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Abstract

The immune system has crucial roles in cancer development and treatment. Whereas adaptive 

immunity can prevent or constrain cancer through immunosurveillance, innate immunity and 

inflammation often promote tumorigenesis and malignant progression of nascent cancer. The 

past decade has witnessed the translation of knowledge derived from preclinical studies of 

antitumour immunity into clinically effective, approved immunotherapies for cancer. By contrast, 

the successful implementation of treatments that target cancer-associated inflammation is still 

awaited. Anti-inflammatory agents have the potential to not only prevent or delay cancer onset but 

also to improve the efficacy of conventional therapeutics and next-generation immunotherapies. 

Herein, we review the current clinical advances and experimental findings supporting the utility 

of an anti-inflammatory approach to the treatment of solid malignancies. Gaining a better 

mechanistic understanding of the mode of action of anti-inflammatory agents and designing 

more effective treatment combinations would advance the clinical application of this therapeutic 

approach.

Inflammation is part of the innate immune response to danger signals, tissue disruption 

and/or infection. Transient and properly terminated inflammation is beneficial yet 

chronic inflammation increases cancer risk1. Numerous environmental factors, including 

carcinogenic microbes, pollutants, tissue-damaging radiation, tobacco smoke, diesel exhaust 

fumes, particulate matter and dietary factors, can evoke chronic inflammation in multiple 

organ systems, especially those that are exposed to the external environment1. Left 
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unresolved, chronic inflammatory responses can result in tumour promotion1. Tumour-

associated inflammation, which entails intricate interactions between epithelial and stromal 

cells, can in some cases lead to epigenetic alterations that drive malignant progression 

and even initiate tumorigenesis. More generally, however, chronic inflammation results 

in the production of growth factors that support the development of newly emergent 

tumours and cause them to behave as “wounds that do not heal”2. Inflammation-reducing 

chemopreventive strategies that inhibit either the initiation or propagation of persistent 

inflammation might therefore prevent or delay cancer onset3. Anti-infective agents, 

nonsteroidal anti-inflammatory drugs (NSAIDs) and other commonly used drugs capable 

of reducing inflammation, such as statins and metformin, have been reported to decrease 

cancer risk and incidence4-8.

Cancer cell-intrinsic or therapy-elicited mechanisms, including metabolic changes, cell 

stress and cell death, also constitute important sources of tumour-associated inflammation1. 

The continuous production of various cytokines, chemokines and growth factors within the 

tumour microenvironment (TME) supports cancer cell proliferation, evolution and survival 

as well as tumour vascularization and immune dysregulation, all of which contribute 

to tumour progression, invasion, metastasis and therapy resistance. Thus, the use of anti-

inflammatory agents, either alone or in combination with cytotoxic agents and targeted 

therapies, is an appealing strategy for the treatment of inflammation-driven cancers. This 

approach is effective in various animal models9-11, although the complexity and plasticity 

of human cancers and their ecosystem present major hurdles that need to be overcome 

for anti-inflammatory therapy to become truly successful. For example, the inhibition 

of inflammation mostly slows down tumour growth rather than killing cancer cells and 

therefore needs to be combined with cancer-specific cytotoxic drugs to fully eradicate the 

tumours. In addition, owing to the depletion of general survival factors, anti-inflammatory 

drugs can inflict bystander effects on non-cancerous tissues, which can in turn result not 

only in TME remodelling and therapy resistance but also in the increased susceptibility of 

non-malignant cells to non-specific cytotoxicity that can lead to toxicities12,13.

The past decade has witnessed a burgeoning of effective treatments based on the activation 

of anti-tumour immune responses, for example, using immune-checkpoint inhibitors (ICIs) 

or genetically engineered T cells14. Such immunotherapies induce durable responses in 

a subset of patients; however, primary or acquired therapy resistance occurs in the vast 

majority of patients. In many cases, immunotherapy resistance is attributable to the 

presence of a pro-inflammatory and immunosuppressive TME15 (BOX 1). In this context, 

anti-inflammatory drugs that target immunosuppressive cells or cytokines might render the 

cancer more susceptible to immune-mediated rejection. Moreover, akin to the treatment 

of autoimmune diseases, selective targeting of the key drivers of immunotherapy-induced 

inflammation might increase the response-to-toxicity ratio and thereby improve therapeutic 

outcomes. Consequently, the combination of anti-inflammatory therapy with immunotherapy 

might evolve into a successful approach for circumventing the obstacles associated with 

current treatment modalities.

As a canonical cancer hallmark16, inflammation influences all stages of cancer development 

and treatment. The central inflammatory mediators governing cancer-autonomous 
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intracellular modulation and intercellular communication within the TME have been 

covered in several reviews1,17-21. Herein, we draw on advances highlighting the use of 

anti-inflammatory agents for the prevention and/or treatment of solid malignancies, either 

in isolation or in combination with other therapeutic modalities. Rather than surveying 

all cancer-related inflammatory traits and mediators, we discuss what we believe are 

special opportunities and perils for anti-inflammatory approaches. Antiangiogenic agents 

and multi-kinase inhibitors, some of which exert anti-inflammatory effects, already occupy 

well-established places in the anticancer armamentarium and will not be included in this 

Review.

Anti-inflammatory treatments for cancer

Anti-infective agents

Several infectious diseases that result in chronic inflammation have been credibly linked to 

cancer initiation2. Accordingly, anti-infective agents have an important role in reducing the 

burden of inflammation-related cancers (FIG. 1).

Antiviral therapies.—Currently, hepatitis B virus (HBV) or hepatitis C virus (HCV) 

infections remain the leading causes of hepatocellular carcinoma (HCC)5. In addition 

to the direct oncogenic effects22, HBV or HCV infections can cause cancer-promoting 

inflammation. HBV vaccination has substantially reduced the global HCC burden and is 

continuing to do so; data from a population-based study indicate that the incidence of HCC 

in vaccinated birth cohorts is 75% lower than that in unvaccinated cohorts23. For infected 

individuals, interferon-based therapies, nucleoside or nucleotide analogues, and direct-acting 

antiviral agents, which inhibit the replication of HBV or HCV and/or promote their immune-

mediated clearance, are estimated to decrease HCC risk by 50–80%5. Antiviral treatment 

is also effective in decreasing disease recurrence and improving postoperative survival 

outcomes in patients with HCC24-26. However, curative antiviral treatment of HBV or HCV 

infection alone is insufficient to entirely prevent HCC occurrence or recurrence, possibly 

owing to the presence of cirrhosis, diabetes, excess alcohol consumption, impaired liver 

function or other patient characteristics (such as age, sex, lifestyle and others)27-30.

Similarly, >90% of cervical cancers can be attributed to infection with human 

papillomavirus (HPV) types 16, 18, 31, 33, 45, 52 or 58 (REF.31). The results of 

international randomized controlled trials (RCTs) have demonstrated the substantial efficacy 

of HPV vaccines against cervical precancerous lesions (cervical intraepithelial neoplasia 

grade 2+). According to a large-scale meta-analysis reported in 2019 (REF.32), 5–9 years 

of population-based vaccination not only reduced the prevalence of HPV infection but also 

decreased the prevalence of cervical intraepithelial neoplasia grade 2+ by 51% in screened 

girls aged 15–19 years and by 31% in women aged 20–24 years. More recently, the results 

of a nationwide study in Sweden demonstrated that the cumulative incidence of cervical 

cancer was reduced from 94 cases per 100,000 in women who were unvaccinated to 47 

cases per 100,000 in women vaccinated with the quadrivalent HPV vaccine (targeting 

HPV types 6, 11, 16 and 18) at 10–30 years of age33. Therefore, HPV vaccination has 

been implemented for cervical cancer prophylaxis in multiple age groups across different 
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countries. High-level vaccination coverage in the population would likely result in cervical 

cancer elimination6, although specific antiviral drugs for treating established HPV infections 

are still lacking.

Epstein–Barr virus (EBV), the first tumour virus identified in humans, is associated with 

gastric cancer, nasopharyngeal cancer and lymphoma34. Currently, however, no approved 

therapies are available to prevent or treat EBV infection, despite intense research efforts.

Antibacterial therapies.—Helicobacter pylori, a bacteria that is carried by ~50% of 

the world population, is the strongest risk factor for gastric cancer and has therefore been 

designated by the WHO as a class I carcinogen35. Data from RCTs indicate that H. pylori 
eradication with broad-spectrum antibiotics not only prevents gastric cancer in individuals 

with asymptomatic infection or in those without precancerous lesions but also lowers the 

rates of metachronous gastric cancer development in patients with early stage gastric cancer 

or high-grade adenoma35-37. Among >2,250 residents of a high-risk region for gastric cancer 

in China, 2 weeks of H. pylori treatment resulted in early reductions in gastric cancer 

incidence and mortality that persisted beyond >22 years38.

Commensal bacteria, such as Fusobacterium nucleatum, have been found to increase the risk 

of colorectal cancer (CRC) development and to promote the progression of this disease39-42. 

Moreover, computational bioinformatics studies have identified microbial genetic signatures 

in blood or tumour tissues that distinguished patients with different cancer types from 

cancer-free individuals; these signatures provide a high-resolution landscape of cancer-

associated microbes43. However, further studies are required to determine whether these 

bacteria induce cancer-promoting inflammation.

The antitumour effects of broad-spectrum antibiotics have been demonstrated in animal 

models, particularly in models of gastrointestinal cancers41,44,45; however, the current lack 

of species-specific antibiotics and the deleterious consequences of commensal dysbiosis 

have limited the therapeutic potential of microbial modulation in patients with cancer46. 

A future approach could entail the use of species-specific bacteriophages to selectively 

eliminate carcinogenic or tumour-promoting bacteria47. Vaccination against specific cancer-

promoting microbes could also be considered, but antibacterial vaccines are rare and have 

mostly been ineffective.

Anti-fungal treatment.—Fungal infections have been found to be associated with 

oesophageal squamous cell carcinoma (ESCC) both in patients with autoimmune 

polyendocrinopathy-candidiasis-ectodermal dystrophy, who have increased susceptibility to 

chronic fungal infections, and in individuals without autoimmune disease48. These findings 

suggest that anti-fungal treatments could be used to reduce the incidence of ESCC; indeed, 

such therapy had anticancer effects in a mouse model of auto-immune polyendocrinopathy-

candidiasis-ectodermal dystrophy-related ESCC48.

Nonsteroidal anti-inflammatory drugs

NSAIDs are widely used as antipyretics, analgesics or anti-platelet agents (platelet 

aggregation inhibitors) for cardiovascular disease (CVD) prophylaxis, operating through 
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the inhibition of cyclooxygenase (COX) activity. One such NSAID, aspirin, has been 

identified as a broad-spectrum cancer-preventive agent based on data from clinical and 

epidemiological studies24 (FIG. 1). Since 2015, the US Preventive Services Task Force has 

recommended the routine use of aspirin for the prevention of CRC among individuals aged 

50–59 years who have a high risk of CVD and a low risk of bleeding49. A systematic 

review and meta-analysis of observational studies on aspirin use and digestive-tract cancers 

published up to March 2019 revealed that regular users had a 27% lower CRC risk (across 

45 studies), a 33% lower ESCC risk (13 studies), a 39% lower risk of adenocarcinoma of 

the oesophagus and gastric cardia (10 studies), a 36% lower risk of stomach cancer (14 

studies), a 38% lower risk of hepatobiliary cancer (5 studies) and a 22% lower risk of 

pancreatic cancer (15 studies) than non-users7. However, in other large-cohort prospective 

studies, regular aspirin use was not associated with a statistically significant reduction in 

pancreatic cancer risk, except in individuals with diabetes or higher baseline levels of 

systemic inflammation50. Nevertheless, the anti-inflammatory properties of aspirin make it 

a viable chemopreventive for those with an elevated risk of inflammation-related cancer. 

In two nationwide observational cohort studies of patients with chronic viral hepatitis in 

Sweden or Taiwan51,52, the long-term use of low-dose aspirin (≤160 or ≤100 mg daily, 

respectively, for ≥90 days) reduced the risk of HCC by 31% and 29%, respectively, without 

increasing the risk of gastrointestinal bleeding. Aspirin also seems to benefit patients with 

a hereditary cancer risk: in a double-blind RCT, patients with Lynch syndrome who were 

assigned to aspirin treatment had a 37% lower risk of developing CRC compared with those 

who received placebo53. An analysis of data from two large-cohort prospective observational 

studies performed in the USA revealed that regular aspirin use for at least 6 years decreased 

the overall incidence of gastrointestinal-tract cancers by 15% and of CRC by 19% but had 

no effect on breast, prostate or lung cancer incidence54. Furthermore, pooled results from 

RCTs in the setting of CVD prophylaxis (8 eligible trials encompassing 25,570 patients 

and 674 cancer deaths) demonstrated that daily aspirin use mitigated distant metastasis 

and deaths from certain cancers, specifically adenocarcinomas (particularly those that were 

non-metastatic at diagnosis)55.

Importantly, the post-diagnosis administration of aspirin has been shown to be sufficient to 

reduce overall gastrointestinal or oesophageal cancer mortality56. The survival benefit from 

post-diagnosis aspirin use specifically in patients with CRC was greater among those with 

PIK3CA-mutant and COX2-positive tumours57 or among those with low tumoural levels 

of PD-L1 (REF.58). The ongoing Add-Aspirin trial (ISRCTN74358648) is evaluating the 

effect of aspirin use after primary radical therapy for gastroesophageal, colorectal, breast or 

prostate cancer on disease recurrence and survival outcomes, with a predefined feasibility 

analysis revealing that this adjuvant therapy approach is well tolerated with a low incidence 

of toxicities (0.5% grade 3 and no upper gastrointestinal bleeding of any grade)59. However, 

a cautionary note comes from the ASPREE study; in this placebo-controlled RCT, low-dose 

aspirin (100 mg daily) was associated with increases in bleeding risk, in the incidence of 

cancers diagnosed with metastasis and, correspondingly, in cancer mortality in older adults 

(>65 years of age) without CVD, dementia or physical disability60-62.

Celecoxib and rofecoxib, two selective COX2 inhibitors, have demonstrated efficacy in 

the prophylaxis of colorectal adenomas (or adenomatous polyps) but are not routinely 
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recommended for such indications because of their serious CVD risks63-65. A randomized 

phase II trial revealed that the addition of celecoxib to chemoradiotherapy did not provide an 

overall survival (OS) or progression-free survival (PFS) benefit in patients with unresectable 

stage III non-small-cell lung cancer66. In a trial involving patients with CRC, preoperative 

treatment with celecoxib did not improve responses to neoadjuvant immunotherapy with 

anti-PD-1 plus anti-CTLA4 antibodies67, although results of a preclinical study indicate that 

the inhibition of prostaglandin E2 (PGE2) synthesis (for example, through genetic ablation of 

COX expression) can overcome immune evasion in some mouse models of cancer68.

Of therapeutic significance, the intraoperative administration of ketorolac, an inhibitor of 

both COX1 and COX2, reduced the frequency of distant disease recurrence in patients with 

breast cancer, particularly in those with an elevated BMI (≥25 kg/m2)69. The use of other 

non-aspirin NSAIDs, such as ibuprofen, has also been associated with a decreased CRC risk, 

but further investigation of their overall therapeutic value in the prevention and/or treatment 

of cancer is warranted70.

Lipid-lowering drugs

High serum levels of LDL, a protein complex that is loaded with cholesterol, can lead 

to harmful inflammation. Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 

reductase inhibitors that block cholesterol biosynthesis and are prophylactically used to 

treat CVD. Statins also have poorly understood anti-inflammatory properties, which are 

in fact important for their protective activity against CVD and have not been reported for 

other cholesterol-lowering treatments71. Early observations of the association between statin 

use and CRC risk came from RCTs in the setting of CVD71. In the population-based case–

control Molecular Epidemiology of CRC study72, self-reported statin use for at least 5 years 

was significantly associated with a lower CRC risk (OR 0.50, 95% CI 0.40–0.63), even after 

adjustment for the presence or absence of hypercholesterolaemia as well as NSAID use, 

among other factors (OR 0.53,95% CI 0.38–0.74). A retrospective cohort study has revealed 

that prior statin use might reduce post-colonoscopy CRC incidence73. However, the results 

of meta-analyses of RCTs and other cohort studies indicate only modest protective effects of 

statins on CRC74-76.

In a cohort of 7,657 patients with newly diagnosed CRC, post-diagnosis statin use was 

associated with decreased cancer-specific mortality (fully adjusted HR 0.71, 95% CI 

0.61–0.84)77. Nonetheless, when additional confounding variables were considered, neither 

population-based cohort studies nor the Surveillance, Epidemiology, and End Results 

(SEER)–Medicare database provided evidence supporting improved cancer-specific survival 

among statin users78,79.

Similar to other approaches to HCC chemoprevention, a profound beneficial effect of statin 

use has been observed in patients with viral hepatitis, diabetes or liver cirrhosis yet lower or 

no statistically significant effects have been observed in the general population80-87. Of note, 

the statin-related benefits were greater in Asian populations than in Western populations. 

Observational studies and clinical trials have also revealed that statins might be protective 

against H. pylori-related gastric cancer in both Asian and Western populations88. Well-
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designed, prospective, multicentre studies are needed to further validate the chemopreventive 

activity of statins.

Metformin

Type 2 diabetes mellitus (T2DM) has been linked to an increased incidence of and mortality 

from many types of cancers, including colorectal, pancreatic, hepatobiliary, breast and 

endometrial cancers89. Metformin is an oral biguanide used for the first-line treatment 

of T2DM. Data from epidemiological studies and meta-analyses have demonstrated an 

association between metformin use and a reduced incidence of pancreatic, hepatocellular, 

lung, colorectal and breast cancers in patients with T2DM89. Of note, a systematic review 

encompassing 10 studies involving a total of 334,307 patients with T2DM revealed that 

metformin use was associated with a 50% lower risk of HCC90-92. Specifically, this 

association was seen in a meta-analysis of observational studies (n = 8) after adjusting 

for potential confounding factors, such as the use of other antidiabetic agents; however, the 

evidence is still insufficiently strong to recommend chemoprevention using metformin in 

patients at high risk of HCC90-92. Therefore, additional prospective trials or observational 

studies evaluating the ability of metformin to reduce HCC risk are needed.

The results of a multicentre, double-blind, placebo-controlled phase III trial involving 

151 patients without diabetes who had previously had single or multiple colorectal 

adenomas or polyps resected by endoscopy support a potential role for metformin in CRC 

prevention93. In this group, treatment with low-dose metformin (250 mg per day) resulted 

in a significantly lower incidence of metachronous polyps (RR 0.67, 95% CI 0.47–0.97) or 

adenomas (RR 0.60, 95% CI 0.40–0.92)93.

Given its low cost and good safety profile (the most serious complication is lactic 

acidosis, with an incidence of about 3–10 cases per 100,000 person-years)94, metformin 

has been extensively investigated as a possible therapeutic and chemopreventive agent 

in different cancer settings95 (FIG. 1). The anticancer activity of metformin is being 

evaluated in numerous ongoing phase II and III trials (Supplementary Table 1). For 

example, the combinational use of metformin and low-dose aspirin is being investigated 

for tertiary prevention (to avoid disease recurrence) after the resection of stage I–III CRC 

(NCT03047837)96. Encouragingly, in an open-label, phase II study involving patients with 

advanced-stage EGFR-mutant non-small-cell lung cancer97, the addition of metformin to 

EGFR tyrosine-kinase inhibitor therapy significantly prolonged PFS (median 13.1 months 

versus 9.9 months with EGFR tyrosine-kinase inhibitors alone; P = 0.03) and OS (median 

31.7 months versus 17.5 months, respectively; P=0.02).

Targeted anti-inflammatory agents

IL-1 antagonists.—In the double-blind, placebo-controlled phase III CANTOS trial that 

had the primary aim of investigating the efficacy of the anti-IL-1β antibody canakinumab in 

preventing recurrent CVD, this anti-inflammatory therapy was found to have unanticipated 

activity in preventing lung cancer98. The CANTOS study included 10,061 patients who had 

atherosclerosis, a previous myocardial infarction and high serum levels of high-sensitivity 

C-reactive protein (CRP; ≥2 mg/l) but were free of previously diagnosed cancer. Of note, 
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canakinumab therapy led to a dose-dependent reduction in circulating CRP and IL-6 levels. 

At a median follow-up duration of 3.7 years, canakinumab (300 mg subcutaneously every 3 

months) was associated with a 67% reduction in lung cancer incidence (P < 0.0001), with 

a 39% reduction also seen with 150 mg dosing (P=0.034), as well as with a 77% reduction 

in lung cancer mortality (P = 0.0002), compared with placebo. However, fatal infections or 

sepsis occurred more frequently with canakinumab than with placebo, warranting caution. 

Further trials specifically designed to evaluate the efficacy of canakinumab in cancer 

prevention and treatment are ongoing (Supplementary Table 1).

The first-in-class anti-IL-1α monoclonal antibody MABp1 was developed to target systemic 

inflammation in cancer. Data from phase I–III trials demonstrate that MABp1 is well 

tolerated, with no dose-limiting toxicities observed, and can result in the stabilization of 

disease and symptoms (lean body mass and/or pain, fatigue or anorexia) in patients with 

various treatment-refractory advanced-stage solid tumours99,100. The investigators of the 

phase III trial of this agent99,100, which specifically involved patients with CRC refractory 

to oxaliplatin and irinotecan, concluded that MABp1 constitutes a new standard in the 

management of advanced-stage CRC.

Blockade of the TNF pathway.—Monoclonal antibody-based agents targeting TNF 

(infliximab) or its receptor (etanercept) have also been tested for tolerability and 

biological activity in patients with advanced-stage cancers; the observed therapeutic effects 

were modest, although the blockade of TNF signalling might contribute to disease 

stabilization101-105. ICIs are commonly associated with immune-related adverse events 

(irAEs) such as moderate-to-severe colitis106. Infliximab has been recommended for the 

management of irAEs that are refractory to glucocorticoids107. Furthermore, the treatment 

of advance-stage melanoma with either infliximab or certolizumab (another monoclonal 

antibody-based anti-TNF drug), each administered concomitantly with the anti-CTLA4 

antibody ipilimumab and the anti-PD-1 antibody nivolumab, is currently being evaluated 

in a phase Ib trial (NCT03293784). Notably, anti-TNF therapy might not be feasible in 

patients with hepatitis given the indispensable role of TNF–TNFR1 signalling in liver 

regeneration108.

Anti-IL-6 agents.—IL-6 is one of the most crucial cytokines bridging cancer-promoting 

inflammation and immunosuppression109. Anti-IL-6 drugs, which are routinely used in 

the treatment of autoimmune conditions, have been tested in anticancer applications. In 

several phase I–II clinical trials, however, the clinical response to the anti-IL-6R antibody 

tocilizumab or the anti-IL-6 antibodies clazakizumab and siltuximab has been poor in 

patients with prostate, lung or breast cancers, multiple myeloma, or cancer-related cachexia 

(reviewed previously109,110). Thus, monotherapy with agents targeting IL-6 might have 

limited activity against solid tumours in non-stratified patients, although anti-IL-6 therapy 

is effective in reversing irAEs caused by immunotherapy111. In particular, tocilizumab 

has been approved for the treatment of cytokine-release syndrome (CRS) associated with 

chimeric antigen receptor (CAR) T cell therapy112.

Inhibition of TGFβ signalling.—Transforming growth factor-β (TGFβ)-targeted 

therapies have also been considered for the management of cancer. Galunisertib, a small-
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molecule inhibitor of the TGFβR1 kinase, has been demonstrated to be safe in patients 

with various cancers113. When administered in combination with gemcitabine to patients 

with unresectable pancreatic ductal adenocarcinoma (PDAC) or with sorafenib to patients 

with advanced-stage HCC, galunisertib had modest therapeutic activity114,115. Pending 

the outcome of trials using galunisertib, more-potent and more-specific small-molecule 

inhibitors of TGFβR1 have been developed and are being tested in combination with 

chemotherapy or emerging immunotherapy modalities (Supplementary Table 1). In addition, 

isoform-specific anti-TGFβ, pan-TGFβ or bi-functional anti-PD-L1-TGFβR2 antibodies are 

all being tested in phase I trials of different anticancer indications116.

Targeting cytokines mediating TAMs and MDSCs.—Antibodies or other antagonists 

targeting the colony-stimulating factor 1 receptor (CSF1R), the CC-chemokine receptor 2 

(CCR2) or CCR5, which can deplete tumour-associated macrophages (TAMs) or otherwise 

abrogate their immunosuppressive inflammatory activities, have been found to be safe 

and tolerable in phase I trials117-120. Although anti-CSF1R antibodies did not have 

robust anticancer activity either alone or in combination with chemotherapy117,118, CCR2 

(REF.119) and CCR5 (REF.120) antagonism led to objective clinical responses in patients 

with advanced-stage PDAC or CRC, respectively. Owing to their immunomodulatory 

potential, these TAM-targeted agents are also being explored for potential synergy with 

ICIs121.

The CXC-chemokine receptor 1 (CXCR1) and CXCR2 antagonist SX-682, which was 

designed to disrupt the trafficking of myeloid-derived suppressor cells (MDSCs) to tumours, 

is being tested in combination with pembrolizumab (an anti-PD-1 antibody) in a phase 

I/II trial involving patients with metastatic melanoma (NCT03161431). Additionally, data 

from the COMBAT trial (NCT02826486) indicate that the CXCR4 antagonist BL-8040 

depletes MDSCs and increases the tumour infiltration of CD8+ T cells, with evidence 

also indicating that this agent might cooperate with pembrolizumab to improve antitumour 

immune responses and chemotherapy efficacy in patients with PDAC122.

Natural anti-inflammatory supplements

In addition to the drugs discussed above, some natural compounds might also help control 

inflammation and cancer. As an antioxidant and anti-inflammatory dietary supplement, 

vitamin C has been extensively explored for potential anticancer effects. However, 

contemporary data indicate that pharmacological vitamin C can enhance the cytotoxicity 

and therapeutic sensitivity of cancer cells only when administered intravenously at high 

doses and that it exerts anticancer effects primarily via pro-oxidant, rather than antioxidant, 

activity123.

Vitamin D can regulate the host immune system to potentiate immune responses as well 

as to attenuate harmful inflammatory reactions124. The results of several prospective 

observational studies indicate that plasma levels of the major circulating form of vitamin 

D, 25-hydroxyvitamin D, are inversely associated with the risk of CRC and prostate 

cancer125-127. Pre-treatment vitamin D levels have also been associated with PFS and 

OS in patients with advanced-stage CRC or Hodgkin lymphoma who received first-line 
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chemotherapy128,129. However, a prophylactic benefit of vitamin D supplementation remains 

questionable. In 2,303 randomized postmenopausal women without a prior cancer diagnosis, 

nutritional supplementation with vitamin D and calcium did not reduce the risk of all-type 

cancer at 4 years compared with placebo130. In the VITAL (Vitamin D and Omega-3) 

trial, which involved a total of 25,871 cancer-free men and women (aged >50 years and 

>55 years, respectively), vitamin D supplementation (2,000 IU per day) for a median of 

5.3 years was not associated with a reduced incidence of invasive cancer compared with 

placebo131. The findings of a meta-analysis of 52 RCTs involving 75,454 participants 

suggest that vitamin D supplementation could reduce the risk of cancer-related death by 

16%132. Nonetheless, in the double-blind, phase II SUNSHINE trial involving patients 

with advanced-stage CRC, the addition of high-dose (8,000 IU per day for 14 days, 

followed by 4,000 IU per day) versus standard-dose (400 IU per day) vitamin D to 

standard chemotherapy resulted in no statistically significant difference in PFS (although 

a statistically significant difference in PFS was observed on multivariate analysis)133. 

Likewise, in the randomized single-centre AMATERASU trial in patients with digestive-

tract cancers, postoperative vitamin D supplementation did not result in improved 5-

year relapse-free survival or OS as compared with placebo134. In keeping with the anti-

inflammatory properties of vitamin D, intake of this vitamin has been correlated with a 

reduced risk of ICI-related colitis135.

The administration of long-chain omega-3 fatty acids, an anti-inflammatory nutritional 

supplement that is often tested in parallel with vitamin D, has not been found to be effective 

in cancer prevention136,137. However, omega-3 supplementation has been associated with 

a reduced risk of colorectal adenomas among individuals with low plasma levels of such 

fatty acids at baseline and in the African-American population (OR 0.59, 95% CI 0.35–

1.00)137. Similarly, the seAFOod Polyp Prevention trial did not meet its primary end point 

(an improved adenoma detection rate) but did suggest that the omega-3 polyunsaturated 

fatty acid eicosapentaenoic acid has a chemopreventive effect in reducing recurrent adenoma 

multiplicity138. Of note, contradictory results have been obtained in trials investigating other 

dietary supplements, including β-carotene, α-tocopherol (vitamin E), selenium, vitamin 

B12 and folic acid, some of which were even associated with an increased cancer risk or 

diminished chemotherapy responses38,137,139-143.

The antimicrobial, anti-platelet and lipid-lowering effects attributed to garlic supplements 

have earned these supplements a place in cancer prevention strategies. In a RCT conducted 

in a high-risk region for gastric cancer in Shandong, China, 3,365 participants were assigned 

to three different interventions (H. pylori treatment; vitamin C, vitamin E and selenium 

supplementation; or garlic extract and oil supplementation) or appropriate placebos; among 

these individuals, the use of garlic supplements for >7 years did not decrease the incidence 

of gastric cancer but did significantly reduce mortality from this disease (HR 0.66, 95% CI 

0.43–1.00)38.

As a plant-derived natural alkaloid with antioxidant and antimicrobial properties, berberine 

might have a wide range of therapeutic benefits for patients with digestive system or 

metabolic diseases. In a double-blind, placebo-controlled RCT, berberine at 0.3 g twice 

daily significantly decreased the recurrence rate of colorectal adenoma and polypoid lesions 
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after polypectomy (RR 0.77, 95% CI 0.66–0.91; P=0.001)144. Given the rather short follow-

up duration of this study (2 years), the ability of berberine to prevent the occurrence of 

advanced colorectal adenomas or CRC remains to be determined.

Mechanisms of anti-inflammatory therapy

Suppression of oncogenic pathways

Targeting tumour cell-intrinsic pathways.—COX2-PGE2 signalling can directly 

confer epithelial cells with protumorigenic traits, thus facilitating the development 

of inflammation-driven cancer (FIG. 2). COX2 can activate the AKT, mTOR and 

NF-κB pathways to support cancer cell proliferation either directly or via PGE2 

signalling. Consistently, aspirin and selective COX2 inhibitors have pro-apoptotic and 

antiproliferative effects on COX2-overexpressing cancer cells145. In addition, PGE2 silences 

tumour-suppressor genes by reinforcing their promoter methylation through a EP4–DNA 

methyltransferase pathway146. Correspondingly, combined treatment with celecoxib and 

decitabine effectively mitigates intestinal tumour development in ApcMin/+ mice146. 

Moreover, hepatic COX2 overexpression induces spontaneous HCC development in mice 

by reducing the expression of methylcytosine dioxygenase TET1 (a DNA demethylase), 

thereby resulting in increased DNA methylation, epigenetic silencing of tumour suppressor 

genes and in the activation of oncogenic pathways, which can be reversed by celecoxib 

treatment40. NSAID treatment can also neutralize a senescence-associated inflammatory 

response that promotes the growth and invasiveness of p53-deficient intestinal cells and thus 

prevents colorectal carcinogenesis147. Surprisingly, PGE2 also promotes colon regeneration 

in preclinical models of colitis through feedforward activation of the transcriptional 

regulator YAP1, which can trigger tumorigenesis; accordingly, administration of the 

NSAID indomethacin or of an EP4 antagonist exacerbates colitis but can prevent colon 

tumorigenesis in mice148.

Via competitive inhibition of HMG-CoA reductase, the rate-limiting enzyme of the 

mevalonate pathway, statins can activate the AMPK and p38 MAPK pathways or suppress 

MYC phosphorylation to induce cell cycle arrest and apoptosis149-151. Similarly, metformin 

improves insulin sensitivity through the indirect activation of AMPK, which inhibits the 

activity of mTOR complex 1 (mTORC1), thereby leading to cell growth arrest and resulting 

in a broad cancer chemopreventive effect152. Metformin can also suppress cyclin D1 

expression as well as the inflammatory responses associated with stem cell activation152-154. 

Consistent with the link between diabetes and cancer, hyperglycaemia impairs the AMPK-

mediated phosphorylation and stabilization of TET2, leading to global DNA demethylation 

and the inhibition of tumour growth in mice; the anticancer effects of metformin might 

also depend on the reprogramming of a cancer-favourable epigenome via the activation of 

this AMPK-TET2 pathway155. Similarly, metformin has been shown to integrate metabolic 

and epigenetic signalling via an AMPK–SETD2–EZH2 axis, thereby suppressing prostate 

cancer metastasis156. Curiously, metformin impairs tumour growth only if administered 

during periods of fasting-induced hypoglycaemia in mice157. Mechanistically, the inhibition 

of CIP2A by metformin together with upregulation of the PP2A B subunit isoform B56δ 
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under low glucose conditions activates GSK3β signalling, which leads to reduced levels of 

the pro-survival protein MCL1 and, ultimately, cancer cell death157 (FIG. 2).

Targeting tumour cell-extrinsic factors.—Early studies of diethylnitrosamine-induced 

HCC in mice have shown that IL-1α released by necrotic hepatocytes acts as an 

inflammatory switch that supports compensatory cell proliferation and HCC development, 

which could be counteracted using the IL-1R antagonist anakinra158. IL-6 is one of the 

central orchestrators of the inflammation-cancer interface, which directly enhances the 

proliferative and metastatic capacities of cancer cells159. Mouse models had revealed the 

therapeutic potential of drugs that target IL-6 or its receptor but, rather disappointingly, 

tocilizumab, clazakizumab and siltuximab had limited therapeutic activity in patients with 

cancer cachexia109. A novel IL-6 family member, leukaemia inhibitory factor (LIF), has 

been identified as a key pro-tumour paracrine factor secreted by activated pancreatic stellate 

cells; LIF blockade using a monoclonal antibody restricted the progression of PDAC in mice 

and augmented responses to chemotherapy by converting the cancer cells to a less aggressive 

and more drug-susceptible state9. In human and mouse prostate cancers, IL-23 produced 

by MDSCs can enhance androgen receptor (AR) activity in cancer cells, thus promoting a 

castration-resistant phenotype10. Accordingly, an anti-IL-23 antibody reversed resistance to 

androgen-deprivation therapy in a mouse model of prostate cancer10.

Receptor activator of nuclear factor-κB (RANK) signalling governs osteoclastogenesis and 

bone resorption and has been examined as a therapeutic target in patients with breast 

or prostate cancer bone metastases11. Interestingly, RANK ligand (RANKL)-producing 

regulatory T cells also promote the spread of RANK-expressing mammary carcinoma cells 

to the lung in mouse models160. Accordingly, the administration of an antagonistic RANK–

Fc fusion protein substantially reduces pulmonary metastasis in these models160. Myeloid 

cell-derived thymic stromal lymphopoietin promotes the survival of tumour cells through 

induction of the antiapoptotic molecule BCL-2 and a neutralizing antibody to thymic 

stromal lymphopoietin inhibits the growth of both primary tumours and lung metastases 

in mice161.

CXCR4 is a chemokine receptor commonly expressed by multiple types of tumour 

cells; its ligand, CXCL12, is a component of the inflammatory TME and can enhance 

the survival and migration of tumour cells. Systemic administration of the CXCR4 

antagonist plerixafor (AMD3100) inhibits the growth of intracranial glioblastoma and 

medulloblastoma xenografts in mice by reducing activation of the ERK and AKT signalling 

pathways162. Likewise, CXCR4 inhibition with motixafortide (BL-8040) restricts the growth 

of mouse neuroblastomas via the tumour-suppressive microRNAs miR-15a and miR-16-1, 

which silence BCL-2 and cyclin D1 expression163. Integrins, lectins and neuregulins are 

also known to contribute to the inflammatory TME and might therefore prove to be 

worthwhile therapeutic targets164-166 if their oncogenic capacities can be inhibited using 

the corresponding antagonists.

Dietary vitamin D3 and its analogue calcitriol regulate multiple genes by binding to the 

nuclear vitamin D receptor (VDR), a member of the steroid–thyroid–retinoid receptor 

superfamily of ligand-activated transcription factors. Theoretically, vitamin D and calcitriol 
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could suppress inflammation, cancer cell proliferation, invasion and metastasis; such 

anticancer effects have been validated in mouse xenograft models but, unfortunately, have 

not consistently been demonstrated in humans125.

Disrupting the tumour-supporting stroma

Targeting inflammatory messengers.—Some soluble factors act as envoys by 

shuttling between the tumour and its stroma, thus constituting important targets for 

anti-inflammatory treatments (FIG. 3). In the aforementioned diethylnitrosamine-induced 

model of HCC, excessive production of reactive oxygen species (ROS) by inflammatory 

stromal cells results in oxidative DNA damage, hepatocyte death and compensatory cell 

proliferation167. Accordingly, oral administration of the chemical antioxidant butylated 

hydroxyanisole or vitamin E decreases ROS production and prevents diethylnitrosamine-

induced HCC167. Similarly, butylated hydroxyanisole attenuates ROS-elicited TNF and 

IL-1β production by Kupffer cells and can prevent pre-malignant cholangiocellular lesions 

in mouse models of intrahepatic cholangiocarcinoma168. In addition, the antioxidant N-

acetylcysteine prevents ROS-induced T cell death upon hepatic steatosis and delays HCC 

development in mice169 (FIG. 3a).

IL-17 is implicated in the pathogenesis of both non-alcoholic steatohepatitis (NASH) 

and alcoholic steatohepatitis, including links with liver inflammation, fibrogenesis and 

carcinogenesis. In mice, targeting IL-17 or its upstream inducer IL-23 markedly suppressed 

the development of NASH-associated or alcoholic steatohepatitis-associated HCC170,171. 

Intriguingly, CD4+ T cell-derived IL-17 was found to blunt the anticancer efficacy of 

chemotherapeutic agents in mice and this effect could be averted by blocking the IL-1β-

IL-1R pathway172 (FIG. 3b).

Complement component 3 (C3) is upregulated in mouse and human leptomeningeal 

metastatic cells and can activate C3a receptor (C3aR) signalling in the choroid plexus 

epithelium, which in turn can alter the composition of the cerebrospinal fluid in a 

manner that promotes tumour growth173. Correspondingly, a C3aR antagonist is effective 

in reducing breast and lung cancer leptomeningeal metastases in mice173 (FIG. 3c).

The glycosaminoglycan hyaluronan (HA), a major component of the extracellular matrix, is 

abundant in the microenvironment of chronic inflammatory diseases as well as of several 

malignancies. In a genetically engineered mouse model (GEMM) of PDAC, HA has been 

identified as a crucial modifier of tumour vascular function and enzymatic depletion of 

HA using PEGylated human recombinant PH20 hyaluronidase (PEGPH20) substantially 

enhanced drug delivery and therapeutic efficacy with diminished tumour growth174 (FIG. 

3d). Unfortunately, however, the addition of PEGPH20 to standard chemotherapy was found 

to increase drug toxicity and thus to decrease treatment durations in patients with this 

disease175.

Targeting inflammatory cells.—Macrophages are the dominant orchestrators of cancer-

promoting inflammatory signals and an abundance of TAMs is associated with high-

grade tumours and a poor prognosis176. The cytokine CSF1 has important roles in 

regulating macrophage recruitment and function through CSF1R signalling (FIG. 3e). 
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CSF1R inhibition can specifically deplete TAMs and suppresses glioma progression177 

and lung cancer brain metastasis178 in mouse models. Increased CSF1 expression has 

been observed in patients with prostate cancers treated with radiotherapy or androgen-

deprivation therapy; in mouse models, this upregulation of CSF1 culminates in acquired 

treatment resistance, which can be reversed through CSF1R inhibition179,180. In a different 

model, CSF1R inhibition does not affect mammary tumour growth or metastasis but 

rather sensitizes the tumours to chemotherapy181. Chemokines and chemokine receptors 

have been implicated in tumour infiltration by macrophages. Accordingly, antibodies 

targeting CCL2 or CCL5 impede tumour growth and dissemination in multiple preclinical 

models176. In a mouse model with excessive complement activation, the administration 

of a complement component C5a anaphylatoxin chemotactic receptor (C5aR) antagonist 

attenuates macrophage-mediated inflammation and tumorigenesis182. The G protein-coupled 

receptor 109A (GPR109A) has anti-inflammatory effects on colonic macrophages and 

dendritic cells (DCs) and is essential for the induction of IL-18 expression in colonic 

epithelium; the GPR109A agonists niacin (vitamin B3) and butyrate efficiently suppress 

inflammation-induced and ApcMin/+ intestinal tumours in mice183.

Neutrophils often accumulate in both primary tumours and pre-metastatic niches in response 

to diverse inflammatory milieus184. Moreover, the neutrophil-depleting antibody anti-Ly6G 

effectively prevents tumour cell dissemination to distant organs in mice185 (FIG. 3e). Pro-

inflammatory molecules, such as high mobility group box 1 (HMGB1), IL-1β, IL-17 and 

G-CSF, help shape the tumour-promoting phenotypes of neutrophils; thus, the neutralization 

or inhibition of these factors is effective in reducing metastasis in preclinical models186,187. 

Additionally, pharmacological inhibition of the leukotriene-generating enzyme arachidonate 

5-lipoxygenase or neutrophil extracellular trap-associated signals (the latter using anti-

CCDC25 antibodies) interferes with the pro-metastatic functions of neutrophils in many 

settings188-190.

Fibroblasts are typically the most abundant stromal component within solid tumours 

and these cells can become activated during tissue inflammation and fibrogenesis. As 

such, cancer-associated fibroblasts (CAFs) are integrally involved in cancer-promoting 

inflammation. CAF-targeting therapies, including fibroblast activation protein-neutralizing 

antibodies, CXCL12–CXCR4 pathway antagonists, all-trans retinoic acid, the VDR ligand 

calcipotriol, and the immunomodulatory and anti-inflammatory agent ursodeoxycholic acid, 

have demonstrated anticancer activities in preclinical models191,192 (FIG. 3e).

Platelets are hypothesized to promote tumour cell dissemination. For example, platelet 

accumulation and tumour angiogenesis is markedly inhibited using antiplatelet or anti-

IL-6 antibodies, which enhances the therapeutic efficacy of paclitaxel in a mouse model 

of ovarian cancer193. Moreover, suppression of platelet activation and aggregation using 

aspirin and clopidogrel can abrogate HBV-associated or NASH-associated inflammation and 

carcinogenesis194,195 (FIG. 3e).

Promotion of antitumour immunity

Using conventional anti-inflammatory drugs.—Mounting evidence from preclinical 

studies indicates that conventional anti-inflammatory drugs exert immunomodulatory 
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functions (FIG. 3f,g). Notably, COX inhibition synergizes with PD-1 inhibition in 

eradicating mouse tumours68,196. Mechanistically, tumour-derived PGE2 impairs the natural 

killer cell-mediated recruitment of conventional type 1 DCs, thus culminating in tumour 

immune evasion, which could be reversed by treatment with aspirin or celecoxib68,196 (FIG. 

3g). Consistent with its immunosuppressive properties, PGE2 produced by senescent hepatic 

stellate cells directly compromises T cell function in mice with HCC induced by a high-fat 

diet197. Accordingly, an EP4 antagonist restores antitumour immunity and attenuates HCC 

development in this model197. PGE2 has also been implicated in the M2 polarization of 

macrophages198.

Metformin triggers AMPK activation and consequently silences hypoxia-inducible factor-α, 

which is a transcription factor crucial in inducing CD39 and CD73 expression on MDSCs; 

CD39 and CD73 mediate production of the immunosuppressive factor adenosine; therefore, 

suppression of the expression of these proteins by metformin reinvigorated the antitumour 

activity of CD8+ T cells in patients with ovarian cancer199 (FIG. 3g). Interestingly, 

metformin-induced AMPK activation can directly cause PD-L1 phosphorylation, which 

results in abnormal glycosylation, endoplasmic reticulum accumulation and endoplasmic 

reticulum-associated protein degradation, thereby manifesting a potential mechanism for 

increased T cell activity and, thus, immunotherapy efficacy200 (FIG. 3f). Furthermore, 

increased infiltration of CD8+ T cells and other immune cells into the TME has been 

observed in patients with ESCC receiving low-dose metformin201.

The modulation of cholesterol metabolism can also potentiate T cell receptor signalling 

and prevent T cell exhaustion. Specifically, the disruption of cholesterol esterification using 

the acyl-CoA cholesterol acyltransferase 1 inhibitor avasimibe potentiates the antitumour 

effect of PD-1 inhibition in preclinical models202,203. Moreover, conventional anti-platelet 

agents can improve T cell-based therapy in mouse models in which platelets constrain 

T cell-mediated anticancer immunity through a glycoprotein A repetitions predominant 

(GARP)–TGFβ axis204 (FIG. 3g).

Using targeted agents.—Targeted anti-inflammatory agents might also harness the host 

immune system to fight cancer and many of these agents depend on the manipulation 

of myeloid cell plasticity (FIG. 3). CSF1R inhibition directly depletes or reprogrammes 

immunosuppressive TAMs and consequently improves antitumour immune responses in 

many preclinical models205-208. TAMs can also have an important role in antibody-based 

cancer therapy through antibody-dependent cellular phagocytosis. Surprisingly, when 

phagocytosing tumour DNA, TAMs impart immunosuppression through the upregulation 

of PD-L1 and indoleamine 2,3-dioxygenase (IDO) expression, which is dependent on 

inflammasome activation and IL-1β production; therefore, treatment with an anti-IL-1β 
antibody substantially improves the efficacy of anti-HER2 therapy in immunocompetent 

mice bearing HER2+ breast cancer cells209. In another model of breast cancer210, genetic 

deficiency of IL-1β expression increases the intratumoural DC to macrophage ratio and 

anti-IL-1β antibodies synergize with anti-PD-1 treatment in tumour elimination. In response 

to inflammatory stimulation or chemoattraction, CD11b+Gr1+ myeloid cells frequently 

infiltrate tumour sites and exert an immunosuppressive effect in various mouse models; 

the pharmacological depletion or segregation of these cells (which are typically referred 
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to as MDSCs) from tumours using an anti-Gr1 antibody or a CXCR1/2 antagonist, 

respectively, restored antitumour immunity211-214. Notably, the overexpression of IL-1β 
led to MDSC mobilization and activation in the early stage of gastric carcinogenesis and, 

therefore, anti-IL-1β therapy might prevent cancer development by stimulating turnover of 

the immunosuppressive environment of neoplastic tissues215.

Remarkably, studies using human CRC samples have revealed that inflammatory DCs 

can induce IL-17-producing γδT (γδT17) cells in an IL-23-dependent manner216. In 

addition to IL-17, these γδT17 cells also secrete TNF, IL-8 and GM-CSF, all of which 

can attract MDSCs and sustain their immunosuppressive activity, which is reversible with 

IL-23 neutralization216 (FIG. 3g). Furthermore, in a GEMM of inflammatory lung cancer, 

co-blockade of IL-23 and CCL9 abrogated MYC-induced immune exclusion and tumour 

progression217.

The C5a–C5aR axis contributes to the immunosuppressive effects of myeloid cells. For 

example, C5a generated locally in the TME can recruit MDSCs and promote their 

production of ROS and reactive nitrogen species, which hamper the antitumour activity 

of CD8+ T cells. Preclinically, the pharmacological inhibition or genetic ablation of 

C5aR impairs tumour growth via increases in the abundance and cytotoxicity of CD8+ 

T cells218. Furthermore, the C5aR antagonist PMX-53 improves the antitumour efficacy 

of immunotherapy or chemotherapy in various mouse models219,220. A phase I trial of 

the C5aR1 monoclonal antibody IPH5401 in combination with the anti-PD-L1 antibody 

durvalumab in patients with advanced-stage solid tumours is ongoing221 (STELLAR-001; 

NCT03665129). Phagocytosis checkpoint proteins, such as CD47, are additional novel 

targets for cancer immunotherapy222 and might provide more opportunities for combinations 

with anti-inflammatory agents.

In addition to myeloid cells, CAFs, B cells, γδT cells, type 1 innate lymphoid cells (ILC1) 

and mucosal-associated invariant T cells can also curtail antitumour immune responses 

under certain inflammatory conditions191,223-227 Nonetheless, specific anti-inflammatory 

strategies for targeting these cell types are lacking, with the possible exception of 

CAFs. For instance, CXCR4 inhibition can render tumours responsive to immunotherapy 

by overcoming the fibrotic and immunosuppressive TME in both HCC and PDAC 

models228,229.

TNF can directly trigger activation-induced death of T cells, whereas TGFβ hampers 

cytotoxic immune cell function (FIG. 3g). Hence, targeting either of these cytokines using 

etanercept or galunisertib, respectively, enhances the antitumour effects of ICIs108,116. 

Oncogenic pathways also impart unconventional inflammatory signals to directly suppress 

cytotoxic lymphocytes. For example, loss of the tumour suppressors APC in intestinal 

tumour cells or of PTEN in melanoma cells causes them to secrete Dickkopf-related 

protein 2 (DKK2), which impedes signal transducer and activator of transcription 5 (STAT5) 

activation within immune cells via binding to LDL receptor-related protein 5 (LRP5)230. 

Accordingly, an anti-DKK2 antibody reactivates tumour-infiltrating natural killer cells and 

CD8+ T cells and potentiates responses to PD-1 inhibition in mouse models of these 

cancers230.
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Mitigating irAEs.—Anti-inflammatory agents also have indispensable roles in attenuating 

irAEs. As discussed, judicious use of an anti-IL-6R antibody can attenuate CAR T 

cell-induced CRS, which can otherwise limit the therapeutic value of this innovative 

immunotherapy231. IL-1R antagonism via anakinra or CAR T cell engineering is also 

capable of abrogating CRS-related mortality in mouse models231. Likewise, prophylactic 

use of TNF antagonists can ameliorate immune-related colitis associated with dual anti-

CTLA4 and anti-PD-1 inhibition in a mouse model of colon cancer108. Of importance, 

these anti-inflammatory therapies can further enhance immunotherapy efficacy and prolong 

survival in preclinical models, which are desirable characteristics for clinical use.

Pro-tumour perils of anti-inflammatories

Increasing clinical and preclinical evidence supports the broad therapeutic activity of 

metformin across a wide range of cancer types. However, BRAF-mutant melanoma has been 

demonstrated to escape the growth-inhibitory stress imposed by metformin232. The dual-

specificity phosphatase DUSP6 negatively regulates ERK activity downstream of oncogenic 

BRAF, and AMPK hyperactivation by metformin results in the targeting of DUSP6 

for degradation and thereby potentiates the ERK-driven expression of VEGFA, which 

bypasses the inhibitory effects of metformin and AMPK on mTORC1 signalling; thus, 

metformin counterproductively stimulates angiogenesis and accelerates tumour growth232. 

Inhibitors of mTOR (the kinase component of mTORC1) have long been considered as 

potential cancer treatments. As an immunosuppressive drug, however, the mTOR inhibitor 

rapamycin was found to activate the pro-tumorigenic factor STAT3 in a mouse model 

of steatotic HCC. Mechanistically, hepatocyte-specific loss of mTORC1 activity promoted 

hepatocarcinogenesis through the hyperactivation of AKT owing to the disruption of a 

negative feedback loop233. Another potential peril associated with metformin use relates to 

the consequent increases in circulating levels of growth/differentiation factor 15 (GDF15), 

which induces weight loss and correlates with cachexia and poor survival outcomes in 

patients with cancer234,235.

With statin treatment for PDAC, the disruption of cholesterol biosynthesis can induce 

the sterol response element-binding protein (SREBP)-dependent expression of TGFβ 
and the epithehal-to-mesenchymal transition in cancer cells236, which might promote 

disease progression. Glucocorticoids are generally used as anti-inflammatory and 

immunosuppressive agents for treating chemotherapy-related or immunotherapy-induced 

adverse events in patients with advanced-stage cancer. Multiomics data from patient-derived 

xenograft models indicate that these agents can activate glucocorticoid receptor signalling 

at distant metastatic sites, which in turn increases metastatic colonization and reduces 

mouse survival via upregulation of the tyrosine-protein kinase transmembrane receptor 

ROR1 (REF.237). The intravasation of tumour cells is a key process involved in metastatic 

dissemination to distant organs. Accordingly, the anticoagulant warfarin has been shown to 

increase vascular leakiness in mammary tumours, which was accompanied by substantial 

increases in the numbers of circulating tumour cells and lung metastases238.

Cytokine-specific or cytokine receptor-specific therapeutic agents have been tested in proof-

of-concept trials across many cancer types; however, paradoxical findings underscore the 
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importance of careful clinical application and further interrogation into their molecular 

mechanism. Despite the reported clinical benefits of anti-IL-1β therapy98, IL-1β is essential 

for cancer immunosurveillance in various contexts (FIG. 4). First, immunogenic cell death 

in established tumours is associated with the activation of DCs with an intact inflammasome 

machinery to secrete IL-1β, which primes tumour-specific T cell responses239. Conversely, 

the anticancer effects of chemotherapeutic agents are dampened with the coadministration 

of an IL-1β-neutralizing antibody239. Second, the IL-1β-STAT1-interferon regulatory factor 

1 (IRF1) axis is fundamental for IL-9 and IL-21 production by T helper 9 (TH9) cells, as 

demonstrated by the downregulation of Irf1, Il9 and Il21 expression in tumour-infiltrating 

TH9 cells following treatment with an IL-1R antagonist; this pathway was found to be 

crucial for the anticancer functions of TH9 cells in mice240. Third, in an Apc-based mouse 

model of CRC, IL-1R signalling in epithelial cells and T cells has pro-tumorigenic effects, 

whereas myeloid cell-specific IL-1R signalling counteracts tumour-promoting dysbiosis and 

inflammation241. Fourth, in mouse models of breast cancer, a systemic IL-1β-mediated 

inflammatory response has been shown to prevent metastasis-initiating cell differentiation 

and colonization of distant tissues, and the inhibition of IL-1R signalling at the primary 

tumour site results in metastatic progression242. In keeping with these preclinical findings, 

patients with breast cancer expressing high levels of IL-1β have been found to have better 

survival outcomes than those with low IL-1β expression242. Similarly, several different 

counterintuitive effects might explain the disappointing clinical outcomes achieved to date 

with agents targeting CSF1R. For example, in a GEMM of glioblastoma, macrophages 

that persist following CSF1R inhibition produce insulin-like growth factor 1 (IGF1), which 

can drive tumour recurrence through PI3K activation12. Surprisingly, CSF1R inhibition 

can also affect CAFs and, in particular, causes these cells to express the granulocyte-

specific chemokine CXCL1, which initiates an immune inhibitory circuit243. Compelling 

evidence from single cell-based analyses of CRCs from mice indicates that antagonism of 

CSF1R depletes inflammatory F4/80hi myeloid cell populations, while sparing those with 

pro-angiogenic and immunosuppressive properties13. In mouse models of breast cancer, 

treatment with a CCL2 antagonist reduces the abundance of TAMs and metastases by 

retaining inflammatory monocytes in the bone marrow, but cessation of such treatment 

results in a lethal rebound effect mediated by IL-6 and VEGF secretion244.

Conceivably, neutrophil-targeting strategies might also have poor anticancer efficacy 

because neutrophils have immunostimulatory activities in certain scenarios245,246. Likewise, 

the complement system might enhance the clinical responses to various cancer treatments, 

including monoclonal antibodies, vaccines and radiotherapy, reminiscent of the risks 

associated with complement-targeted therapeutics221,247. The depletion of CAFs might also 

induce immune evasion, for example, by increasing the abundance of regulatory T cells in 

the TME of PDAC248.

Antioxidants are believed to exert anticancer effects owing primarily to interference with 

pro-tumorigenic redox signalling. Paradoxically, in some preclinical models, antioxidant 

treatments accelerate tumour progression and metastasis through the inactivation of tumour 

suppressors or metabolic reprogramming249-252, mirroring outcomes observed in the clinical 

setting143.
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Given the extensive molecular intersections and crosstalk, cellular adaptability, and organ-

specific contexture, anti-inflammatory therapy targeting a single immunomodulatory factor 

might lead to tumour evolution or TME remodelling. Together, the paradoxical findings 

discussed above should prompt special caution when translating anti-inflammatory therapies 

into clinical use.

Conclusions

To date, many drugs and drug candidates have been used both preclinically and clinically to 

curtail the inflammatory conditions that fuel cancer development and progression. Numerous 

preclinical studies have provided insights into the mechanisms underlying the intricate 

interactions between cancer, inflammation and immunity, which should eventually lead to 

more innovative anti-inflammatory cancer therapies reaching the clinic. Considering the 

advances outlined herein, researchers and oncologists working together should be capable of 

developing successful strategies to inhibit cancer-related inflammation and of making such 

an approach a main-stay of modern cancer therapy. So far, anti-inflammatory strategies have 

proven rather effective in cancer prevention and conventional drugs such as aspirin have led 

to a much larger reduction in cancer mortality than novel and far more sophisticated targeted 

therapies. Given our improved understanding of the TME, research tools and animal models, 

we are hopeful that, in the next decade, several anti-inflammatory therapies will advance to 

the clinic and prove effective in preventing or treating cancer.

The numerous and diverse links between cancer and inflammation all present therapeutic 

opportunities, especially when the concept of ‘inflammation’ is broadened to include viral, 

bacterial and fungal infections. However, numerous hurdles and uncertainties remain in 

every step of translating an anti-inflammatory agent into clinical use. First, whether the 

inflammatory redundancies identified in preclinical models are targetable and druggable 

remains unclear. Second, the heterogeneity and plasticity of the TME present problems in 

targeting a single cytokine or even a single cell type. The effects of disrupted negative 

feedback loops and the activation of compensatory pathways is also hard to predict. 

Third, given that patients with cancer are typically assigned to conventional treatments, 

a need exists to identify more specific inflammatory targets that are responsible for 

therapy resistance or adverse events. Fourth, contrary to other targeted therapies, clinically 

applicable biomarkers for the selection of anti-inflammatory agents and assessment of 

their anticancer effects are lacking. Fifth, the effects of endogenous factors, such as the 

patients age and microbiota, on the magnitude of inflammatory responses and on the 

outcomes of anti-inflammatory treatments remain to be determined253,254. Notably, the 

composition of the microbiota has been shown to affect immunotherapy efficacy, suggesting 

that microbial interventions could potentially be leveraged to improve cancer prevention 

or treatment255,256. By necessity, defining a therapeutic paradigm for anti-inflammatory 

treatments would require optimized pharmaceutical programmes as well as appropriate 

animal models and clinical trial designs. In addition, integrative high-resolution analyses 

using multiomics, single-cell and/or spatial-based technologies should provide deeper 

insights into local therapeutic responses and the exact cellular and molecular consequences 

of anti-inflammatory treatments. Finally, the deployment of personalized, multi-agent, anti-

Hou et al. Page 19

Nat Rev Clin Oncol. Author manuscript; available in PMC 2022 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inflammatory regimens in the era of immunotherapy is possibly another key to treating 

cancer.
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Key points

• Inflammation-related biological processes influence all stages of cancer 

development and treatment; environmental risk factors and both tumour-

extrinsic and tumour-intrinsic inflammatory processes have been linked to 

tumour initiation, promotion and progression.

• Several conventional drugs with anti-inflammatory properties have 

demonstrated protective effects against cancer but are yet to be deployed in 

at-risk populations and properly evaluated for therapeutic applicability.

• Cytokine-specific agents with anti-inflammatory activities have antitumour 

efficacy in preclinical studies but evidence demonstrating activity against 

solid tumours in clinical trials is scarce.

• Preclinical studies have revealed that anti-inflammatory drugs can suppress 

cancer development through multiple mechanisms.

• Monotherapy with anti-inflammatory agents can elicit cell adaptability and/or 

affect tumour evolution in heterogeneous cancer types, leading to therapy 

resistance or even accelerated disease progression.

• Overcoming current obstacles to the clinical introduction of anti-

inflammatory therapy will require the development of effective combination 

regimens and the identification of reliable response biomarkers.
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Box 1∣

Antitumour immunity versus cancer-promoting inflammation

External stimuli, host-specific endogenous factors and therapeutic interventions can 

promote the recruitment and activation of various types of inflammatory and/or immune 

cells that shape the tumour microenvironment18. Short-term inflammation, such as 

that induced by immune adjuvants used in vaccination approaches, can potentiate 

anticancer immunity through the enhancement of T cell priming; such effects can 

shape the course of early tumour development (through immune elimination and 

immunoediting) but can also enhance responses to immunotherapy257. By contrast, 

chronic inflammation is immunosuppressive and thus cancer promoting15. Accordingly, 

so-called ‘hot’ tumours that harbour extensive inflammatory infiltrates are not necessarily 

responsive to immunotherapy, unless immunosuppressive inflammation is attenuated. 

Not surprisingly, inducers of antitumour immunity, such as infectious or commensal 

microbes, as well as danger-associated molecular patterns can also trigger cancer-related 

inflammation and contribute to a refractory phenotype258-260.

The cancer-immunity cycle hypothesis261 posits that an optimal anticancer immune 

response relies on the iterative cooperation between immune cells, host factors and 

tumour antigens. This cycle is initiated by the release of tumour antigens and 

their presentation to T cells and is terminated upon the clearance of tumour cells 

by cytotoxic T lymphocytes. Unless efficiently initiated and precisely maintained, 

the cancer-immunity cycle can be broken and replaced by inflammation-promoted 

tumour progression2. By exploiting self-tolerance mechanisms and microenvironmental 

assistance, cancer cells can escape cytotoxic T lymphocyte-mediated killing, often by 

downregulating MHC class I-dependent antigen presentation262, but also through the 

production of immunosuppressive factors18. Thus, tumour cell-autonomous inflammatory 

traits alter the molecular circuits and cellular interactions that form the basis for 

antitumour immunity, such that they are highjacked to support malignant progression14.

When treating an immune ‘hot’ tumour, consideration of the common mechanisms 

underlying anticancer immunity and cancer-promoting inflammation is required. 

Hopefully, anti-inflammatory therapies will be found effective not only in abrogating 

tumour growth and progression but also in boosting anticancer immunity in synergy with 

other immunotherapies, such as immune-checkpoint inhibitors.
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Fig. 1 ∣. Evidence grading for anti-inflammatory agents in cancer prevention.
a ∣ Statistics of anti-inflammatory treatments assigned to patients with different cancer types. 

Each small circle represents a cancer type for which anti-inflammatory treatments have been 

examined. The colour of the circles reflects the level of effect defined based on the number 

of positive versus negative prospective trials registered in the ClinicalTrials.gov database. b ∣ 
Anti-inflammatory treatments using various anti-infective agents or modalities, nonsteroidal 

anti-inflammatory drugs (NSAIDs), statins, metformin, cytokine-specific drugs, and natural 

supplements are illustrated according to levels of evidence and efficacy in the management 

of cancer. The arcs in the outer circle surrounding the central pie chart indicate the various 

categories of therapeutic agents. The shading in each portion of the inner circle surrounding 

the pie chart represents the preventive applications in which each respective agent (or class 

of agent) shown within the body of the pie chart has been evaluated: primary prevention 

to deduce the aetiological role of the therapeutic target, secondary prevention to mitigate 

development of the disease in at-risk populations or tertiary prevention for the treatment of 

cancer following diagnosis. Each small circle in the inner sectors of the pie chart reflects 

the clinical evidence for each agent, indicating the level of effect (circle colour), the number 

of clinical studies performed (circle size) and the phase of clinical testing (as indicated 

by the ‘study phase’ designation on each large circle within the pie chart). Ongoing 

trials are summarized in Supplementary Table 1. CCR, CC-chemokine receptor; COX, 
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cyclooxygenase; CSF1R, colony stimulating factor 1 receptor; CXCR, CXC-chemokine 

receptor; HBV, hepatitis B virus; HCV, hepatitis C virus; HPV, human papillomavirus; 

inh, inhibitor; TGFβ, transforming growth factor-β; TGFβR, TGFβ receptor; TNF, tumour 

necrosis factor; TNFR, TNF receptor; Vit, vitamin.
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Fig. 2 ∣. Impact of anti-inflammatory agents on oncogenic pathways.
Cyclooxygenase 1 (COX1) and COX2, which are the targets of nonsteroidal anti-

inflammatory drugs (NSAIDs), can activate AKT, mTOR and NF-κB to support cancer 

cell survival and proliferation, either directly or via the production of prostaglandin 

E2(PGE2). PGE2 produced in a COX2-dependent manner can bind to the PGE2 receptor 

EP4 and induce intracellular signal transduction. Whereas COX2 functions to downregulate 

the expression of DNA demethylase TET1, EP4 signalling upregulates the expression of 

DNA (cytosine 5)-methyltransferase 1 and/or 3B (DNMT1/3B). The altered expression of 

both of these epigenetic regulators results in silencing of tumour suppressor genes and 

thus promotes cancer initiation, which could potentially be prevented through treatment 

with the NSAID COX2 inhibitor celecoxib. PGE2-EP4 signalling can also activate a 
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positive feedforward loop for tumour initiation and promotion involving upregulation of 

the transcriptional coactivator YAP1, which in turn upregulates the expression of COX 

enzymes and EP4. NSAIDs or EP4 antagonists might effectively disrupt this inflammation-

driven process. The anticancer effects of metformin largely depend on the activation of 

AMPK, which negatively regulates downstream signalling cascades involved in cancer 

initiation. In addition, AMPK activation confers a tumour-suppressive epigenome via the 

stabilization of TET2 and/or degradation of the histone-lysine N-methyltransferase EZH2. 

In an AMPK-independent fashion, metformin attenuates an NF-κB-mediated inflammatory 

response required for stem cell function and can activate a protein phosphatase 2A (PP2A) 

pathway to exert control over cell survival via inhibition of the antiapoptotic protein MCL1. 

The latter mechanism is otherwise ineffective for cancer prevention in mice without GSK3β 
activation through caloric restriction. Various cytokines present in the inflammatory tumour 

microenvironment (TME), including IL-6, IL-23, leukaemia inhibitory factor (LIF), receptor 

activator of nuclear factor-κB ligand (RANKL), thymic stromal lymphopoietin (TSLP) 

and CXC-chemokine ligand 12 (CXCL12), can induce pro-tumorigenic signals via cognate 

receptors expressed by cancer cells themselves. Therefore, inhibitory antibodies or other 

antagonists targeting these cytokines or their receptors might have anticancer effects. These 

cytokines are derived from distinct immune cells, including macrophages, myeloid-derived 

suppressor cells (MDSCs) and regulatory T (Treg) cells or stromal cells, such as pancreatic 

stellate cells (PSCs), in a context-dependent manner. For instance, IL-6 can be produced 

abundantly by macrophages in response to necrotic tumour cells and IL-1α. Hence, the 

blockade of IL-1α signalling might prevent downstream tumorigenic events. B56δ, PP2A 

B subunit isoform B56δ; CIP2A, cancerous inhibitor of protein phosphatase 2A; CREB1, 

cAMP-responsive element-binding protein 1; CXCR4, CXC-chemokine receptor 4; STAT3, 

signal transducer and activator of transcription 3.
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Fig. 3 ∣. Approaches to resolving cancer-associated inflammation and normalizing antitumour 
immunity.
a ∣ Reactive oxygen species (ROS) can cause epithelial cell damage, immune cell death, 

unresolved inflammation and subsequent precancerous lesions. ROS and their effects can 

be counteracted by antioxidants, such as butylated hydroxyanisole (BHA), vitamin E and 

N-acetylcysteine (NAC). b ∣ IL-17 has a pivotal role in inflammation-driven cancer initiation 

as well as in angiogenesis and chemotherapy resistance. IL-17 is generally produced by 

CD4+ T cells in response to IL-23 or IL-1β. Accordingly, antagonistic antibodies targeting 

IL-17, IL-23 or IL-1β receptor (IL-1R) have substantial therapeutic anticancer effects in 

mice170-172. c ∣ Leptomeningeal metastatic cells can secret complement component 3 (C3a), 

which activates the C3a receptor (C3aR) expressed on the choroid plexus epithelium and 
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thereby enables circulating growth factors to enter the leptomeningeal space via disruption 

of the blood–brain barrier. C3aR antagonism might therefore interrupt the nutrition supply 

to metastatic cells in the cerebrospinal fluid. d ∣ The glycosaminoglycan hyaluronan (HA) 

is a central component of the extracellular matrix, fostering tissue stiffness and restricting 

drug perfusion. A PEGylated form of PH20 hyaluronidase (PEGPH20), which can degrade 

HA in the tumour microenvironment, is capable of enhancing chemotherapeutic efficacy174. 

e ∣ Tumour-associated macrophages (TAMs), neutrophils or myeloid-derived suppressor 

cells (MDSCs), cancer-associated fibroblasts (CAFs) and platelets directly communicate 

with cancer cells and supply them with various pro-tumorigenic signals, which can be 

interrupted by targeting the corresponding inflammatory stimulants or their receptors. f 
∣ Tumour cells often express the inhibitory immune-checkpoint protein PD-L1 to avoid 

elimination by CD8+ T cells; AMPK can catalyse the phosphorylation and thus promote 

the degradation of PD-L1, and this process can be activated by metformin. g ∣ Moreover, 

cholesterol, prostaglandin E2 (PGE2), tumour necrosis factor (TNF), transforming growth 

factor-β (TGFβ) and oncoproteins such as Dickkopf-related protein 2 (DKK2) present in 

the tumour-associated inflammatory milieu can directly suppress the function of CD8+ 

T cells and natural killer (NK) cells; therefore, the cholesterol acyltransferase inhibitor 

avasimibe, nonsteroidal anti-inflammatory drugs (NSAIDs), PGE2 receptor EP4 antagonists, 

and cytokine-specific antibodies or antagonists might reinforce the antitumour effects of 

these cytotoxic lymphocytes. TAMs, MDSCs, CAFs (or hepatic stellate cells (HSCs)), 

platelets and other cell types that coordinate the inflammatory responses within the 

tumour microenvironment also frequently produce factors that are suppressive to effector 

lymphocytes. Other pro-inflammatory cells, such as IL-17-producting γδT (γδT17) cells, 

can further strengthen the immunosuppressive phenotype of MDSCs. Anti-inflammatory 

strategies for depleting or reprogramming these cells might restore the cancer–immunity 

cycle. ALOX5, arachidonate 5-lipoxygenase; ATRA, all-trans retinoic acid; CCDC25, 

coiled-coil domain containing protein 25; CCL, CC-chemokine ligand; CCR, CC-chemokine 

receptor; CSF1R, colony-stimulating factor 1 receptor; CXCL, CXC-chemokine ligand; 

CXCR, CXC-chemokine receptor; C5aR, complement component 5a receptor; FAR 

fibroblast activation protein; G-CSF, granulocyte colony-stimulating factor; GPR109A, G 

protein-coupled receptor 109A; HMGB1, high mobility group box1; Ly6G, lymphocyte 

antigen 6G (also known as Gr1); UDCA, ursodeoxycholic acid.
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Fig. 4 ∣. Potential perils of anti-IL-1β therapy for cancer.
The discovery of important roles for IL-1 in promoting antitumour immunity and 

suppressing cancer-promoting inflammation warrants careful consideration in approaches 

to targeting this cytokine for cancer therapy. a ∣ Chemotherapy-induced immunogenic 

cell death (ICD) of cancer cells activates dendritic cells (DCs) and thereby results in the 

production of IL-1β, which is mandatory for the cross-priming of antitumour CD8+ T cells. 

IL-1β also dictates the anticancer effect of T helper 9 (TH9) cells by upregulating IL-9 and 

IL-21 expression in these CD4+ T cells via signal transducer and activator of transcription 

1 (STAT1) and interferon regulatory factor 1 (IRF1)240. b ∣ In a mouse model of 

colorectal cancer (CRC), monocyte-derived IL-1β imparts an anti-inflammatory phenotype 

in neutrophils, which attenuate intestinal dysbiosis and cancer progression241. c ∣ In models 

of breast cancer, primary tumours elicit a systemic inflammatory response that includes 

the expansion of bone marrow and circulating myeloid cells and the production of IL-1β 
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by these myeloid cells suppresses metastatic colonization by preventing mesenchymal-to-

epithelial transition (MET) of metastasis-initiating cells (MICs)242. ECAD, E-cadherin; 

ZEB1, zinc finger E-box binding homeobox 1.
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