero D,
et al. 2013. A beta-mixture quantile normalization method for correcting probe
design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics
29(2):189–196, PMID: 23175756, https://doi.org/10.1093/bioinformatics/bts680.

73. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, et al. 2017. ChAMP:
updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics
33(24):3982–3984, PMID: 28961746, https://doi.org/10.1093/bioinformatics/btx513.

74. Johnson WE, Li C, Rabinovic A. 2007. Adjusting batch effects in microarray
expression data using empirical bayes methods. Biostatistics 8(1):118–127,
PMID: 16632515, https://doi.org/10.1093/biostatistics/kxj037.

75. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. 2012. The sva package
for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28(6):882–883, PMID: 22257669, https://doi.org/10.
1093/bioinformatics/bts034.

76. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson
HH, et al. 2012. DNA methylation arrays as surrogate measures of cell mixture
distribution. BMC Bioinformatics 13(1):86, PMID: 22568884, https://doi.org/10.1186/
1471-2105-13-86.

77. Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. 2010. Comparison of
Beta-value and M-value methods for quantifying methylation levels by microar-
ray analysis. BMC Bioinformatics 11(1):587, PMID: 21118553, https://doi.org/10.
1186/1471-2105-11-587.

78. Carja O, MacIsaac JL, Mah SM, Henn BM, Kobor MS, Feldman MW, et al.
2017. Worldwide patterns of human epigenetic variation. Nat Ecol Evol
1(10):1577–1583, PMID: 29185505, https://doi.org/10.1038/s41559-017-0299-z.

79. Galanter JM, Gignoux CR, Oh SS, Torgerson D, Pino-Yanes M, Thakur N, et al.
2017. Differential methylation between ethnic sub-groups reflects the effect
of genetic ancestry and environmental exposures. Elife 6:e20532, PMID:
28044981, https://doi.org/10.7554/eLife.20532.

80. Song M-A, Seffernick AE, Archer KJ, Mori KM, Park S-Y, Chang L, et al. 2021.
Race/ethnicity-associated blood DNA methylation differences between

Japanese and European American women: an exploratory study. Clin Epigenet
13(1):1–13, PMID: 34635168, https://doi.org/10.1186/s13148-021-01171-w.

81. Curl CL, Beresford SAA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, et al.
2015. Estimating pesticide exposure from dietary intake and organic food
choices: the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health
Perspect 123(5):475–483, PMID: 25650532, https://doi.org/10.1289/ehp.1408197.

82. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al.
2018. The physical activity guidelines for Americans. J Am Med Assoc
320(19):2020–2028, PMID: 30418471, https://doi.org/10.1001/jama.2018.14854.

83. Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, Bingley C,
et al. 2012. The Automated Self-Administered 24-hour dietary recall (ASA24):
a resource for researchers, clinicians, and educators from the National
Cancer Institute. J Acad Nutr Diet 112(8):1134–1137, PMID: 22704899,
https://doi.org/10.1016/j.jand.2012.04.016.

84. Krebs-Smith SM, Pannucci TE, Subar AF, Kirkpatrick SI, Lerman JL, Tooze JA,
et al. 2018. Update of the Healthy Eating Index: HEI-2015. J Acad Nutr Diet
118(9):1591–1602, PMID: 30146071, https://doi.org/10.1016/j.jand.2018.05.021.

85. Lucia RM, Huang W-L, Alvarez A, Masunaka I, Ziogas A, Goodman D, et al. 2021.
Association of mammographic density with blood DNA methylation. Epigenetics
1–16. PMID: 34116608, https://doi.org/10.1080/15592294.2021.1928994.

86. Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, Lord RV, et al.
2015. De novo identification of differentially methylated regions in the human
genome. Epigenetics Chromatin 8:6, PMID: 25972926, https://doi.org/10.1186/
1756-8935-8-6.

87. He Z, Yu W. 2010. Stable feature selection for biomarker discovery. Comput
Biol Chem 34(4):215–225, PMID: 20702140, https://doi.org/10.1016/j.compbiolchem.
2010.07.002.

88. Michiels S, Koscielny S, Hill C. 2005. Prediction of cancer outcome with
microarrays: a multiple random validation strategy. Lancet 365(9458):488–492,
PMID: 15705458, https://doi.org/10.1016/S0140-6736(05)17866-0.

89. Ein-Dor L, Zuk O, Domany E. 2006. Thousands of samples are needed to gen-
erate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci
USA 103(15):5923–5928, PMID: 16585533, https://doi.org/10.1073/pnas.0601231103.

90. Qiu X, Xiao Y, Gordon A, Yakovlev A. 2006. Assessing stability of gene selec-
tion in microarray data analysis. BMC Bioinformatics 7:50, PMID: 16451725,
https://doi.org/10.1186/1471-2105-7-50.

91. Ernst J, Kellis M. 2017. Chromatin-state discovery and genome annotation with
ChromHMM. Nat Protoc 12(12):2478–2492, PMID: 29120462, https://doi.org/10.
1038/nprot.2017.124.

92. Phipson B, Maksimovic J, Oshlack A. 2016. MissMethyl: an R package for
analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics
32(2):286–288, PMID: 26424855, https://doi.org/10.1093/bioinformatics/btv560.

93. Simon N, Friedman J, Hastie T, Tibshirani R. 2011. Regularization paths for
Cox’s proportional hazards model via coordinate descent. J Stat Softw
39(5):1–13, PMID: 27065756, https://doi.org/10.18637/jss.v039.i05.

94. Levine ME, Hosgood HD, Chen B, Absher D, Assimes T, Horvath S. 2015. DNA
methylation age of blood predicts future onset of lung cancer in the Women’s
Health Initiative. Aging (Albany NY) 7(9):690–700, PMID: 26411804, https://doi.org/
10.18632/aging.100809.

95. Haslam E. 1993. Shikimic Acid: Metabolism and Metabolites. https://books.
google.com/books/about/Shikimic_Acid.html?id=Y3wvAQAAIAAJ [accessed
14 May 2021].

96. Kishore GM, Shah DM. 1988. Amino acid biosynthesis inhibitors as herbicides.
Annu Rev Biochem 57:627–663, PMID: 3052285, https://doi.org/10.1146/annurev.
bi.57.070188.003211.

97. Cerdeira AL, Duke SO. 2006. The current status and environmental impacts of
glyphosate-resistant crops. J Environ Qual 35(5):1633–1658, PMID: 16899736,
https://doi.org/10.2134/jeq2005.0378.

98. Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC. 2003. Pesticide metabo-
lism in plants and microorganisms. Weed Sci 51(4):472–495.

99. Blot N, Veillat L, Rouzé R, Delatte H. 2019. Glyphosate, but not its metabolite
AMPA, alters the honeybee gut microbiota. PLoS One 14(4):e0215466, PMID:
30990837, https://doi.org/10.1371/journal.pone.0215466.

100. Motta EVS, Raymann K, Moran NA. 2018. Glyphosate perturbs the gut micro-
biota of honey bees. Proc Natl Acad Sci USA 115(41):10305–10310, PMID:
30249635, https://doi.org/10.1073/pnas.1803880115.

101. Ruuskanen S, Rainio MJ, Gómez-Gallego C, Selenius O, Salminen S, Collado
MC, et al. 2020. Glyphosate-based herbicides influence antioxidants, repro-
ductive hormones and gut microbiome but not reproduction: a long-term
experiment in an avian model. Environ Pollut 266(Part 1):115108, PMID:
32768925, https://doi.org/10.1016/j.envpol.2020.115108.

102. Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and
disease. N Engl J Med 375(24):2369–2379, PMID: 27974040, https://doi.org/10.
1056/NEJMra1600266.

103. Xiao C, Fedirko V, Beitler J, Bai J, Peng G, Zhou C, et al. 2021. The role of the gut
microbiome in cancer-related fatigue: pilot study on epigenetic mechanisms.

Environmental Health Perspectives 047001-14 130(4) April 2022

https://www.ncbi.nlm.nih.gov/pubmed/29197076
https://doi.org/10.1002/ijc.31189
https://www.ncbi.nlm.nih.gov/pubmed/31375641
https://doi.org/10.18632/aging.102134
https://www.ncbi.nlm.nih.gov/pubmed/31981007
https://doi.org/10.1007/s11357-019-00149-0
https://www.ncbi.nlm.nih.gov/pubmed/29421399
https://doi.org/10.1016/j.envint.2018.01.019
https://doi.org/10.1016/j.envint.2018.01.019
https://www.ncbi.nlm.nih.gov/pubmed/31387022
https://doi.org/10.1016/j.envint.2019.105071
https://doi.org/10.1016/j.envint.2019.105071
https://www.ncbi.nlm.nih.gov/pubmed/32182891
https://doi.org/10.3390/ijerph17051774
https://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1080/1047322X.1990.10389587
https://www.ncbi.nlm.nih.gov/pubmed/23990268
https://doi.org/10.1093/bib/bbt054
https://doi.org/10.1093/bib/bbt054
https://www.ncbi.nlm.nih.gov/pubmed/27924034
https://doi.org/10.1093/nar/gkw967
https://www.ncbi.nlm.nih.gov/pubmed/24063430
https://doi.org/10.1186/gb-2013-14-9-r105
https://www.ncbi.nlm.nih.gov/pubmed/28035024
https://doi.org/10.1093/bioinformatics/btw691
https://www.ncbi.nlm.nih.gov/pubmed/23175756
https://doi.org/10.1093/bioinformatics/bts680
https://www.ncbi.nlm.nih.gov/pubmed/28961746
https://doi.org/10.1093/bioinformatics/btx513
https://www.ncbi.nlm.nih.gov/pubmed/16632515
https://doi.org/10.1093/biostatistics/kxj037
https://www.ncbi.nlm.nih.gov/pubmed/22257669
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://www.ncbi.nlm.nih.gov/pubmed/22568884
https://doi.org/10.1186/1471-2105-13-86
https://doi.org/10.1186/1471-2105-13-86
https://www.ncbi.nlm.nih.gov/pubmed/21118553
https://doi.org/10.1186/1471-2105-11-587
https://doi.org/10.1186/1471-2105-11-587
https://www.ncbi.nlm.nih.gov/pubmed/29185505
https://doi.org/10.1038/s41559-017-0299-z
https://www.ncbi.nlm.nih.gov/pubmed/28044981
https://doi.org/10.7554/eLife.20532
https://www.ncbi.nlm.nih.gov/pubmed/34635168
https://doi.org/10.1186/s13148-021-01171-w
https://www.ncbi.nlm.nih.gov/pubmed/25650532
https://doi.org/10.1289/ehp.1408197
https://www.ncbi.nlm.nih.gov/pubmed/30418471
https://doi.org/10.1001/jama.2018.14854
https://www.ncbi.nlm.nih.gov/pubmed/22704899
https://doi.org/10.1016/j.jand.2012.04.016
https://www.ncbi.nlm.nih.gov/pubmed/30146071
https://doi.org/10.1016/j.jand.2018.05.021
https://doi.org/10.1080/15592294.2021.1928994
https://www.ncbi.nlm.nih.gov/pubmed/25972926
https://doi.org/10.1186/1756-8935-8-6
https://doi.org/10.1186/1756-8935-8-6
https://www.ncbi.nlm.nih.gov/pubmed/20702140
https://doi.org/10.1016/j.compbiolchem.2010.07.002
https://doi.org/10.1016/j.compbiolchem.2010.07.002
https://www.ncbi.nlm.nih.gov/pubmed/15705458
https://doi.org/10.1016/S0140-6736(05)17866-0
https://www.ncbi.nlm.nih.gov/pubmed/16585533
https://doi.org/10.1073/pnas.0601231103
https://www.ncbi.nlm.nih.gov/pubmed/16451725
https://doi.org/10.1186/1471-2105-7-50
https://www.ncbi.nlm.nih.gov/pubmed/29120462
https://doi.org/10.1038/nprot.2017.124
https://doi.org/10.1038/nprot.2017.124
https://www.ncbi.nlm.nih.gov/pubmed/26424855
https://doi.org/10.1093/bioinformatics/btv560
https://www.ncbi.nlm.nih.gov/pubmed/27065756
https://doi.org/10.18637/jss.v039.i05
https://www.ncbi.nlm.nih.gov/pubmed/26411804
https://doi.org/10.18632/aging.100809
https://doi.org/10.18632/aging.100809
https://books.google.com/books/about/Shikimic_Acid.html?id=Y3wvAQAAIAAJ
https://books.google.com/books/about/Shikimic_Acid.html?id=Y3wvAQAAIAAJ
https://www.ncbi.nlm.nih.gov/pubmed/3052285
https://doi.org/10.1146/annurev.bi.57.070188.003211
https://doi.org/10.1146/annurev.bi.57.070188.003211
https://www.ncbi.nlm.nih.gov/pubmed/16899736
https://doi.org/10.2134/jeq2005.0378
https://www.ncbi.nlm.nih.gov/pubmed/30990837
https://doi.org/10.1371/journal.pone.0215466
https://www.ncbi.nlm.nih.gov/pubmed/30249635
https://doi.org/10.1073/pnas.1803880115
https://www.ncbi.nlm.nih.gov/pubmed/32768925
https://doi.org/10.1016/j.envpol.2020.115108
https://www.ncbi.nlm.nih.gov/pubmed/27974040
https://doi.org/10.1056/NEJMra1600266
https://doi.org/10.1056/NEJMra1600266


Support Care Cancer 29(6):3173–3182, PMID: 33078326, https://doi.org/10.1007/
s00520-020-05820-3.

104. Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, et al. 2019.
Colorectal cancer-associated microbiota contributes to oncogenic epigenetic
signatures. Proc Natl Acad Sci USA 116(48):24285–24295, PMID: 31712445,
https://doi.org/10.1073/pnas.1912129116.

105. Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al. 2017.
Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging
(Albany NY) 9(2):419–446, PMID: 28198702, https://doi.org/10.18632/aging.101168.

106. McCartney DL, Hillary RF, Stevenson AJ, Ritchie SJ, Walker RM, Zhang Q,
et al. 2018. Epigenetic prediction of complex traits and death. Genome Biol
19(1):136, PMID: 30257690, https://doi.org/10.1186/s13059-018-1514-1.

107. Nannini DR, Joyce BT, Zheng Y, Gao T, Liu L, Yoon G, et al. 2019. Epigenetic
age acceleration and metabolic syndrome in the coronary artery risk develop-
ment in young adults study. Clin Epigenet 11(1):160, PMID: 31730017,
https://doi.org/10.1186/s13148-019-0767-1.

108. Prados-Carvajal R, López-Saavedra A, Cepeda-García C, Jimeno S, Huertas P.
2018. Multiple roles of the splicing complex SF3B in DNA end resection and
homologous recombination. DNA Repair (Amst) 66-67:11–23, PMID: 29705135,
https://doi.org/10.1016/j.dnarep.2018.04.003.

109. Kawamura N, Nimura K, Saga K, Ishibashi A, Kitamura K, Nagano H, et al.
2019. SF3B2-mediated RNA splicing drives human prostate cancer progres-
sion. Cancer Res 79(20):5204–5217, PMID: 31431456, https://doi.org/10.1158/
0008-5472.CAN-18-3965.

110. Xu W, Huang H, Yu L, Cao L. 2015. Meta-analysis of gene expression profiles
indicates genes in spliceosome pathway are up-regulated in hepatocellular
carcinoma (HCC). Med Oncol 32(4):96, PMID: 25731616, https://doi.org/10.1007/
s12032-014-0425-6.

111. Sugimoto T, Seki N, Shimizu S, Kikkawa N, Tsukada J, Shimada H, et al. 2009.
The galanin signaling cascade is a candidate pathway regulating oncogene-
sis in human squamous cell carcinoma. Genes Chromosomes Cancer
48(2):132–142, PMID: 18973137, https://doi.org/10.1002/gcc.20626.

112. Her C, Zhao N, Wu X, Tompkins JD. 2007. MutS homologues hMSH4 and
hMSH5: diverse functional implications in humans. Front Biosci 12(3):905–911,
PMID: 17127347, https://doi.org/10.2741/2112.

113. Kim Y-H, Ohta T, Oh JE, Le Calvez-Kelm F, McKay J, Voegele C, et al. 2014.
TP53, MSH4, and LATS1 germline mutations in a family with clustering of
nervous system tumors. Am J Pathol 184(9):2374–2381, PMID: 25041856,
https://doi.org/10.1016/j.ajpath.2014.05.017.

114. Moslehi R, Tsao HS, Zeinomar N, Stagnar C, Fitzpatrick S, Dzutsev A. 2020.
Integrative genomic analysis implicates ERCC6 and its interaction with ERCC8
in susceptibility to breast cancer. Sci Rep 10(1):21276, PMID: 33277540,
https://doi.org/10.1038/s41598-020-77037-7.

115. Wu Z, Zhu X, Yu Q, Xu Y, Wang Y. 2019. Multisystem analyses of two Cockayne
syndrome associated proteins CSA and CSB reveal shared and unique func-
tions. DNA Repair (Amst) 83:102696, PMID: 31546172, https://doi.org/10.1016/j.
dnarep.2019.102696.

116. Pascucci B, Fragale A, Marabitti V, Leuzzi G, Calcagnile AS, Parlanti E,
et al. 2018. CSA and CSB play a role in the response to DNA breaks.
Oncotarget 9(14):11581–11591, PMID: 29545921, https://doi.org/10.18632/
oncotarget.24342.

117. Xiao Y, Deng T, Ming X, Xu J. 2020. TRIM31 promotes acute myeloid leukemia
progression and sensitivity to daunorubicin through the Wnt/β-catenin signal-
ing. Biosci Rep 40(4):BSR20194334, PMID: 32232394, https://doi.org/10.1042/
BSR20194334.

118. Shi G, Lv C, Yang Z, Qin T, Sun L, Pan P, et al. 2019. TRIM31 promotes proliferation,
invasion and migration of glioma cells through Akt signaling pathway. Neoplasma
66(5):727–735, PMID: 31129970, https://doi.org/10.4149/neo_2019_190106N21.

119. Guo P, Ma X, Zhao W, Huai W, Li T, Qiu Y, et al. 2018. TRIM31 is upregulated
in hepatocellular carcinoma and promotes disease progression by inducing
ubiquitination of TSC1-TSC2 complex. Oncogene 37(4):478–488, PMID:
28967907, https://doi.org/10.1038/onc.2017.349.

120. Lorenz V, Milesi MM, Schimpf MG, Luque EH, Varayoud J. 2019. Epigenetic
disruption of estrogen receptor alpha is induced by a glyphosate-based herbi-
cide in the preimplantation uterus of rats. Mol Cell Endocrinol 480:133–141,
PMID: 30391669, https://doi.org/10.1016/j.mce.2018.10.022.

121. Connolly A, Leahy M, Jones K, Kenny L, Coggins MA. 2018. Glyphosate in Irish
adults - a pilot study in 2017. Environ Res 165:235–236, PMID: 29729481,
https://doi.org/10.1016/j.envres.2018.04.025.

122. Conrad A, Schröter-Kermani C, Hoppe HW, Rüther M, Pieper S, Kolossa-
Gehring M. 2017. Glyphosate in german adults – time trend (2001 to 2015) of
human exposure to a widely used herbicide. Int J Hyg Environ Health
220(1):8–16, PMID: 27838355, https://doi.org/10.1016/j.ijheh.2016.09.016.

123. Soukup ST, Merz B, Bub A, Hoffmann I, Watzl B, Steinberg P, et al. 2020.
Glyphosate and AMPA levels in human urine samples and their correlation
with food consumption: results of the cross-sectional KarMeN study in
Germany. Arch Toxicol 94(5):1575–1584, PMID: 32232512, https://doi.org/10.
1007/s00204-020-02704-7.

124. McGuire MK, McGuire MA, Price WJ, Shafii B, Carrothers JM, Lackey KA, et al.
2016. Glyphosate and aminomethylphosphonic acid are not detectable in
human milk. Am J Clin Nutr 103(5):1285–1290, PMID: 27030536, https://doi.org/
10.3945/ajcn.115.126854.

125. Curwin BD, Hein MJ, Sanderson WT, Striley C, Heederik D, Kromhout H, et al.
2007. Urinary pesticide concentrations among children, mothers and fathers
living in farm and non-farm households in Iowa. Ann Occup Hyg 51(1):53–65,
PMID: 16984946, https://doi.org/10.1093/annhyg/mel062.

126. Gillezeau C, van Gerwen M, Shaffer RM, Rana I, Zhang L, Sheppard L, et al.
2019. The evidence of human exposure to glyphosate: a review. Environ
Health 18(1):2, PMID: 30612564, https://doi.org/10.1186/s12940-018-0435-5.

127. Connolly A, Coggins MA, Koch HM. 2020. Human biomonitoring of glyphosate
exposures: state-of-the-art and future research challenges. Toxics 8(3):60,
PMID: 32824707, https://doi.org/10.3390/toxics8030060.

128. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky
M, Yen A, et al. 2015. Integrative analysis of 111 reference human epigenomes.
Nature 518(7539):317–329, PMID: 25693563, https://doi.org/10.1038/nature14248.

129. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al.
2013. Recommendations for the design and analysis of epigenome-wide asso-
ciation studies. Nat Methods 10(10):949–955, PMID: 24076989, https://doi.org/
10.1038/nmeth.2632.

130. Faniband MH, Norén E, Littorin M, Lindh CH. 2021. Human experimental exposure
to glyphosate and biomonitoring of young Swedish adults. Int J Hyg Environ
Health 231:113657, PMID: 33130428, https://doi.org/10.1016/j.ijheh.2020.113657.

131. Connolly A, Jones K, Basinas I, Galea KS, Kenny L, McGowan P, et al. 2019.
Exploring the half-life of glyphosate in human urine samples. Int J Hyg
Environ Health 222(2):205–210, PMID: 30293930, https://doi.org/10.1016/j.ijheh.
2018.09.004.

132. Baker ME, Lathe R. 2018. The promiscuous estrogen receptor: evolution of
physiological estrogens and response to phytochemicals and endocrine dis-
ruptors. J Steroid BiochemMol Biol 184:29–37, PMID: 30009950, https://doi.org/
10.1016/j.jsbmb.2018.07.001.

Environmental Health Perspectives 047001-15 130(4) April 2022

https://www.ncbi.nlm.nih.gov/pubmed/33078326
https://doi.org/10.1007/s00520-020-05820-3
https://doi.org/10.1007/s00520-020-05820-3
https://www.ncbi.nlm.nih.gov/pubmed/31712445
https://doi.org/10.1073/pnas.1912129116
https://www.ncbi.nlm.nih.gov/pubmed/28198702
https://doi.org/10.18632/aging.101168
https://www.ncbi.nlm.nih.gov/pubmed/30257690
https://doi.org/10.1186/s13059-018-1514-1
https://www.ncbi.nlm.nih.gov/pubmed/31730017
https://doi.org/10.1186/s13148-019-0767-1
https://www.ncbi.nlm.nih.gov/pubmed/29705135
https://doi.org/10.1016/j.dnarep.2018.04.003
https://www.ncbi.nlm.nih.gov/pubmed/31431456
https://doi.org/10.1158/0008-5472.CAN-18-3965
https://doi.org/10.1158/0008-5472.CAN-18-3965
https://www.ncbi.nlm.nih.gov/pubmed/25731616
https://doi.org/10.1007/s12032-014-0425-6
https://doi.org/10.1007/s12032-014-0425-6
https://www.ncbi.nlm.nih.gov/pubmed/18973137
https://doi.org/10.1002/gcc.20626
https://www.ncbi.nlm.nih.gov/pubmed/17127347
https://doi.org/10.2741/2112
https://www.ncbi.nlm.nih.gov/pubmed/25041856
https://doi.org/10.1016/j.ajpath.2014.05.017
https://www.ncbi.nlm.nih.gov/pubmed/33277540
https://doi.org/10.1038/s41598-020-77037-7
https://www.ncbi.nlm.nih.gov/pubmed/31546172
https://doi.org/10.1016/j.dnarep.2019.102696
https://doi.org/10.1016/j.dnarep.2019.102696
https://www.ncbi.nlm.nih.gov/pubmed/29545921
https://doi.org/10.18632/oncotarget.24342
https://doi.org/10.18632/oncotarget.24342
https://www.ncbi.nlm.nih.gov/pubmed/32232394
https://doi.org/10.1042/BSR20194334
https://doi.org/10.1042/BSR20194334
https://www.ncbi.nlm.nih.gov/pubmed/31129970
https://doi.org/10.4149/neo_2019_190106N21
https://www.ncbi.nlm.nih.gov/pubmed/28967907
https://doi.org/10.1038/onc.2017.349
https://www.ncbi.nlm.nih.gov/pubmed/30391669
https://doi.org/10.1016/j.mce.2018.10.022
https://www.ncbi.nlm.nih.gov/pubmed/29729481
https://doi.org/10.1016/j.envres.2018.04.025
https://www.ncbi.nlm.nih.gov/pubmed/27838355
https://doi.org/10.1016/j.ijheh.2016.09.016
https://www.ncbi.nlm.nih.gov/pubmed/32232512
https://doi.org/10.1007/s00204-020-02704-7
https://doi.org/10.1007/s00204-020-02704-7
https://www.ncbi.nlm.nih.gov/pubmed/27030536
https://doi.org/10.3945/ajcn.115.126854
https://doi.org/10.3945/ajcn.115.126854
https://www.ncbi.nlm.nih.gov/pubmed/16984946
https://doi.org/10.1093/annhyg/mel062
https://www.ncbi.nlm.nih.gov/pubmed/30612564
https://doi.org/10.1186/s12940-018-0435-5
https://www.ncbi.nlm.nih.gov/pubmed/32824707
https://doi.org/10.3390/toxics8030060
https://www.ncbi.nlm.nih.gov/pubmed/25693563
https://doi.org/10.1038/nature14248
https://www.ncbi.nlm.nih.gov/pubmed/24076989
https://doi.org/10.1038/nmeth.2632
https://doi.org/10.1038/nmeth.2632
https://www.ncbi.nlm.nih.gov/pubmed/33130428
https://doi.org/10.1016/j.ijheh.2020.113657
https://www.ncbi.nlm.nih.gov/pubmed/30293930
https://doi.org/10.1016/j.ijheh.2018.09.004
https://doi.org/10.1016/j.ijheh.2018.09.004
https://www.ncbi.nlm.nih.gov/pubmed/30009950
https://doi.org/10.1016/j.jsbmb.2018.07.001
https://doi.org/10.1016/j.jsbmb.2018.07.001

	Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women
	Introduction
	Methods
	Study Population
	Biospecimen Collection and Processing
	Covariates
	Statistical Analyses
	DNA Methylation Analysis

	Results
	Glyphosate and AMPA Concentrations
	DNA Methylation Analysis
	Methylation Index

	Discussion
	Acknowledgments
	References


