Skip to main content
. 2022 Mar 21;10:854317. doi: 10.3389/fcell.2022.854317

FIGURE 2.

FIGURE 2

Processing of different molecular layers in sc-multiomics. Single-cell multiomics techniques that simultaneously profile the genome and transcriptome of cells differ in the way they process these molecules. (A) Different types of processing of DNA and RNA employed in sc-multiomics depending on the goal of the technique. sc-multiomics techniques differ in the way they process DNA and/or RNA, depending on what the approach aims to profile: DNA can be either treated with M. CviPI (a DNA methyltransferase that methylates cytosine in accessible GC dinucleotides) or with Tn5 (if the aim is to characterize chromatin status), or bisulfite converted (if the aim is DNA methylation profiling), while RNA is subjected to RT and amplification. (B) Simultaneous or parallel processing of DNA and RNA in sc-multiomics. In sc-multiomics, once individual cells are lysed, either 1) DNA and RNA can be first separated from each other using oligo-dT beads and then processed in parallel (left), or 2) the lysed cell can be subjected to DNA tagmentation and RNA reverse transcription (RT) in one reaction, followed by simultaneous pre-amplification of the DNA and cDNA, and then splitting of amplicons into fractions for library preparations (right).