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Abstract

Changes in the regulatory landscape of chemical safety assessment call for the use of New 

Approach Methodologies (NAMs) including read-across to fill data gaps. One critical aspect 

of analogue evaluation is the extent to which target and source analogues are metabolically 

similar. In this study, a set of 37 structurally diverse chemicals were compiled from the EPA 

ToxCast inventory to compare and contrast a selection of metabolism in silico tools, in terms 

of their coverage and performance relative to metabolism information reported in the literature. 

The aim was to build understanding of the scope and capabilities of these tools and how 

they could be utilised in a read-across assessment. The tools were Systematic Generation of 

Metabolites (SyGMa), Meteor Nexus, BioTransformer, Tissue Metabolism Simulator (TIMES), 

OECD Toolbox, and Chemical Transformation Simulator (CTS). Performance was characterised 

by sensitivity and precision determined by comparing predictions against literature reported 

metabolites (from 44 publications). A coverage score was derived to provide a relative quantitative 

comparison between the tools. Meteor, TIMES, Toolbox, and CTS predictions were run in batch 

mode, using default settings. SyGMa and BioTransformer were run with user-defined settings, 

(two passes of phase I and one pass of phase II). Hierarchical clustering revealed high similarity 

between TIMES and Toolbox. SyGMa had the highest coverage, matching an average of 38.63% 

of predictions generated by the other tools though was prone to significant overprediction. 

It generated 5,125 metabolites, which represented 54.67% of all predictions. Precision and 

sensitivity values ranged from 1.1–29% and 14.7–28.3% respectively. The Toolbox had the highest 
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performance overall. A case study was presented for 3,4-Toluenediamine (3,4-TDA), assessed for 

the derivation of screening-level Provisional Peer Reviewed Toxicity Values (PPRTVs), was used 

to demonstrate the practical role in silico metabolism information can play in analogue evaluation 

as part of a read-across approach.

Keywords
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1.0 Introduction

Read-across is a well-established data gap filling technique within analogue and 

category approaches [1–3]. Much technical guidance already exists for developing read-

across assessment though acceptance remains an ongoing issue [3]. Previous reviews 

describing read-across frameworks have discussed the steps involved in developing a 

read-across including identifying analogues and assessing their suitability [1–4]. One of 

the considerations that comes through from many of these frameworks is the importance 

of evaluating the metabolic similarity of the source analogues relative to the target [5]. 

Indeed, whilst there is a qualitative description of the sorts of information that informs 

metabolism as detailed in the OECD guidance on grouping [6], challenges remain in terms 

of the level of information required to justify metabolism similarity and how. A case in 

point was that from Ball et al., [7]; who found that metabolic similarity was a critical 

component in their unsuccessful read-across justification to waive the need for a screening 

level prenatal development study. Recent work over the last few years has revisited means of 

identifying analogues with the recognition that chemical structural similarity is insufficient 

to identify and evaluate analogue suitability [8,9] but a systematic means to really explore 

this is rather lacking. Indeed, metabolic dissimilarity can lead to conflicts in endpoint 

data for structurally similar substances e.g. a difference in metabolism was the reason 

tributylamine was not included in the OECD tertiary amines category [10]. Probably the 

most recent advances in this direction are those from the Mario Negri Institute and the 

Laboratory of Mathematical Chemistry (LMC). Gadaleta et al., (2020) from the Mario Negri 

Institute proposed an automated read-across workflow to facilitate evaluation of metabolic 

similarity in conjunction with physicochemical similarity and structural similarity [11]. 

Candidate source analogues for a target of interest are identified from a source database 

of substances with associated endpoint point data. In their publication, two databases were 

utilised for illustration, the DILrank dataset, a collection of 1,036 FDA-approved drugs 

divided into four classes according to their potential for causing drug-induced liver injury 

(DILI) [12,13] and the EPA’s Toxicity Reference Database (ToxRefDB) [14] which includes 

in vivo study data for 667 substances. Candidate analogues were then searched for on 

the basis of 3 similarity considerations; up to 10 analogues for structural similarity and 

up to 5 analogues each for metabolic and biological similarity. Structural similarity relied 

on using MACCS fingerprints [15] and computing a Tanimoto coefficient [16] whereas 

biological similarity relied on a weighted biological similarity metric proposed by Russo 

et al [17] underpinned by High Throughput Screening (HTS) assay data taken from 
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PubChem (https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest) and compiled into biological 

binary fingerprints. The metabolic similarity component used one specific metabolism tool, 

Systematic Generation of Metabolites (SyGMa), arguably chosen more for pragmatic and 

practical reasons rather than from any systematic evaluation of its performance. In this case, 

one cycle of Phase I metabolism was considered and a metabolic similarity (MS) score 

was calculated based on the number of common and exclusive metabolic pathways for a 

target-analogue pair. Analogues returned could additionally be filtered based on common 

scaffolds or functional groups. The 3 sets of analogues would then be combined together 

and ranked based on their presence in one of more list; for example an analogue found in 

all three lists would be assigned a maximum suitability. In the final step, the read-across 

prediction would be made by averaging the activities of analogues included in the combined 

similarity list. The Laboratory of Mathematical Chemistry (LMC), University As. Zlatarov, 

Bulgaria [18,19] proposed a framework within the OECD Toolbox to provide an end-user 

with a means to compare analogues on the basis of their simulated maps. This makes use 

of the Tissue Metabolism Simulator (TIMES) platform which already has this capability 

for comparing experimental metabolic maps with predicted ones for a specific chemical of 

interest. In addition, the newly developed Metabolic similarity functionality implemented 

in TIMES itself allows simulated metabolic maps to be compared with respect to different 

similarity criteria. The similarity criteria include commonality of simulated transformations, 

commonality in reactivity or structural pattern as well as generation of common metabolites. 

For more details of the specific criteria and how they can be applied, the reader is referred to 

Kuseva et al., 2021 [20]. However, of note was a specific case study where two structurally 

similar substances conflicted with respect to their Ames mutagenicity outcomes. Chemical 1 

– 2-propenylurea, was Ames positive whereas Chemical 2 – 2-propene-1-amine, was Ames 

negative. These chemicals were additionally mechanistically similar with respect to their 

interactions with DNA. Chemical 2 was a metabolite of chemical 1 and both produced a 

common active metabolite (2-propenal). Closer examination of their metabolic pathways 

identified that there were differences in the quantity of their common reactive metabolite 

(chemical 1 produced far more of the active metabolite compared with chemical 2) which 

could plausibly explain the discordant Ames outcomes. The analysis showed how important 

it is to evaluate the metabolic dissimilarity between candidate analogues.

Our motivation is to generalise a similar approach and incorporate this as part of the 

overall Generalised Read-Across (GenRA) workflow that evaluates analogues on the basis 

of both structural and/or biological properties (bioactivity) to make toxicity predictions [21]. 

However, as a first step we needed to gain a better understanding of the coverage and 

performance of existing metabolism prediction tools on the basis of a set of substances 

of interest. The selected metabolism predictions tools considered in this evaluation were 

Systematic Generation of Metabolites (SyGMa), Meteor Nexus, BioTransformer, Tissue 

Metabolism Simulator (TIMES), OECD Toolbox, and Chemical Transformation Simulator 

(CTS). Two of these tools are commercial in nature (Meteor Nexus, TIMES) whereas 

the remainder are publicly available and/or open source. Our aim was to do a targeted 

performance assessment on our set of chemicals. Targeted in the sense that these substances 

were additionally being tested through an in vitro primary human hepatocyte screen to 

determine intrinsic clearance and the metabolites were then being identified using liquid-
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chromatography mass spectrometry as part of a non-targeted/suspect screening approach. A 

separate analysis is still ongoing to process this data stream with the intention of comparing 

the in vitro results with those from in silico tools (Boyce et al, in prep). Here, a dataset 

of 37 chemicals from the ExpoCast project [22] were compiled and profiled through the 

complement of different in silico metabolism tools to generate metabolite predictions. The 

ToxCast library was used to capture some diversity in the types of chemicals as well as their 

uses and occurrence in the environment [22]. The predicted metabolites along with their 

monoisotopic masses and molecular formulae were used as part of the non-targeted analysis 

to generate a suspect screening list. The substances were searched for in the literature 

to find articles reporting any experimental studies where metabolism had been measured. 

Metabolites identified by in vitro human metabolism studies were ideally prioritised over 

other studies but metabolites identified by in vitro or in vivo studies using humans, rats, 

mice or dogs were included. The reported metabolites in these studies were compared with 

the predicted metabolites. Based on the inferences from the performance and scope gained 

from the outputs from the different tools, we applied one or more of these tools to a case 

study chemical that was being evaluated as part of an existing Provisional Peer Review 

Toxicity Value (PPRTV) assessment [23]. In the report, 3,4-TolueneDiamine (3,4-TDA) 

was being subjected to a read-across approach and in silico metabolism tools were one 

facet of evaluating candidate analogues. Herein, we summarise aspects of that part of the 

assessment to show how metabolic similarity between substances can be compared in an 

objective manner using a fingerprint representation of transformations either those provided 

by the tools themselves or by constructing a bespoke transformation profile using the 

structural information from the parent and metabolites themselves. The latter whilst only 

being illustrated for this substance is intended as a template for how this approach might be 

generalised and applied at scale. It complements efforts by Gadaleta et al., [11] and offers 

a quantitative basis of comparison further to what is proposed by the LMC group as far as 

what has been published and implemented in the OECD Toolbox [18] and TIMES [19,20].

It is worth noting that metabolism tools and approaches to predicting metabolism have been 

discussed in some detail in excellent reviews or indeed by the tool developers themselves 

in primary articles. Here we summarise the main conceptual basis of each of these different 

tools. That said, our study draws attention to the complement of different tools and which 

tools or combination of tools best meets our use contexts.

Examples of papers of particular note include reviews and primary work by Kirchmair and 

colleagues [24–26].

The main objectives of the study are to:

1. Compile a set of ToxCast chemicals of interest

2. Run predictions for the selected chemicals through a selection of (liver) 

metabolism prediction tools

3. Calculate Molecular Formula (MF), Monotonic Mass (MW) and compile 

metabolism predictions for the purposes of a related analysis of non-targeted 

screening using a suspect screening list
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4. Review the literature to find articles reporting any metabolism studies to extract 

information on experimental metabolites generated (in vitro or in vivo in human, 

rat, mice, dog species) for the 37 substances.

5. Compare and contrast overall performance and coverage of the predictions 

relative to those reported in the literature on the basis of sensitivity/specificity 

on a ‘global’ basis as well as on a ‘local’ basis using predefined chemical 

clusters. Global being, overall performance for the entire dataset rather than 

subset (‘local’) within smaller chemical groups.

6. Demonstrate application of the metabolism predictions for a case study chemical 

that has undergone assessment by a read-across approach for which metabolic 

similarity was a key consideration.

Figure 1 shows a workflow for how the study fits into a larger study being undertaken. 

The overall aim of the broader study is to investigate the concordance between in vivo, 

in vitro and in silico metabolism information and how these information streams can be 

integrated to support the evaluation of analogues for read-across. Specifically, new in vitro 
data is being generated through in vitro human hepatocyte experiments to determine intrinsic 

clearance. Analytical liquid-chromatography spectroscopy is being applied for the detection 

of molecular species and non-targeted analysis for metabolite identification.

1.1 Selected metabolism tools

1.11 BioTransformer—BioTransformer (https://bitbucket.org/wishartlab/

biotransformer3.0jar/downloads/) was developed by the Wishart lab of the University of 

Alberta and includes a metabolite prediction tool (BMPT) and metabolite identification 

tool (BMIT) (Djombou-Feunang et al, 2019). As stated in Djoumbou Feunang et al. [27], 

the BMPT consists of five independent prediction modules: Enzyme Commission-based 

(EC-based) transformer, CYP450 (phase 1) transformer, Phase II transformer, human gut 

microbial transformer, and environmental microbial transformer. For the prediction of 

metabolites, BioTransformer implements two approaches, a rule-based or knowledge-based 

approach, and a machine learning approach. BioTransformer’s knowledge-based system 

consists of three major components: (1) a biotransformation database (called MetXBioDB) 

containing detailed annotations of experimentally confirmed metabolic reactions, (2) a 

reaction knowledgebase containing generic biotransformation rules, preference rules, and 

other constraints for metabolism prediction, and (3) a reasoning engine that implements 

both generic and transformer-specific algorithms for metabolite prediction and selection. 

The BMPT machine learning system uses a set of random forest and ensemble prediction 

models for the prediction of CYP450 substrate selectivity, and for the Phase II filtering of 

molecules. BioTransformer’s Metabolite Identification Tool builds on the BMPT to identify 

specific metabolites using mass spectrometry (MS) data, namely accurate mass or chemical 

formula information.

1.12 Meteor Nexus—Meteor Nexus is a commercially available metabolite prediction 

software that is part of a larger suite of tools developed by Lhasa Ltd. Meteor generates 

metabolites using a knowledge-based expert system, which identifies structural patterns 

within the parent compound and correlates these patterns to encoded biotransformations. 
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Based on end-user needs, metabolite predictions can be generated using one of three 

algorithms: Absolute/Relative reasoning, Static Scoring, or Site of Metabolism. The Site 

of Metabolism (SoM) algorithm is the default setting. This builds upon the Static Scoring 

approach by modifying the static scores to account for structural differences between 

the parent compound and experimentally observed transformations. The Static Scoring 

algorithm assigns a likelihood statistic to each biotransformation, which is carried forward 

to predict the probability of a metabolite’s formation. A database of experimentally observed 

biotransformations is used to determine the ‘Occurrence Ratio’ of a biotransformation (i.e., 

the ratio between a specific biotransformation’s occurrences relative to the total number of 

biotransformations), which is multiplied by 1,000 to return the ‘Static Score’. As part of 

the algorithm, potential transformations are identified for the parent compound by using a 

database of experimentally observed biotransformations. These potential transformations are 

used to construct SoM fingerprints by iteratively constructing substructures ranging from 

0 to 8 bonds from the SoM. A new subset of biotransformations are then selected from 

the database based on similarities between the SoM fingerprints and molecular mass (i.e., 

a ‘Molecular Mass Similarity Threshold’ set to a default of 70% of the parent’s molecular 

mass). Tanimoto coefficients are then calculated between parent fingerprint and the matched 

compounds, and the top N matches are preserved (N is set to 8 as default but can be adjusted 

between 6 – 12). The top matches are checked for the predicted biotransformation, and the 

Static Score is adjusted up or down depending on whether the biotransformation is observed 

for that compound.

Metabolites predicted by the SoM scoring are further filtered using ‘Relative’ of ‘Top N’ 

filters. The ‘Relative’ filter drops metabolites below a set percentage of the maximum score 

within that prediction grouping, and the ‘Top N’ filter drops metabolites that are outside of 

the top N statics scores (‘Top N’).

1.13 Chemical Transformation Simulator (CTS)—The Chemical Transformation 

Simulator (CTS) (https://qed.epacdx.net/cts/gentrans/input/) is a transformation prediction 

WebApp developed and maintained by the US EPA to predict transformation (abiotic and 

biological) and physiochemical properties of organic compounds. The simulator consists 

of three modules: Chemical Editor (CE), Physicochemical Properties (PCP) module, 

and Reaction Pathway Simulator (RPS). RPS provides a selection of reaction libraries 

that allows the user to generate predictions under specified conditions. These reaction 

libraries include abiotic hydrolysis, abiotic reduction, direct photolysis, and human phase 

1 metabolism. The EPA maintains these libraries, with exception of the human phase 1 

metabolism, which was developed by ChemAxon and represents 156 cytochrome p450 

biotransformations. The reaction libraries provide a rule-based system for generating 

predictions, and further refine the results by identifying likely metabolites through predicted 

reaction rate. The generation of predictions and assignment reaction rates are handled 

through Metabolizer, which is a plugin for ChemAxon. As part of Metabolizer’s algorithm, 

a ranking between 1–7 is assigned to each reaction (1 representing a slow reaction and 

7 representing the fastest) and the “ %production” of each transformation is determined 

be comparing the reaction rate to all other competing reactions. This calculation is 

propagated further to determine “%accumulation”, which represents the relative rate at 
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which the compound is formed minus the rate at which it is converted to additional species. 

Compounds with a global “%accumulation” of at least 10% are considered “Likely” and all 

other transformations are considered “Unlikely”.

1.14 TIMES—Tissue Metabolism Simulator (TIMES) is a commercially available toxicity 

prediction software developed by the Laboratory of Mathematical Chemistry (LMC) at 

Bourgas ‘Prof. Assen Zlatarov’ University, Bulgaria [28]. Substances are profiled by a 

set of alerts underpinned by local QSAR models. Metabolism is simulated irrespective of 

whether alerting groups are identified in the target parent substance itself. The parent and 

all its transformation products are subsequently profiled for their toxicity potential by a 

set of alerts underpinned by local QSAR models. The metabolism modules are system 

and endpoint specific (e.g., mammalian lung, rat liver) and use a hybrid approach to 

predict metabolite maps. The approach includes a knowledge-based expert system to predict 

biotransformations, and optimisation procedures to adjust the transformation probabilities 

in a way to reproduce documented (observed) metabolism and metabolic activation of 

chemicals (endpoint specific data). In this respect, probabilities of transformations should 

be assumed to be correlated with formal rate constants of chemical reactions. When 

constructing metabolite maps, each biotransformation encoded in the module is applied 

to the starting molecule in order of their assigned probability. This process occurs iteratively 

for each predicted metabolite and generates branches with compounding probabilities for 

each biotransformation required to reach the predicted metabolite. Controlled propagation of 

a metabolic map terminates when a minimum probability of occurrence of a metabolite 

is reached. In turn, the probability of occurrence of a metabolite is estimated as a 

product of the probabilities of the transformations from the parent chemical to the 

considered metabolite. Quantitative assessment of feasibility of transformations confines 

the propagation of the generated metabolic maps and thus, results in the simulation of 

a manageable number of metabolites that are subsequently used for QSAR predictions 

within the same modelling platform. The knowledge-base of each metabolism module 

comprise biotransformations that include a parent fragment, transformation product, 

forbidden fragments, and probability. The parent fragment and transformation product 

define the structure change that the parent molecule will undergo, and the forbidden 

fragments act as inhibitory masks that prevent application of the transformation if these 

structures are present in the parent. Probabilities are assigned 1 for non-rate determining 

transformations (i.e., abiotic transformations of highly reactive groups or intermediates), 

whereas rate-determining transformations are assigned probabilities based on the above 

described optimisation procedure and adjusted by expert-knowledge.

1.15 OECD QSAR Toolbox: Metabolism Profilers—The OECD QSAR Toolbox 

is a publicly available hazard assessment software developed by LMC and distributed by 

OECD (Organisation for Economic Co-operation and Development) and ECHA (European 

Chemical Agency) [29]. The software was designed to aid in chemical risk assessment 

by filling data gaps through in silico predictions, which are generated via read-across, 

trend analysis, and/or QSAR models. For purposes of predicting metabolites for the target 

substance, only the ‘Input’ and ‘Profiling’ features of the full Toolbox workflow are used. 

As part of the profiling step, the Toolbox includes nine metabolism simulation modules 
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developed by LMC and five databases of observed metabolic maps. These metabolism 

modules are donated from the commercially available TIMES and CATALOGIC software 

but do exhibit differences in the biotransformation reactions used to generate metabolites 

(e.g., the in vivo Rat metabolism simulator within TIMES (v.2.30.1.11) and QSAR 

Toolbox (v4.5) use 622 and 671 generalised biotransformation reactions, respectively). The 

simulation of possible metabolites, both in the commercial (TIMES/CATALOGIC) and 

freely available (Toolbox) software is tissue-specific. Additionally, the QSAR Toolbox does 

not generate phase II metabolites, as the main purpose of the metabolism modules within 

the Toolbox are to generate potentially active metabolites (i.e. Phase I metabolites). Then, 

endpoint specific knowledge (profiles) are applied for searching alerting functionalities in 

the up- and downstream comparisons against source analogues.

1.16 Systematic Generation of potential Metabolites (SyGMa)—Systematic 

Generation of potential Metabolites (SyGMa) is a knowledge-based metabolite prediction 

software developed in 2008 by Lars Ridder and Markus Wagener [30]. The knowledge-

base comprises 144 reaction rules, which were generated through a combination of expert 

knowledge and statistical analysis of phase I and phase II human metabolic reactions. Each 

prediction is accompanied by a probability score (i.e., SyGMa score), which represents 

the accuracy of the associate rule (e.g., the rule associated with primary alcohol oxidation 

correctly predicted 58 of a total of 85 and was assigned a SyGMa score of ~68%). SyGMa 

is available as a Python package and provides user control over which rulesets are applied 

(phase I or phase II) to parent compounds.

2.0 Materials and Methods

2.1 Chemical structure data

A selection of 37 structurally diverse chemicals from the ExpoCast project were used in 

this study. Chemical information including DSSTox Substance ID (DTXSID), CAS registry 

number, Simplified Molecular Input Line Entry System (SMILES), QSAR-ready SMILES 

[31] and International Chemical Identifier Key (InChIKey) were queried against the EPA 

CompTox Chemicals Dashboard [32,33] using the batch search capability and downloaded 

as a CSV file. The InChIKey is a 27 character hashed version of InChI which is suited 

for Internet and database querying and is based on a SHA-256 hash of the InChI character 

string. The RDKit package within Python (version 2020.03; Landrum; rdkit.org) was used 

to convert the information in the CSV files into required input formats for processing by the 

different metabolism prediction tools.

2.2 Profiling substances through the metabolism prediction software

The RDKit package in Python was used to convert QSAR-ready SMILES into chemical 

table files — .mol files for each starting substance and a SDF containing data on all 

substances. These files were used to read chemical information into four of the metabolite 

prediction software tools: BioTransformer, Chemical Transformation Simulator (CTS), and 

Nexus Meteor (Meteor). SyGMa, is available as a Python package (https://pypi.org/project/

SyGMa/) and predictions for this software were generated by directly reading the QSAR-

ready SMILES. Table 1 summarises the six in silico metabolism tools used in the study.
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Due to differences in software features, additional ad hoc steps were needed to be taken for 

selected software. For the CTS web application, only ten substances could be processed at a 

time, such that four SD files were needed. For the TIMES software, the rat (S9, in vitro) and 

rat (in vivo) modules provided separate readouts, so these results were processed separately. 

The two metabolism modules provided in the OECD Toolbox could be combined into a 

single report, but for consistency with the TIMES software, the results from the rat (S9, in 
vitro) and rat (in vivo) were processed separately. For Meteor Nexus, a command line batch 

processing was possible but only for individual MDL MOL files. Indeed, Meteor is only able 

to process up to 100 MDL MOL files at a time. Table 2 provides a description of relevant 

information and settings used for the prediction software.

2.3 Literature Review

Experimentally confirmed metabolites were identified by querying structured databases 

and the literature for relevant studies for each of the 37 parent substances. The search 

first targeted selected databases with curated lists of reported metabolites. The Human 

Metabolome Database (https://hmdb.ca/), EPA CompTox Chemicals Dashboard (https://

comptox.epa.gov/dashboard) [33], and Drug Bank (https://go.drugbank.com/) were used for 

this initial search since these databases are manually curated and provide literature citations 

for reported biotransformations. If no hits were retrieved from these database queries, a 

search in Pubmed for relevant literature using the AbstractSifter (v4) [34] was undertaken. 

Queries using AbstractSifter were performed by combining chemical identifiers (chemical 

name and DTXSID) with relevant subject queries keywords (metabolite, metabolism, 

pharmacokinetics, clearance, and excretion). Articles from the resulting query were rank 

ordered based on the total frequency count of three sifter terms present within each abstract. 

The sifter terms were a combination of the chemical identifiers and subject query keywords 

used to generate the search, and the final selection was optimised for each parent compound 

to prioritise relevant articles (i.e., articles that generated and/or reported novel metabolites). 

To confirm relevancy, each article identified by AbstractSifter was manually reviewed. If 

no suitable primary articles were sourced from the databases or the AbstractSifter query, 

then both Google Scholar and Web of Science were manually searched using the same 

terms. At all steps of the literature review process, metabolites were sourced from primary 

articles which included in vitro and in vivo data generated from different species (dog, 

bovine, mouse, rat, and human). In cases where multiple primary articles were identified 

with overlapping pathways, the most recent articles with rat and human metabolism 

were recorded. The full list of articles per substances are captured in the Supplementary 

information (see Table 1 Supplementary Information).

2.4 Processing reported Metabolism data

Experimentally reported metabolites from the literature were stored in the DSSTox 

database [32] by drawing the structures into the DSSTox ChemReg application (EPA’s 

internal chemical registration system), which generates chemical information from the 

drawn structures and assigns chemical identifiers (DTXSID and DTXCID). Transformation 

relationships were captured using ‘Predecessor’ and ‘Successor’ annotations, and the 

associated publications were included in the comments section. In cases where Markush 

structures (these describe a compound class by generic notation) were reported, the Markush 
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structure was stored in the DSSTox Database and child structures were enumerated using 

MarvinJS (https://chemaxon.com/products/marvin-js). InChIKeys were generated from the 

Markush children and associated with parent Markush’s DTXSID.

2.5 Compiling in silico predictions and literature data

The output files containing the results from each software tool were processed in a 

series of steps: i) data were read into a DataFrame using the Python Pandas package; ii) 

SMILES for each metabolite were standardised using RDKit to remove stereochemistry; iii) 

standardised SMILES were converted into InChIKeys using RDKit; and iv) a DataFrame 

was constructed where columns captured metabolite InChIKeys, SMILES, parent DTXSIDs, 

and the software that generated the prediction.

Results from the literature review were stored in a DataFrame with columns that represented 

the DTXSID of the parent substance, the DTXSID of the Markush parent, the metabolite 

InChI key derived from the Markush child or discrete structure of non-Markush metabolites, 

a binary category to indicate if the metabolite is a Markush, and a binary category to indicate 

that the metabolite is represented in literature.

DataFrames constructed from the prediction software results and summarised literature were 

sequentially merged using an outer join on the parent DTXSIDs and InChI keys. A truncated 

example of the resulting DataFrame is provided in Table 3. Columns with either a 0 or 1 

serve as a bit vector to indicate whether the metabolite is present within the corresponding 

dataset.

2.6 Assessing the similarity and performance of the software predictions

Model performance was compared using four metrics: similarity, coverage, precision, 

and sensitivity. These metrics provide inter-model comparisons (coverage) and empirical 

evaluations relative to reported metabolites (precision and sensitivity). The data used for 

these calculations are described in the section 2.5. Intersecting metabolites for model-model 

and model-reported comparisons were determined by subsetting the compiled DataFrame, 

where the rows between the respective columns both contain the value of ‘1’.

Model similarity was determined by identifying the intersection of predicted metabolites 

between two models. For this calculation, the columns corresponding to the prediction 

software (i.e., TIMES (ivt), CTS, Meteor, BioTransformer, etc) were used as bit vectors to 

calculate the Jaccard distance between each model pairing. Hierarchical clustering using the 

Ward criterion was used to calculate a linkage matrix and quantify similarity.

Coverage represents the percent of overlapping predictions that one model has for another, 

and is calculated using:

Coverage = ModelAPredictions ∩ ModelBPredictions
ModelBPredictions

This formula provides a non-associative similarity value, in which the percent overlap can 

be determined with respect to model A or model B (see results Table 4 from which these 
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percentages are computed). Here, the table of all metabolites generated by all tools and 

reported metabolites was first used to generate a total metabolite count for each tool. For 

example, across all 9539 metabolites, there were 236 metabolites generated by the Toolbox 

(ivt). If we look across each tool, a ‘match count’ can be computed e.g. for metabolite X 

for parent Y, if 3 of the tools predicted metabolite X, the corresponding match count would 

be 3. The sum of the match counts for a specific tool could then be computed to generate 

an unique sum across all metabolites. Matching predictions between 2 software tools could 

then be determined to compute a coverage score. For example, there were a total of 236 

metabolites generated by the Toolbox (iv) of which 90 were matching between the Toolbox 

(iv) and Meteor; thus 90/236*100 would give rise to a coverage score of 38.14% in terms 

of the proportion that the Toolbox (iv) ‘covered’ Meteor predictions. In contrast, there were 

714 predicted metabolites for Meteor of which 90 were matching with the Toolbox (ivt), 

thus 90/714*100 would give rise to a coverage score of 12.6% to reflect the proportion 

of Meteor predictions that the Toolbox (ivt) covered. The distinction over other similarity 

calculations (e.g., Tanimoto/Jaccard index) allowed the coverage calculation to identify 

instances where high coverage was non-reciprocal due to one model having a significantly 

greater number of predictions.

Sensitivity indicates how well a model predicts all reported metabolites and is calculated by 

determining the percent of true predictions (i.e., predicted metabolites that are reported in 

literature) relative to all metabolites reported in literature. This metric is calculated using:

Sensitivity = TruePredictions
AllReportedMetabolites

In cases where the predicted metabolites represent enumerations of a Markush structure 

reported in literature, the predicted metabolites are counted as a single match.

Precision indicates the percent of true predictions relative to all predictions generated by a 

model, and is calculated using:

Precision = TruePredictions
AllPredictions

2.7 Investigation of the chemical space: coverage of the models

The relative coverage of each prediction tool was evaluated using the chemical classification 

information generated from the freely available web application ClassyFire [35]. This 

rule-based approach to classify chemicals, is based on structural features derived from 

ChemOnt, a manually curated list of over 4000 chemical classifications. The text-based 

classification descriptors generated by ClassyFire are human-readable which permits 

overarching taxonomic categories for each chemical grouping to be readily identified.

ClassyFire descriptors were generated using the web application (http://

classyfire.wishartlab.com/) for each parent compound on the basis of their SMILES. The 

resulting text file containing chemical classifications for each parent compound were 

converted into bit vectors, where each bit corresponded to the presence or absence of 
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a classification assignment. A pairwise distance matrix using Jaccard distance was then 

calculated. Hierarchical clustering using Ward’s criterion was then performed and the tree 

was cut to derive a practical set of clusters by visual inspection of the dendrogram.

2.8 Case study for 3,4-TDA

Predictions were generated for 3,4-TDA and its candidate analogues [23] in the same 

way as described already though for practical reasons only Meteor and TIMES had been 

considered in the PPRTV assessment. Predictions from Meteor Nexus were carried forward 

to highlight how similarity in biotransformation pathway could be objectively quantified. 

Here the biotransformations for each of the candidate analogues were converted into a 

pivoted dataframe with unique biotransformation pathways as columns, presence or absence 

of a metabolite as a value and rows as the target and candidate analogue and their 

respective metabolites. This was represented as a fingerprint which was then converted into a 

squareform distance matrix using the pairwise Jaccard distance. A heatmap was then created 

to summarise the pairwise similarity between target and candidate source analogues with 

respect to biotransformation pathways. A representation of the presence of exact metabolites 

was also derived to show the overlap in the experimental and simulated metabolites. The 

similarity in biotransformation was not feasible to construct for all the software tools since 

some like the OECD Toolbox do not provide information on the predecessor and successor 

relationships as part of their exportable tabular summary information to enable the metabolic 

trees to be reproduced.

2.9 Data analysis software and code

Data processing was conducted using the Anaconda distribution of Python 

3.8 and associated libraries. Jupyter Notebooks, scripts and datasets are 

available on github at https://github.com/g-patlewicz/in_silico_metabolism and 

at the EPA FTP website at https://gaftp.epa.gov/Comptox/CCTE_Publication_Data/

CCED_Publication_Data/PatlewiczGrace/CompTox-metabolism

3.0 Results and Discussion

3.1 Assessing overall metabolic predictions and performance

A total of 9139 metabolites were generated for the 37 substances. Of the metabolism 

tools, SyGMa simulated the most number of metabolites relative to the other tools. The 

maximum number of metabolites predicted was 739 for SyGMa whereas the median number 

of metabolites was 91. BioTransformer had a maximum number of 538 metabolites with a 

median of 52. The other tools had a lower median number of metabolites ranging from 5–11 

metabolites. Figure 2 shows the distribution of the number of metabolites simulated by each 

of the tools relative to the reported Literature information.

Meteor experienced an apparent combinatorial explosion in the number of metabolites 

predicted for decabromodiphenyl ether (DTXSID9020376; CASRN 1163–19-5). A total of 

382 metabolites were predicted for this structure in contrast to the other tools; in fact, 

no metabolites were simulated by BioTransformer, CTS or SyGMa. In the literature, 543 

metabolites were reported for this substance if their Markush structures were enumerated 
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fully. BioTransformer did not simulate metabolites for very low molecular weight (=< 60 

mol/g) substances in the dataset or very high molecular weight (MW) (> 900) substances, 

specifically, acetone (DTXSID8021482; CASRN 67–64-1), isopropanol (DTXSID7020762; 

CASRN 67–63-0), and 1,1’-oxybis[2,3,4,5,6-pentabromobenzene (DTXSID9020376, 

CASRN 1163–19-5). In contrast, SyGMa generated 739 substances for this very high 

MW substance. There were a handful of other substances for which BioTransformer 

did not produce any metabolites for specifically, Curcumin (DTXSID8031077, CASRN 

458–37-7), beta-Hexachlorocyclohexane (DTXSID7020685, CASRN 319–85-7), Dieldrin 

(DTXSID9020453, CASRN 60–57-1), Sulindac (DTXSID4023624, CASRN 38194–50-2) 

and CP-122721 (DTXSID9047251, CASRN 145742–28-5). These last three substances are 

pesticide actives which made it all the more surprising that BioTransformer did not produce 

any metabolites since its underlying reactant database is very much enriched by drugs and 

pesticides. The Toolbox in vitro module was not able to generate predictions for benzoic 

acid (DTXSID6020143: CASRN 65–85-0) whereas the Toolbox in vivo module was the 

only tool not able to generate predictions for Bisphenol A (DTXSID7020182, CASRN 80–

05-7) and Zileuton (DTXSID9023752, CASRN 111406–87-2).This is not surprising given 

that Phase II metabolites are not generated by the Toolbox in keeping with its intended 

purpose. CTS did not generate predictions for decabromodiphenyl ether (DTXSID9020376: 

CASRN 1163–19-5) and beta-Hexachlorocyclohexane (DTXSID7020685; CASRN 319–

85-7). The number of predicted metabolites CTS produced were generally low in number 

reflecting in part that it only produced CYP450 Phase I transformations. Meteor and 

TIMES produced metabolites for all substances in the dataset. SyGMa had significantly 

greater number of total predictions (5215) relative to the other software, BioTransfomer 

was the next highest with a total count of 3464 metabolites. There were 3 substances 

where both SyGMa and BioTransformer exceeded 200 predicted metabolites, namely: 

1-amino-5-azotoluene (DTXSID1020069, CASRN 97–56-3), Benzyl butyl phthalate 

(DTXSID3020205, CASRN 85–68-7) and Haloperidol (DTXSID4034150, CASRN 52–

86-8). These large numbers indicate that both SyGMa and BioTransformer are susceptible 

to overprediction, though this could be useful for specific decision contexts where a high 

sensitivity is desirable. This tendency of generating larger numbers of metabolites is due 

to the manner in which these tools were derived as well as their intended purpose. For 

instance SyGma is considered a suitable tool for producing as extensive a set of metabolites 

as possible to facilitate the analytical spectroscopy undertaken as part of non-targeted 

screening studies [30]. Its underlying training dataset (MDL Metabolite) is very much biased 

towards drugs and drug like substances. BioTransformer’s training sets are also enriched 

with pharmaceuticals and pesticides. On the other hand, TIMES and/or Toolbox models 

generated substantially fewer metabolites for the same substances – within TIMES, the 

simulation of metabolites has been closely coupled with the prediction of (eco)toxicological 

properties as part of the same modelling platform – such that the metabolic pathways 

produced have been trained to help inform the chemical safety assessment for specific 

toxicity endpoints such as Ames or in vivo micronucleus. The rat S9 and liver metabolism 

simulators are effectively those used to help inform the prediction of these endpoints. The 

underlying training sets are also more enriched by cosmetic, food ingredient and industrial 

chemicals and to a much lesser extent by drug candidates.
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Table 4 shows the coverage matrix for the metabolites generated from each of the software 

tools relative to the metabolites reported.

As seen in Table 4, the Toolbox (ivt) had no unique predictions, in that all its predictions 

overlapped with the other software. SyGMa had the highest numbers of predictions (5215) 

with 4018 being unique to SyGMa. Over half of those predictions were captured by the 

Toolbox (ivt) and both of the TIMES modules. BioTransfomer had the second highest 

number of predictions (3464) with over half of those predictions (2553) being unique to 

BioTransformer.

Model performance was determined by calculating sensitivity and precision for each model 

(shown in the Radar charts in Figure 3), and the overall performance of each model was 

calculated by taking the average between these values. The Toolbox (ivt) model scored 

highest with a precision of 28.9% and sensitivity of 21.9%, followed by the in vitro 
module of TIMES (23% precision and 25.5% sensitivity) and the in vivo module of TIMES 

(12.3% precision and 27.9% sensitivity). Meteor and SyGMa both had relatively higher 

sensitivities (23.1% and 28.3%, respectively) but exhibited relatively low precision (<10%). 

BioTransformer and CTS showed the lowest sensitivity (14.7% and 17.9%, respectively). 

The rankings are: Toolbox (ivt) (25.4), TIMES (ivt) (24.3), Toolbox (iv) (23.45), TIMES 

(iv) (20.1), Meteor (16.3), SyGMa (14.9), CTS (13.8), and BioTransformer (7.9). The 

low numbers are not altogether surprising – for 2 of the substances, no metabolites were 

reported at all. In addition, the low numbers could also be due to limitations of the 

actual experimental studies in terms of what metabolites might have been the object of 

investigation, what was being detected e.g. Phase II metabolites not being identified and 

how (in terms of the analytical techniques used). Species-specific considerations will also 

have had an impact on the model performance. Most of the available experimental data 

ultimately identified were in vivo rat studies whereas some of the software tools (a case 

in point being SyGMa, BioTransformer and CTS) focus on human metabolism. Note not 

all pathways are expected to be conserved between species. This might also explain why 

TIMES and the Toolbox performed so well as their simulators were rat S9 or liver based 

and optimised for toxicity prediction. For some of the substances, reported studies had been 

conducted using rat liver microsomes or human microsomes. Indeed, the manner in which 

metabolites are generated in vitro is significantly impacted by test system, study design 

as well as analytical methods. Overall, the performance characteristics at minimum help 

provide additional context for the predictions generated.

Furthermore, the median number of reported metabolites is 6 while the median number of 

predictions generated by each model range from 5 to 91. These values indicate that some 

of the models generally overpredict (such as BioTransformer and SyGMa) and hence yield 

much lower precision values relative to their sensitivity scores.

3.2 Evaluating overall model coverage relative to each other

A bit-vector of metabolite predictions was constructed for each model and used to perform a 

hierarchical clustering analysis using Ward’s criterion and a Jaccard distance metric (Figure 

4).
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Figure 4 shows the dendrogram produced from the clustering exercise.

As noted from the dendrogram in Figure 4, TIMES (iv and ivt) and Toolbox (iv and ivt) 

have the highest degree of similarity. These results are to be expected, as the Toolbox 

derives its modules from TIMES, with the greatest difference being that Toolbox does not 

generate Phase II predictions. The remaining models showed high degrees of dissimilarity, 

with Jaccard similarities < 0.1. This was also observed in the associated heatmap of the 

pairwise similarity matrix, Figure 5.

The largest coverage value was identified between Toolbox (ivt) and TIMES (ivt), in which 

Toolbox (ivt) predicted 58.25% of the metabolites generated by TIMES (ivt). SyGMa 

had the largest average coverage (38.63%) amongst models, followed by BioTransformer 

(34.03%) which are attributed to the higher number of total predictions.

3.3 Evaluating overall local metabolite performance on the basis of predefined clusters

A hierarchical clustering using Ward’s criterion was performed for the 37 parent substances 

using ClassyFire [35] taxonomic representations expressed as bit vectors. Based on the 

dendrogram (Figure 1 - Supplemental), a cut was made to create five clusters.

These were merged with ClassyFire taxonomic descriptors to construct 5 groups that 

represented broad chemical categories namely: Group 0: Nitrobenzene compounds; Group 

1: Benzyl methyl ethers; Group 2: Carboxylic acid/ketone; Group 3: Variable functional 

groups (combination of small molecules and aromatic systems, weakest grouping of the five 

groups) and Group 4: Poly chlorinated ring structures. The precision and sensitivity were 

determined for each chemical grouping for each model. Toolbox (ivt) displayed a general, 

well-rounded precision and sensitivity across the four of the five groups with a precision 

ranging from 26.8% up to 46.2% and sensitivity from 20.6% to 35.3%. BioTransformer and 

Meteor showed low sensitivity for Group 4 (polychlorinated ring structures) (1.7% and 3.4% 

respectively), and BioTransformer had a low precision (0.3%) for the same group. Toolbox 

(ivt) appeared to have similar performance to TIMES (ivt) with the highest precision and 

sensitivity for Group 2, 46.2% and 35.3% respectively. Figure 6 summarises the precision 

and sensitivity across the 5 groups.

3.4 Case study for 3,4-TDA

Provisional Peer-Reviewed Toxicity Values (PPRTVs) are derived by the U.S. 

Environmental Protection Agency (U.S. EPA) to assist the Superfund Program. PPRTVs 

are derived after a review of the relevant scientific literature using established EPA 

guidance on human health toxicity value derivations. A PPRTV is intended to provide 

support for the hazard and dose-response assessment pertaining to chronic and subchronic 

exposures of substances of concern, to present the major conclusions reached in the hazard 

identification and derivation of the PPRTVs, and to characterise the overall confidence in 

these conclusions and toxicity values. 3,4-Toluenediamine (3,4-TDA), also known as 3,4-

diaminotoluene (DTXSID9024930; CASRN 496–72-0), belongs to the class of compounds 

known as anilines and is an ortho (o)-substituted compound. There are no potentially 

relevant subchronic or chronic studies or developmental or reproductive toxicity studies 

for 3,4-TDA either in humans or animals for non-cancer and cancer endpoints following 
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oral or inhalation exposures. In the absence of relevant data, a read-across approach 

following the Wang et al. [5] approach was performed in order to identify candidate source 

analogues to 3,4-TDA for noncancer repeated-dose toxicity. Data for candidate analogues 

are then retrieved and an evaluation of their similarity with respect to structural, metabolic 

and toxicity-like contexts is performed to select the most suitable analogue both from 

a toxicological and chemical perspective. In the assessment for 3,4-TDA, the following 

candidate analogues were identified: 2,3-TDA (DTXSID4027494; CASRN 2687–25-4), 

2,4-TDA (DTXSID4020402; CASRN 95–80-7), 2,5-TDA (DTXSID6029123; CASRN 95–

70-5) and 2,6-TDA (DTXSID4027319; CASRN 823–40-5) which are all positional isomers. 

All analogues share a common basic structure, which comprises a benzene ring, 2 amino 

groups and a methyl group differing only in the position of the amino functional groups. 

The candidate analogues were considered suitable analogues for 3,4-TDA based on their 

similarities in structural and physicochemical properties as well as common structural 

alerts as identified by the profilers within the OECD Toolbox (as described in the main 

report, [23]). No toxicokinetic data was identified for 3,4-TDA. However, information was 

available for candidate analogues 2,4-TDA, 2,5-TDA, and 2,6-TDA suggesting that these 

compounds are rapidly and extensively absorbed following oral exposure, and are rapidly 

eliminated in the urine, which is a predominant route of excretion. A full summary of 

all the ADME information collected is available in tabular form in the main report [23]. 

This permitted a qualitative comparison to be made of the similarities between candidate 

analogues. Major metabolic steps for the TDA analogues are acetylation of amino groups 

and ring hydroxylation, with some evidence for oxidation of the methyl groups in rats and 

mice exposed via intraperitoneal (i.p.) administration (references include [36–43]).

In the absence of in vivo toxicokinetic data on 3,4-TDA, a selection of available software 

tools, specifically the in vivo and in vitro rat metabolic simulators available within the 

TIMES and Meteor Nexus were used to predict metabolites for the target compound and 

analogues. Predicted metabolites for the TDA isomers did reveal some overlap in terms 

of metabolites for the individual TDA compounds across the different tools. Commonality 

between the metabolite predictions with available experimental data from in vivo rodent 

studies, provided confidence in the in silico results. Meteor and TIMES (ivt) showed most 

similarity to each other in terms of the actual predicted metabolites, although TIMES (iv) 

was more similar to the reported metabolites. Given the low number of reported metabolites 

for the analogues with data, the pairwise similarities between the metabolites simulated 

and those experimentally found were otherwise very low (see pairwise similarity matrix in 

Supplementary Figure 2 and the dendrogram in Supplementary Figure 3). Table 5 shows the 

counts of metabolites for all the TDAs across the tools and what were reported. The full set 

of metabolites predicted and reported for each of the TDAs are tabulated in the main report 

[23].

Experimental metabolism information was only available for 3 of the TDAs. As an 

illustration, a comparison of the low overlap between predicted metabolites from TIMES 

(ivt), Meteor and the experimentally reported metabolites is shown in the venn diagram in 

Figure 7 for 2,4-TDA.
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The metabolites predicted that overlapped with those reported are shown in Table 6. 

Although limited in number, the predicted metabolites do at least reflect the main expected 

transformation pathways as noted earlier.

Instead of looking at the overlap in actual metabolites between tools vs reported data, the 

corresponding metabolic pathway transformations were extracted from Meteor in an effort to 

evaluate metabolic similarity between the TDAs. Figure 8 does reveal a consistent pattern of 

pathway transformations and a high degree of similarity between 3,4-TDA and its candidate 

analogues with regards to the Meteor pathway predictions.

There is also concordance between the in silico results and the major pathways expected 

for this group of compounds (N-acetylation, ring hydroxylation, and oxidation of methyl 

groups). Importantly, no outstanding differences in the predicted metabolic profiles between 

the target and analogues were noted. The metabolic tree for 2,4-TDA is displayed in Figure 

9 to illustrate the relationship of the predicted metabolites for this candidate analogue that 

correspond to the pathway transformations shared among the TDAs.

In vivo data demonstrated toxicokinetic commonalities among the analogues, particularly 

with respect to metabolism pathways, and according to in silico predictions, a similar 

metabolism pattern is expected for 3,4-TDA. Therefore, the candidate analogues were 

considered suitable analogues for 3,4-TDA based on their toxicokinetic properties. Further, 

the in silico analysis provides a means for making similarity comparisons between the target 

and analogues, adding to the weight of evidence in support of the selection of a source 

analogue for read-across.

The limitations of this approach are two fold – comparing the similarity of the actual 

metabolites generated could be expected to be low since the actual metabolites from the 

different TDAs will lead to structurally similar metabolites but not necessarily the same 

substances; using transformation pathways offers a more realistic means of comparison but 

this level of information is not provided from all software tools. However, even similarity 

in transformation pathways presents only a single criterion in characterising metabolic 

similarity (or indeed its dissimilarity) fully. A question remains of how granular or specific 

that comparison ought to be – more general transformations are likely to result in higher 

similarities than characterising transformations in more granular form within a hierarchy 

of transformations e.g. hydrolysis vs ester hydrolysis vs carboxylic ester hydrolysis. Other 

considerations that could be evaluated include common reactivity (structural) patterns of the 

metabolites as well as their own structural similarity e.g. do the predicted metabolites across 

analogue share a certain degree of structural similarity or reactivity similarity. Another 

avenue for investigation could be encoding similarity in the sequence of transformation e.g. 

is the shape of the metabolic tree or network comparable across two or more analogues. 

Extracting metrics from metabolic trees which in of themselves are effectively graph 

networks could be an additional complement in the rationalisation of metabolic similarity 

and the extent to which this informs similarity of the endpoint of interest, in this case 

repeat dose toxicity. Further work will focus on approaches to codify the similarity of 

transformations using a custom specific fingerprint representation, an illustrative example 

is shown for how such a fingerprint could be constructed using all the in silico predictions 
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for 3,4-TDA as part of the supplementary information. On the basis of structural similarity 

of the parent substances using Morgan fingerprints [44] and calculating a Jaccard distance; 

3,4-TDA was found to be most similar to 2,5-TDA (Jaccard index of 0.41) (range of 

similarities were 0.28–0.41) whereas on the basis of metabolic similarity using the custom 

fingerprint, all candidate analogues were equally similar (range 0.54–0.57).

4. Conclusions

An important consideration in evaluating analogue suitability in read-across is metabolic 

similarity. In this study, a set of 37 structurally diverse substances were selected from 

the ExpoCast project and processed through a selection of metabolism prediction tools. 

This was one component of a broader study to evaluate the concordance between in silico 
predictions and in vitro data relative to reported metabolism in the literature. The predicted 

metabolites were compared across 6 different tools to better understand their basis as well as 

gauge their performance and coverage. SyGMa had the highest average coverage (38.63%) 

and the largest number of metabolites predicted (5215). This was followed by TIMES 

(iv) which had an average coverage of 34.03% but generated far fewer metabolites (570). 

The precision and sensitivity values ranged from 1.4–29% and 14.7–28.3% respectively 

highlighting the challenges of comparing predictions to reported data. Afterall, the basis 

for the tools were different (Phase I human only (CTS) or human Phase I & Phase 

II together (BioTransformer, SyGMa), in vitro or in vivo rat models applied separately 

(TIMES, Toolbox) and the reported data was very heterogenous in study type. Of all the 

tools evaluated, the Toolbox (ivt) appeared to have the overall best performance across all 

the substances evaluated. At the local chemistry domain level whereupon the substances 

evaluated could be grouped into 5 main clusters of similar substances and across those 

clusters, the Toolbox (ivt) was the overall best performing for all the clusters with exception 

to group 4. Although the set of substances evaluated was quite limited, the study was 

informative in terms of highlighting the coverage of the tools for these substances of interest. 

For the purposes of informing our non-targeted approach to help in the identification 

of metabolites, then SyGMa appears to be the most useful given its high coverage and 

sensitivity. However, given our primary motivation was to better understand the scope and 

coverage for the purposes of a read-across assessment, then TIMES (ivt) appears to be most 

promising since its average coverage (28.44%), precision (23%) and sensitivity (25.55%) 

were all similar, moreover functionality implemented in TIMES allows simulated metabolic 

maps to be compared for similarity based on a number of different criteria (as discussed in 

Kuseva et al., [20]). This is certainly valuable when evaluating a single substance in detail 

for a risk assessment application. Exporting a summary tabular report with the same level of 

detail is not currently feasible within TIMES which would be needed for evaluating a large 

number of substances such as what is ultimately desired for use in the GenRA approach 

[2,21]. Two tools were applied to 3,4-TDA that had undergone a PPRTV assessment [23]. 

The insights gained from the evaluating the tools apriori were informative when structuring 

an objective means of summarising the prediction information available to justify metabolic 

similarity across the candidate analogues which in turn informed the selection of the best 

candidate analogue for read-across. Further work will focus on scaling this approach to a 
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larger number of substances and evaluating other means of structuring information from 

metabolism tools to inform metabolic similarity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Metabolic similarity is a key consideration in analogue evaluation for read-

across

• A set of ToxCast chemicals were profiled through a selection of 6 in silico 
metabolism prediction tools

• Their performance and coverage were evaluated relative to reported literature 

information

• The similarity between tools was evaluated using clustering approaches

• The insights derived were helpful for how predicted metabolism can be 

applied in the read-across of 3,4-Toluenediamine
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Figure 1. 
Workflow of the larger study of which this study focuses on the components marked in red 

text.
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Figure 2. 
Summary boxplot to depict the distribution of the total number of metabolites predicted per 

substance across the different in silico tools and those metabolites reported in the literature. 

The ‘box’ in the plot depicts the 25th percentile (Q1 or first quartile), 50th percentile (or 

median) and the 75% percentile (Q3 or third quartile). The whiskers on the box depict the 

minimum and the maximum values in the dataset excluding outliers. These are computed for 

minimum as Q1 – 1.5*IQR whereas the maximum is computed as Q3 + 1.5*IQR. The IQR 

is known as the interquartile range – the width between Q1 and Q3.
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Figure 3. 
Sensitivity and Precision radar charts
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Figure 4. 
Dendrogram of the software tools on the basis of their metabolite predictions.
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Figure 5. 
Pairwise similarity matrix of the different software tools
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Figure 6. 
Radar plots summarising precision and sensitivity for the 5 clusters
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Figure 7. 
Overlap of the metabolites simulated (using Meteor and TIMES (ivt)) and experimental for 

2,4-TDA
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Figure 8. 
Similarity of transformation pathways as generated by Meteor for the TDA analogues.
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Figure 9. 
Metabolite tree for 2,4-TDA
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Table 1.

Summary of the six in silico metabolism tools used in this study

Tool Name SyGMa TIMES OECD 
Toolbox Nexus (Meteor) BioTransformer CTS

Developer Lars Ridder 
lars.ridder@esciencecenter.nl

Laboratory 
of 
Mathematical 
Chemistry 
(LMC)

LMC, OECD, 
ECHA Lhasa Ltd Wishart Group EPA

Availability Freely available under GNU 
GPL Commercial Freely 

available Commercial Freely available 
under GNU LGPL

Freely 
available

Install via pip install 
SyGMa or https://pypi.org/
project/SyGMa/

http://oasis-
lmc.org/
products/
software/
times.aspx

qsartoolbox.org

https://
www.lhasalimited.org/
products/meteor-
nexus.htm

https://bitbucket.org/
wishartlab/
biotransformer3.0jar/
src/master/

https://
qed.epa.gov/
cts/

Interface API GUI
GUI/WebAPI 
locally 
deployed

GUI (Single 
substance)/CLI 
(Batch)

API/CLI

Web GUI/
WebAPI : 
https://
qed.epa.gov/
cts/rest/#/

Implementation 
Language Python Delphi Delphi Java Java

Operating 
System OS Independent Windows Windows Windows OS Independent OS 

Independent

Reference https://doi.org/10.1002/
cmdc.200700312

https://doi.org/
10.1002/
cmdc.200700312

Customisable 
metabolism 
options

Yes Yes No Yes Yes Limited

Available 
options Human, Rat (Liver)

Rat liver (in 
vivo), Rat 
liver (S9, in 
vitro), Lung 
(mammal), 
Gut 
(mammal), 
Abiotic, Skin 
(mammal)

Rat liver (in 
vivo), Rat liver 
(S9, in vitro), 
Lung 
(mammal), Gut 
(mammal), 
Abiotic, Skin 
(mammal)

Mammals (Dog, 
Mouse, Rat, Human)

Human (Liver, Gut), 
Microbial Human
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Table 2:

Settings used to process the 37 substances through the selected metabolism prediction tools

Model (version) Availability Module/Species Prediction Settings Input Output

BioTransformer
(3.0)

Free
(http://biotransformer.ca )

Human Cyp450: 2 steps
Phase II: 1 step

SDF .csv

CTS
(1.0)

Free
(https://qed.epacdx.net/cts/ )

Human Phase 1 
Metabolism

Maximum number of 
generations: 3

SDF .csv (All)

Meteor
(3.1.0, Nexus 2.2.2)

Commercial
(https://www.lhasalimited.org/ )

Mammal Default .mol .xls

Toolbox
(4.5)

Free
(https://qsartoolbox.org/ )

Rat (S9, in vitro),
Rat (in vivo)

Default .txt .csv

TIMES
(2.30.1.11)

Commercial
(http://oasis-lmc.org )

Rat (S9, in vitro), Rat 
(in vivo)

Default .txt .txt

SyGMa
(1.1.1)

Free
(https://sygma.readthedocs.io )

Human Phase I: 2 steps
Phase II: 1 step

QSAR-ready 
SMILES

Python Data
Structure

Comput Toxicol. Author manuscript; available in PMC 2023 February 01.

http://biotransformer.ca/
https://qed.epacdx.net/cts/
https://www.lhasalimited.org/
https://qsartoolbox.org/
http://oasis-lmc.org/
https://sygma.readthedocs.io/


E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Boyce et al. Page 34

Ta
b

le
 3

.

Sa
m

pl
e 

(t
ru

nc
at

ed
) 

su
m

m
ar

y 
ta

bl
e 

to
 il

lu
st

ra
te

 h
ow

 p
re

di
ct

io
n 

in
fo

rm
at

io
n 

w
as

 r
ec

or
de

d 
fo

r 
su

bs
eq

ue
nt

 a
na

ly
si

s.

P
ar

en
t_

D
T

X
SI

D
M

et
ab

ol
it

e_
IN

C
H

IK
E

Y
T

B
_i

v
T

B
_i

vt
M

et
eo

r
B

io
T

ra
ns

fo
rm

er
T

IM
E

S_
In

V
iv

o
T

IM
E

S_
In

V
it

ro
Sy

G
M

a
C

T
S

R
ep

or
te

d
M

et
ab

ol
it

e 
D

T
X

SI
D

M
ar

ku
sh

D
T

X
SI

D
00

20
15

1
U

K
PS

IR
Z

G
SF

JN
R

P-
U

H
FF

FA
O

Y
SA

-N
0

0
0

1
0

0
1

0
0

N
A

Fa
ls

e

D
T

X
SI

D
00

20
15

1
G

N
PW

Z
LY

N
R

Q
M

TA
P-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
Y

JE
A

V
K

W
PG

D
U

A
FC

-
U

H
FF

FA
O

Y
SA

-N
0

0
0

0
0

0
1

0
0

N
A

Fa
ls

e

D
T

X
SI

D
00

20
15

1
JI

FD
D

B
B

E
Z

M
X

N
FM

-
U

H
FF

FA
O

Y
SA

-N
0

0
0

0
0

0
1

0
0

N
A

Fa
ls

e

D
T

X
SI

D
00

20
15

1
H

N
G

Q
R

L
U

IW
X

Z
SS

X
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
W

Y
O

R
K

A
V

ST
B

SI
M

G
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
O

E
G

PR
Y

N
G

FW
G

M
M

V
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
U

A
D

Y
G

G
Y

N
N

B
D

D
Q

R
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
C

V
R

G
L

SN
U

B
FH

E
Q

Z
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
K

Q
B

FN
L

R
V

O
IB

B
D

R
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
A

V
T

Y
L

L
X

T
B

W
FT

SS
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
II

G
N

Z
LV

H
O

Z
E

O
PV

-
U

H
FF

FA
O

Y
SA

-N
0

0
0

0
0

0
1

0
0

N
A

Fa
ls

e

D
T

X
SI

D
00

20
15

1
Z

G
C

W
L

H
M

E
SZ

K
Y

FN
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
G

E
Y

H
Q

Z
X

E
T

Q
U

Q
Q

O
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

D
T

X
SI

D
00

20
15

1
IH

FP
L

G
R

H
JD

IZ
L

M
-

U
H

FF
FA

O
Y

SA
-N

0
0

0
0

0
0

1
0

0
N

A
Fa

ls
e

Comput Toxicol. Author manuscript; available in PMC 2023 February 01.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Boyce et al. Page 35

Ta
b

le
 4

.

C
ov

er
ag

e 
M

at
ri

x

M
od

el
To

ta
l

U
ni

qu
e

T
B

_i
vt

T
B

_i
v

M
et

eo
r

B
io

T
ra

ns
fo

rm
er

T
IM

E
S_

In
V

iv
o

T
IM

E
S_

In
V

it
ro

Sy
G

M
a

C
T

S
R

ep
or

te
d

T
B

_i
vt

19
4

0
19

4
11

3
80

62
11

3
19

4
10

7
10

9
56

T
B

_i
v

23
6

4
11

3
23

6
90

46
23

2
11

7
10

8
99

57

M
et

eo
r

71
4

41
4

80
90

71
4

10
2

15
3

98
24

0
94

67

B
io

T
ra

ns
fo

rm
er

34
64

25
53

62
46

10
2

34
64

11
4

84
84

0
82

39

T
IM

E
S_

In
V

iv
o

57
0

12
0

11
3

23
2

15
3

11
4

57
0

15
8

29
5

99
70

T
IM

E
S_

In
V

itr
o

28
3

20
19

4
11

7
98

84
15

8
28

3
16

2
10

9
65

Sy
G

M
a

52
15

40
18

10
7

10
8

24
0

84
0

29
5

16
2

52
15

15
3

73

C
T

S
47

2
25

4
10

9
99

94
82

99
10

9
15

3
47

2
46

R
ep

or
te

d
82

2
70

8
56

57
67

39
70

65
73

46
82

2

Comput Toxicol. Author manuscript; available in PMC 2023 February 01.



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Boyce et al. Page 36

Table 5:

Counts of metabolites across the in silico tools and what had been reported

Source DTXSID Expt_Metab Meteor TIMES_InVivo TIMES_InVitro

2,3-TDA DTXSID4027494 0 14 8 19

2,4-TDA DTXSID4020402 9 19 5 15

2,5-TDA DTXSID6029123 1 18 2 15

2,6-TDA DTXSID4027319 4 8 4 11

3,4-TDA DTXSID9024930 0 15 8 18
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Table 6.

Experimental metabolites that were predicted by TIMES, Meteor for 2,4-TDA

Parent: 2,4-TDA

Metabolite

Metabolite

Metabolite
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