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Abstract

Chemical risk assessments follow a long-standing paradigm that integrates hazard, dose–response, 

and exposure information to facilitate quantitative risk characterization. Targeted analytical 

measurement data directly support risk assessment activities, as well as downstream risk 

management and compliance monitoring efforts. Yet, targeted methods have struggled to keep 

pace with the demands for data regarding the vast, and growing, number of known chemicals. 

Many contemporary monitoring studies therefore utilize non-targeted analysis (NTA) methods 

to screen for known chemicals with limited risk information. Qualitative NTA data has enabled 

identification of previously unknown compounds and characterization of data-poor compounds in 

support of hazard identification and exposure assessment efforts. In spite of this, NTA data have 

seen limited use in risk-based decision making due to uncertainties surrounding their quantitative 

interpretation. Significant efforts have been made in recent years to bridge this quantitative gap. 

Based on these advancements, quantitative NTA data, when coupled with other high-throughput 

data streams and predictive models, are poised to directly support 21st-century risk-based 

decisions. This article highlights components of the chemical risk assessment process that are 

influenced by NTA data, surveys the existing literature for approaches to derive quantitative 

estimates of chemicals from NTA measurements, and presents a conceptual framework for 

incorporating NTA data into contemporary risk assessment frameworks.
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1. Introduction

Advances in analytical mass spectrometry and high-throughput data processing capabilities 

have instigated a paradigm shift in molecular analysis over the past twenty years. At the turn 

of the millennium, biologically, environmentally, and pharmacologically relevant chemical 

assessments were based on targeted analyses of small panels of chemicals. Targeted methods 

are accurate and robust, but a strict focus on defined chemical panels leads only to an 

improved understanding of those pre-selected compounds. Modern chemical inventories 

have expanded drastically, with generic chemical registries like Pubchem and CAS 

containing hundreds of millions of registered chemical substances (CAS; Kim et al., 2020). 

Even a conservative chemical database, such as the EPA Comptox Chemicals Dashboard, 

lists over a million substances (McEachran et al., 2017). In contrast to these millions of 

chemical substances, only a fraction of known compounds have public monitoring and/or 

analysis methods in common use. In the United States, the EPA substance registry service 

indicates that ~ 80,000 chemical substances are tracked or regulated by the agency (USEPA, 

xxxx). Therefore, traditional monitoring methods are useful for, conservatively, only ~ 5% of 

known chemical species, with limited physicochemical, toxicity, or exposure data available 

for the many chemicals of emerging concern (Brack et al., 2012; Naidu et al., 2016; 

Weinberg et al., 2019; Egeghy et al., 2012). Recent years have ushered in new methods 

to fill the gap of targeted analyses. Burgeoning chemical “-omics” fields (e.g. exposomics, 

metabolomics) utilize holistic, non-targeted analytical approaches to interrogate compounds 

in complex environmental and biological systems (Rappaport and Smith, 2010; Wild, 2005; 

German et al., 2005).

Non-targeted analysis (NTA) methods have unique value in that they can garner informative 

chemical measurements from samples of interest without the need for predefined chemical 

targets. The workhorse techniques for NTA are nuclear magnetic resonance (NMR), 

which is well described in a recent review article, (Giraudeau, 2020) and high-resolution 

mass spectrometry (HRMS), which we discuss here. HRMS methods (often coupled with 

separation techniques) utilize ionization sources paired with high resolving power mass 

detectors to isolate and identify chemicals based on their observed accurate masses, isotopic 

fingerprints, and MS/MS fragments. Applications of HRMS-based NTA abound, with 

demonstrated capabilities in screening for disease (López-López et al., 2018; Trivedi et al., 

2017) and exposure biomarkers, (Pourchet et al., 2020) detecting environmental contaminant 

sources, (Ruff et al., 2015; Brack et al., 2019; Focazio et al., 2008) discovering emerging 

environmental pollutants, (McMahen et al., 2016; Bletsou et al., 2015) and monitoring 

effectiveness of pollutant treatment technologies (Newton et al., 2018; McCord et al., 2020).

A unifying feature of NTA studies is a primarily qualitative focus on the unambiguous 

identification of individual species—and there are large concerted efforts to improve and 

formalize chemical identification processes (Schymanski and Neumann, 2013; Ulrich et al., 

2019; Domingo-Almenara et al., 2018). Quantitative interpretations of NTA data to date 

have been largely based on relative quantitation, where measured chemical responses are 

compared across two or more sample groups (e.g. fold-change comparison) for prioritization 

of chemicals, without attempt to link them directly to fixed concentration values. Seldom has 
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there been absolute quantitation, where direct measurements of compounds are translated 

to estimated sample (e.g., drinking water, blood) concentrations. Ideally, there would be 

approaches to convert measurements of feature response in NTA experiments to informative 

sample concentrations (Fig. 1).

The lack of well-defined concentration estimates from NTA measurements is a fundamental 

challenge in using NTA data to support chemical safety evaluations. As strictly a screening 

and prioritization tool, NTA has proven useful for directing future research activities. For 

example, non-targeted screening occurrence is an explicit component of the EU funded 

NORMAN emerging contaminant prioritization scheme. (NORMAN, xxxx) However, 

existing risk assessment paradigms ultimately require quantitative estimates of chemical 

abundance (for example, within a consumer product, in an environmental matrix, or within 

a living organism) to support defensible decisions by regulatory bodies. In this article, 

we demonstrate the importance of quantitative predictions of chemical abundance, based 

on NTA data, for supporting risk-based decisions in context; we further survey existing 

literature on approaches for deriving quantitative estimates from NTA measurements; and 

finally, we present a conceptual framework for incorporating quantitative NTA (qNTA) 

estimates into contemporary risk assessment workflows.

2. The need for quantitative estimates of chemical concentration

The 1983 National Research Council (NRC) risk assessment paradigm provides a historical 

framework for evaluating the safety of chemical species using knowledge of the chemicals’ 

inherent hazards and dose–response relationships, and the anticipated exposures within 

target populations (Fig. 2).(Council, 1983) This framework was designed around single-

chemical evaluations, reflecting the available technology and views at the end of the 

20th century. The early 21st century has witnessed a shift in scientific perspective 

and experimental capabilities, making way for an era of high-throughput (HT) testing 

and systems-level evaluations. New approach methodologies (NAMs) consisting of clear 

experimental (e.g., in vitro toxicity testing) and computational (e.g., in silico molecular 

modeling) advancements have the potential to improve the efficiency of chemical safety 

assessments; a number of agencies have developed NAM test systems and guidelines 

(USEPA List of Alternative Test). Nevertheless, the original NRC risk assessment paradigm 

is no less relevant today than in 1983; chemicals are still evaluated for safety one at a time, 

using information about the underlying hazard, dose–response relationship, and anticipated 

exposures. The fundamental advancement is in the way that hazard, dose–response, and 

exposure data are collected and interpreted. Moving forward, experimental data from NTA 

studies can enhance all aspects of the risk assessment paradigm, from hazard identification 

onward.

2.1. Hazard identification

Hazard identification is considered the initiating step for traditional risk assessment. 

Chemicals are identified as requiring formal evaluation and then examined for associations 

with environmental, ecological, or human health-related endpoints. For commercial 

chemicals, hazard identification is a component of review performed by regulatory bodies 
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(for example, the U.S. EPA under the Toxic Substances Control Act [TSCA] or the Federal 

Insecticide, Fungicide, and Rodenticide Act [FIFRA], or the European Chemicals Agency 

under the legislation on the Registration, Evaluation, and Authorization of Chemicals 

[REACH]). However, only a subset of chemicals with human and ecological exposure 

routes are identified via legal disclosure mandates. There are, for example, TSCA specific 

exceptions for low-volume chemicals (CFR 723) and byproducts serving no “separate 

commercial purpose” (CFR 720). Finally, there are naturally occuring products/extracts 

which may pose health risks. Thus, there remains a need for hazard identification beyond 

existing chemical safety legislation focused on narrow lists of chemicals of commerce.

Non-targeted analysis approaches are well suited for hazard identification because 

compound detection is often sufficient for initial steps. In wide-scale screening 

investigations, NTA can identify chemicals not included on registration lists, highlight 

occurrence of emerging contaminants, and support downstream hazard classification 

(NORMAN). Such screening efforts may seek to identify “known unknown” chemicals with 

limited occurrence data, or implement more in-depth analyses to identify novel “unknown 

unknown” substances (Schymanski and Williams, 2017). For example, NTA methods have 

identified novel halogenated transformation products from water disinfection, (Ding et al., 

2013; Tao et al., 2020) minor products of perfluorinated chemical manufacturing, (McCord 

et al., 2020; McCord and Strynar, 2019) and generic chemical components of unknown/

variable (but registered) complex mixtures (Salvito et al., 2020).

In additional to environmental screening, non-targeted methods can support effect-directed 

analyses (EDA), wherein complex samples/mixtures are first fractionated, and fractions 

then individually screened for bioactivity (primarily using in vitro assays) (Burgess et al., 

2013; Brack et al., 2019). NTA enables follow-up evaluation of risk drivers within active 

fractions via compound identification. As a recent example, Tian et al. used EDA and 

examined sequential fractions of a tire rubber extract, using NTA methods, to identify a 

quinone transformation product that causes lethality in coho salmon (Tian et al., 2021). 

Other examples include the use of EDA/NTA to identify estrogenic and antiandrogenic 

compounds in water (Pochiraju et al., 2020; Muschket et al., 2018) and biological matrices 

(Dusza et al., 2022).

It is noteworthy that, when dealing with complex mixtures, analyte identification is limited 

to the form of the chemical substance that can be observed by mass spectrometry. This 

generally does not include counterion salts, adjuvants, dispersants, and other common 

mixture components of registered chemical substances. Therefore, it is not easy to pair 

observed analytes to hazard information for parent substances without a means to correlate 

the two. Overcoming this challenge requires that mappings exist between the chemicals 

identified in NTA experiments and the substances registered in public databases. The MS-

Ready (McEachran et al., 2018) module of the EPA Comptox Dashboard is one such tool 

that provides these mapping and facilitates correlation between observable MS analytes and 

chemical substances with known or predicted hazard data.

Overall, compound identification in NTA experiments remains nontrivial, with annotation 

uncertainty propagating to downstream steps of risk evaluation (as we later discuss) 
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(Pourchet et al., 2020). Nevertheless, the growing body of research indicates that NTA is 

well suited to aid the identification of emerging stressors that may pose unacceptable health 

risks to humans and/or other ecological species.

2.2. Dose-response assessment

Having identified a hazard, the risk-assessment paradigm envisioned the determination of 

a dose–response relationship via in vivo treatment studies, primarily using whole animals. 

In this context, targeted endpoints would be selected by a risk assessor consistent with 

the initial hazard identification (e.g. endocrine disruptor potential). These endpoints are 

measured in model systems with the goal of defining a clear point-of-departure (POD) on 

a single dose–response curve for that endpoint. With the application of uncertainty factors 

(related to intra-/inter-species variability from in vivo models, etc.) the POD becomes the 

basis for a chemical-specific reference dose (RfD) or reference concentration (RfC). This 

approach is prohibitively resource intensive for the modern chemical landscape, which 

is replete with chemicals of emerging concern (Council, 1984). An updated vision of 

hazard identification and dose–response assessment relationship was therefore set forth by 

the National Research Council (NRC) in their 2007 report, “Toxicity Testing in the 21st 

Century”.(Council, 2007) Therein, the NRC proposes a vision of toxicity testing centered 

around biomolecular pathways and mechanistic in vitro assays suitable for high-throughput 

chemical screening. Such assays are still carried out in a concentration–response format, 

but potential in vivo relationships are extrapolated from in vitro results using toxicokinetic 

modeling strategies and uncertainty factors (Kavlock and Dix, 2010; Paul Friedman et 

al., 2020). The work of Friedman et al. indicates that the use of the in vitro to in vivo 
extrapolation (IVIVE) introduces a maximum of 10-fold error compared to traditional 

targeted approaches, and that the estimation error is protective (i.e. overestimation of 

response) (Paul Friedman et al., 2020).

Non-targeted analysis has limited application in dose–response assessments when 

consideration is given to only known target analytes. There are, however, multiple scenarios 

in which NTA can augment both in vitro and in vivo dose–response studies. First, when 

testing chemicals which elicit adverse response only after metabolic activation, NTA is 

well suited to rapidly identify both anticipated and unexpected metabolites (Catron et al., 

2019; Weitekamp et al., 2019) (note: an increasing number of metabolically competent 

in vitro test systems (DeGroot et al., 2018; Deisenroth et al., 2020)) now allow tracking 

of parent depletion and product formation as a function of dose and time, and with 

respect to the measured assay response). Second, a large portion of registered chemical 

substances are of Unknown or Variable Composition, Complex Reaction Products and 

Biological Materials (UVCB Substance) (Agency USEP,xxxx). For these compounds, 

toxicological screening of mixture fractions can be employed in a concentration–response 

format alongside NTA approaches to characterize active chemical(s). As described for EDA 

above, this is bottlenecked by difficulties mapping detections to parent chemical substances, 

and the accuracy of NTA annotations (Schymanski and Williams, 2017; McEachran et al., 

2018). Further, the ability to recover and detect relevant portions of chemical mixtures 

is dependent on sample preparation and the applicable analysis domain (e. g. LC-MS, 

GC–MS, solvent solubility, etc.). Recent work by Lowe et al. has attempted to model the 
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applicability of different analytical techniques to chemical subsets based on their structure 

and properties, (Lowe et al., 2021) but this is mostly useful for improving certainty in 

annotation, and defining the bias of your measurements. In simple cases where it is possible 

to assume good method applicability, quantitative NTA methods can theoretically inform 

dose–response curve measurements, experimental PODs, and (given appropriate uncertainty 

factors) eventual RfDs/RfCs. These thresholds are the critical point of comparison for 

quantitative measurements in exposure assessment.

2.3. Exposure assessment

Traditional exposure assessments couple quantitative measurements of chemicals in 

environmental media (e.g., drinking water, consumer products, blood) with activity 

(e.g., location, product use) and “exposure factor” information, (USEPA,xxxx) such as 

consumption rates, to yield final exposure estimates; these can be interpreted with respect 

to a RfD or RfC to characterize risk and establish “no-effect” concentrations for specific 

media. The task of exposure estimation has recently broadened in accordance with the 

rapid expansion of the known chemical universe. The NRC recommended emphasis on 

high-throughput exposure estimation strategies in their 2012 report “Exposure Science in 

the 21st Century: A Vision and A Strategy.”(Council, 2012) In accordance with NRC 

recommendations, efforts from organizations such as the NORMAN network have begun to 

incorporate non-targeted screening approaches to hazard prioritization and EPA’s ExpoCast 

project (Wambaugh et al., 2019) has developed HT exposure prediction models and 

frameworks for harmonizing exposure estimates across disparate existing models (Rager 

et al., 2016; Sobus et al., 2018; Wambaugh et al., 2013; Wambaugh et al., 2014; Ring 

et al., 2017; Ring et al., 2019). To date, exposure estimates have been generated for 

hundreds-of-thousands of known chemicals; for example the work of Ring et al. used 

machine learning and thirteen previously developed exposure models, built on the limited 

CDC NHANES exposure dataset, to calculate consensus predictions for the median intake 

rate of nearly 500,000 chemicals based on their chemical structure (Ring et al., 2019; Sobus 

et al., 2015; Control, 2006). Prediction uncertainty can be large for some chemicals due 

to a lack of available chemical measurement data for model parameterization, evaluation, 

and calibration. The study of Ring et al. exhibited credible intake intervals of up to eight 

orders of magnitude (Ring et al., 2019). A considerable increase in chemical monitoring 

data is therefore needed to reduce uncertainties in HT exposure predictions. Most existing 

environmental and biological monitoring studies focus on targeted chemical panels, yielding 

measurement data for only a few well-known compounds, (Egeghy et al., 2012; Sobus et al., 

2015) with major data gaps for metabolites, degradants, and other unknowns. NTA studies 

can help fill these gaps, providing broad chemical measurements that inform presence and 

putative exposure sources, routes, and pathways and allowing for prioritization of chemicals 

of interest (Sobus et al., 2018).

2.4. Risk characterization

Risk characterization requires the full synthesis of available hazard, dose–response, and 

exposure information, and computational and high-throughput techniques, including NTA, 

are anticipated to be the backbone of future efforts in the field (Thomas et al., 2019; 

Academies and of Sciences, Medicine, 2017). Efficient quantitative data streams can 
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predict the likelihood and severity of potential health risks consistent with an exposure 

(Academies and of Sciences, E., Medicine, , 2017). For example, quantitative structure–

activity relationship (QSAR) models can be used to predict environmental fate, (Mansouri 

et al., 2018) determine bioactive exposure thresholds, (Pearce et al., 2017) and estimate 

receptor activity (Mansouri et al., 2016). These types of models are built from reference data 

for thousands of chemical compounds, but accept simple chemical structures as input. The 

constructed models leverage existing chemical data to predict outputs for novel chemicals 

by structural comparisons; limited application of these approaches is beginning to be seen 

in regulatory decision making. For example, the EPA endocrine disruptor screening program 

allows high-throughput computational approaches for tier 1 evaluation (USEPA Use of High 

Throughput).

Implementation of NTA to support high-throughput risk assessment has been seen in a 

limited capacity, with most applications identifying structures of emerging contaminants 

in need of characterization. Specifically, results of NTA experiments have been used to 

prioritize chemicals requiring further study (via targeted analysis) based on perceived 

exposure and hazard potential (NORMAN; Rager et al., 2016). The toxicological 

prioritization index (ToxPi) (Reif et al., 2010) is one framework used to prioritize chemical 

detections based on the potential for health risks. While originally conceived to visually 

examine chemicals using targeted toxicity data, the ToxPi framework has been extended to 

consider NTA experimental data (i.e., the detection frequencies and measured intensities 

of identified chemicals) as quantitative surrogates of exposure (Newton et al., 2018; 

Rager et al., 2016; Sobus et al., 2018). These efforts have proven suitable for provisional 

chemical evaluation and ranking. Yet, a clear delineation remains between the type of 

data produced in NTA studies and the type needed to support eventual quantitative risk 

characterizations. Simply put, targeted analytical methods remain the source of quantitative 

experimental data used in formal risk calculations. Since targeted quantitative methods: 1) 

require the procurement/synthesis of standards; 2) are time/resource intensive; and 3) are 

not readily available for the majority of newly discovered compounds, scientific advances 

are needed that will allow quantitative NTA (qNTA) data to be directly utilized for rapid 

risk characterization. Achieving this end will require significant advances on current qNTA 

techniques.

3. Current approaches for quantitative predictions in non-targeted 

analysis

Targeted quantitative mass spectrometry is a gold-standard analytical technique for many 

chemicals, allowing absolute quantification and high precision/accuracy when incorporating 

external and/or internal standardization procedures. With sufficient resources, quantification 

of chemicals can be readily explored using extensive targeted analyses in tandem with, or 

as a follow up to NTA. For example, the work of Moschet et al. screened nearly every 

water soluble pesticide in Switzerland, with follow-up targeted quantitation, (Moschet et al., 

2014) and a study by Gago-Ferrero et al. screened for thousands of emerging contaminants 

with similar follow-up (Gago-Ferrero et al., 2015). These exhaustive studies represent 

the best case scenario for combined analysis, with a well characterized chemical panel, 
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available standards, and significant resources to develop and apply quantitative methods 

for hundreds if not thousands of chemicals detected in an initial NTA screen. In general, 

this level of cost and time commitment to broad quantitative screening is infeasible. 

Further, screening experiments are most attractive for conditions where other methods do 

not currently exist, and for under-studied and/or novel compounds with limited chemical 

information where targeted analysis is not only difficult, but impossible. As a result, targeted 

quantitative approaches for chemicals of emerging concern require supplementation with 

NTA experiments.

While there is a strong impetus to carry out NTA screening, it lacks structured sets 

of reference materials, surrogate chemicals, and matched internal standards common in 

targeted assays, and therefore cannot match the quantitative accuracy or precision of targeted 

methods. At present, there is no universally accepted method for quantifying chemicals 

detected/identified in an NTA experiment. There are, however, several approaches for 

using NTA data in a quantitative context. The first approach is the common process of 

“relative quantitation” and involves the comparison of measured intensities or normalized 

response values rather than concentration values. This quantitative treatment does not yield 

concentration estimates but has been used to compare samples for chemical prioritization 

and follow-up work. True quantitative approaches yield concentration estimates either using 

calibration (mimicking traditional quantitative methods) or direct response modeling. Each 

quantitative approach has intrinsic levels of uncertainty due to the numerous factors that 

influence chemical response in mass spectrometry. The sections below describe important 

sources of quantitative uncertainties and discuss the extent to which they’ve been considered 

in previous qNTA applications.

3.1. Relative quantitation by compound response comparisons

Relative quantification is the default method of comparison in NTA experiments. While 

not an absolute concentration measure, instrument response is assumed to be proportional 

to concentration, allowing comparison of analyte response across samples. The naïve 

assumption of linear response relationships and minimal matrix effects are seldom accurate; 

data normalization approaches are therefore often required to help correct for instrument 

variability and non-linearity (Yi et al., 2016; Di Guida et al., 2016). Simple relative 

comparisons are nevertheless easy and useful; an investigator could examine the fold-change 

in observed response between an exposed and unexposed population (i.e., Responseexposed/

Responseunexposed) to identify statistically significant chemicals for prioritization (Fig. 

3). Indeed, binary comparisons of two sample sets (e.g., case vs. control, upstream vs. 

downstream, treated vs. untreated) have been used in environmental analyses to identify 

geographic origins of emerging contaminants(Nakayama et al., 2010; Lindstrom et al., 

2011; Strynar et al., 2015) and to associate disinfection byproducts with specific treatment 

methods (Tang et al., 2016; Liberatore et al., 2020). With thousands of measurements 

conducted in a typical NTA experiment, traditional significance thresholds of statistical 

comparison would yield an unacceptably high false-positive rate. Controlling the so-called 

false discovery rate (FDR) can involve adjusting p-values for multiple hypothesis testing, 

as proposed by Benjamini-Hochberg (Benjamini and Hochberg, 1995) (Fig. 3), or using 

other significance criteria such as Storey q-value (Storey, 2003; Storey, 2002) or local FDRs 
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(Chong et al., 2015). Comparisons and statistical corrections are commonplace and enabled 

by data processing software (Xia et al., 2009; Misra, 2021).

Time-based comparisons (e.g., time 1 vs. time 2) have further helped identify environmental 

metabolites in wastewater, (Gago-Ferrero et al., 2015) assess real-time pollutant levels in 

the surface water, (Hollender et al., 2017) and characterize emerging contaminant levels 

in human blood (Plassmann et al., 2016; Plassmann et al., 2018). In these examples, 

observed changes in the relative abundance of detected chemicals was the basis for follow-

up investigation, such as contacting point sources to confirm chemical releases (Hollender 

et al., 2017) or performing targeted analyses to confirm chemical identities and estimate 

sample concentrations (Plassmann et al., 2018).

There are clear limitations to the direct use of measured HRMS intensities and response 

factors for relative quantitation. First, numerous factors (e.g., instrument cleanliness and 

tuning, matrix effects) influence HRMS response measures for any given chemical, 

and analyte response can be non-linear over large concentration ranges. The most 

straightforward normalization approach is to correct all measured intensities using reference 

compounds or internal standards (i.e. applying a scalar correction factor to measured 

intensities from a sample so that reference responses are constant across samples); 

(Sobus et al., 2018) although additional correction may be necessary for concentrations 

that fall outside the linear response range (Yu et al., 2020). Measurements can also be 

compared relative to a reference sample or pooled QC sample to ensure inter comparability 

between analytical batches and methods (Liu et al., 2020; Go et al., 2015). This has 

the further benefit that relative measurements can be converted to absolute measurements 

post hoc if concentrations are determined in the reference sample (Liu et al., 2020). 

Comparative measurements can thus reduce the number of necessary targeted measurements 

for quantification in addition to allowing retroactive concentration determination. However, 

without complementary quantitative measurements, normalization can only improve intra-

chemical comparisons between samples, but not cross-chemical comparisons. Furthermore, 

they do not yield specific concentration estimates in prepared sample extracts or the 

original sample medium (Fig. 1). For this reason, relative quantitation methods are 

viable for prioritizing future work, and for retaining valuable sample information for 

future interrogation, but alone cannot produce the data needed for other components of 

risk characterization. Ultimately, methods for absolute determination of concentration are 

needed.

3.2. Quantification by surrogate standard

Without a direct reference standard, a straightforward alternative for compound quantitation 

involves using a calibration curve (i.e. sample concentration vs. instrument response/internal 

standard correct response) from a chemical surrogate (Fig. 4). The goal in surrogate 

selection would be to identify a known chemical that is likely to mimic the analytical 

behaviors (e.g., chromatographic separation, ionization, and HRMS detection) of the 

compound in question. A single surrogate can be selected in a variety of ways. For example, 

a parent chemical may be chosen as a surrogate for a putative metabolite, or a well-known 
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compound from a specific chemical class (e.g., perfluorinated carboxylic acid) may act as a 

surrogate for an emerging chemical in that same class.

Significant challenges can exist when attempting to identify chemical surrogates for 

quantification. Specifically, a wide range of observed experimental inaccuracies indicate 

that the differences in estimated concentration when using a “closely matched” surrogate vs. 

a poorly matched surrogate can far outweigh the intrinsic error of any individual calibration 

curve (Fig. 4). Experimental examples using calibration curves of parent chemicals to 

quantify related metabolites have yielded inaccuracies of between four-fold for simple 

methyl- and hydroxylmetabolites (Dahal et al., 2011) and up to seventy-fold for more 

complex metabolic products (Hatsis et al., 2017). Using calibration curves of structurally 

similar surrogates, inaccuracies have been reported ranging from three-fold for small 

molecules in food, (Pieke et al., 2017) to an order-of-magnitude or more for perfluorinated 

contaminants in surface water, (McCord et al., 2018) and up to several hundred-fold 

for drugs in biological samples (Liigand et al., 2018). The measured inaccuracies derive 

from multiple sources, both the intrinsic variance of analytical measurement (i.e. curve 

preparation, instrument variability, internal standard addition etc.) and the inaccuracy 

introduced by applying calibration models between chemicals (i.e. deviations from predicted 

chemical similarity, inaccuracy of regression models etc.).

It is desirable for a closely matched surrogate to account for the intrinsic effects of the 

ionization, solvent composition, and matrix effects on analyte response. To date, the most 

accurate results from surrogate applications have been observed when considering chemicals 

within a defined class and with close retention times, (Pieke et al., 2017; Cech et al., 2001) 

or when extrapolating across bracketed homologous compounds (Kamga et al., 2014). In 

GC–MS experiments, observed quantitative error has been much smaller than in LC-MS 

experiments. In one study by Banerjee et al., an average calibration curve from a panel 

of surrogate compounds was able to estimate concentrations for several hundred pesticides 

with an average error of 10% from their true values, demonstrating significant similarity in 

response across the chemical space (Banerjee et al., 2012). Other work by Bu et al. observed 

maximum errors of only two-fold for select classes of organic contaminants when using an 

average curve (Bu et al., 2014). For the selected organic classes, the comparatively simpler 

chromatographic and ionization source interactions likely contribute to the more accurate 

quantitative predictions.

While the desire for closely matched surrogate is well known, methods for quantitatively 

describing surrogate fit are limited. A study by Aalizadeh (Aalizadeh et al., 2021) did use 

common substructural elements (Cao et al., 2008; Bajusz et al., 2015) to quantitatively 

define surrogate similarity and domain of applicability for surrogate usage with great 

success, as well as a mechanism for adjusting to future instrumental conditions, but only 

provided post hoc accuracy estimates of their fit, rather than a model for predicting estimate 

uncertainty. In fact, all the remaining referenced works provided only retrospective accuracy 

determination for tested compounds and lack a framework to bound future quantitative 

estimates or select appropriate surrogates beyond intuition. Crucially, the future utility 

of quantitative chemical estimates is intrinsically linked to the bounded accuracy of that 
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estimate. Thus, there is a need to develop predictive models of uncertainty to accompany 

methods for quantitative estimation.

3.3. Response modeling from chemical structure

Since the process of selecting appropriate surrogate calibrators for small molecules contains 

fundamental challenges, some researchers have opted to model the ionization response 

of compounds based on their molecular structure and chemical properties. This approach 

bases quantitative predictions on the physicochemical rationale for observed responses using 

models containing multiple factors that can influence compound response.

Mass spectrometry relies on the ionization of chemicals for analysis and is therefore 

inherently confounded by signal suppression due to matrix effects, (Taylor, 2005) as well as 

instrument-specific parameters that can influence the response factor of any given analyte. 

Selection of ionization type (e.g. electrospray [ESI], chemical ionization [CI], electron 

ionization [EI]) affects the end results due to interactions with physicochemical properties; 

chemical parameters such as hydrophobicity (logP),(Null et al., 2003; Henriksen et al., 2005; 

Cech and Enke, 2000) polar-/non-polar surface area, (Cech and Enke, 2000; Walker et al., 

2011; Golubović et al., 2016) molecular weight, (Mehta et al., 2016; Cox et al., 2003) 

and both liquid and gas-phase acidity(Sunner et al., 1988; Ehrmann et al., 2008; Richter 

and Schwarz, 1978) are known to contribute to ionization potential, along with structural 

parameters like carbon number and ionization cross section (Bergmann et al., 2018; Kim et 

al., 2014; Szulejko et al., 2013). Solvent effects from buffer pH, concentration of organic 

solvent, (Cech et al., 2001; Liigand et al., 2014) temperature, (Page et al., 2007) and even 

flow rate (Smith et al., 2004) can yield variable responses for individual chemicals from 

experiment-to-experiment. We direct interested readers to a recent review article by Kruve 

(Kruve, 2020) for an in-depth discussion of the physicochemical and instrumental influences 

on ionization behaviors.

The wide range of properties that contribute to different chemical responses in MS 

experiments is daunting. Indeed, sensitivity differences of several orders-of-magnitude 

have been observed across even fairly similar compounds (Liigand et al., 2018; Kruve, 

2020). Yet, it’s encouraging that robust model-based quantitative approaches have seen 

widespread application in related fields (e.g., proteomics) that utilize comparable MS 

platforms (Bantscheff et al., 2007; Shuford et al., 2017). Models that predict compound 

response can incorporate disparate chemical and instrumental factors and, most importantly 

from a quantitative perspective, provide estimated errors that can bound the accuracy of any 

individual concentration estimate. Further, cross-platform compatibility can be encouraged 

by transferring predicted response factors between platforms using a panel of reference 

compounds (Panagopoulos Abrahamsson et al., 2020). A key consideration for ionization 

modeling approaches is the reliance chemical structure information. Any quantitative 

prediction model that relies on chemical structure is therefore limited in the domain of 

applicability by the chemicals used to construct it. Furthermore, quantitative predictions can 

only be as accurate as the preceding NTA identification. Assigning risk to an unknown 

based on uncertain identification can be fraught, but for scenarios where multiple potential 

structures exist, the hazard classification can be estimated for multiple structures based on 
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worst-case scenarios of classification, or weighted based on annotation likelihood, if such 

values are available.

Multiple models have been constructed that use physicochemical properties or chemical 

descriptors to predict chemical ionization efficiency often normalized to a reference standard 

(Liigand et al., 2018; Leito et al., 2008; Oss et al., 2010; Kruve et al., 2014; Chalcraft et 

al., 2009). Some challenges have been reported with predicting chemical ionization behavior 

related to specific ionization sources. Work by Chalcraft et al. reported an average ratio 

between measured and predicted response of 1.08 ± 0.75 for chemicals that ionize via 

positive mode ESI (Chalcraft et al., 2009). But the same study could not establish a model 

for compounds that exhibit multiple ionization states, either multiple charges or adducts, 

or that ionize in negative mode ESI; the authors speculated that multiple models would 

be needed for different chemical subclasses. Another study by Leito et al. developed a 

regression model based on ten compounds and reported an RSD consistency of 0.16 log 

units (~1.5 fold),(Leito et al., 2008) but later studies using larger chemical datasets have 

since yielded higher prediction errors due to the larger complexity of the chemical space 

modeled (Oss et al., 2010; Kruve et al., 2014). Other modeling efforts have yielded errors 

of 26% for sugar metabolites,(Ghosh and Jones, 2015) up to 13% for lipids,(Cífková et 

al., 2012) 37% for steriods,(Alymatiri et al., 2015) and as little as 1% for ion-paired 

oligonucleotides.(Basiri et al., 2017) Built-for-purpose models therefore seem to exhibit 

lower prediction error than more general models due to the narrower chemical space. 

However, an exhaustive recent modeling study by Liigand et al. considered both positive and 

negative ionization mode, as well as a hundred LC conditions and several hundred chemicals 

in multiple chemical classes to train a random forest, machine learning model to obtain 

average prediction errors of approximately 2-fold (Liigand et al., 2020). This implies that a 

general ionization response model for an MS source is hindered by only lack of appropriate 

dataset(s) to capture the wide range of chemical space, rather than an incompatibility of 

the approach with quantitative prediction. Importantly, we note these prediction errors are 

considerably smaller than those observed with computational exposure modeling, and on 

par with those experienced by in vitro extrapolation efforts. Therefore, continued collection 

of ion efficiency data across large and diverse chemicals sets represents a path forward for 

qNTA.

4. Sample concentrations from quantitative predictions

Previously described approaches (section 3.2) for surrogate calibration can naturally 

incorporate experimental recovery by utilizing matrix-matched extracted calibration curves. 

This relies on the assumption that chemical surrogates accurately mimic preparation losses 

of the chemicals of interest. With limited exceptions that used matrix-matched surrogate 

calibration, (Aalizadeh et al., 2021; Alygizakis et al., 2021) the quantitative research efforts 

described above have focused on estimating in-solution concentrations for compounds in 

prepared standards or extracts. For risk characterization, quantitative estimates must extend 

back to the original sample matrix, rather than relying on extract concentrations alone 

(Fig. 1). Most analyses of environmental or biological matrices require some amount of 

sample preparation (including extraction and/or concentration steps) prior to MS analysis. 

While NTA experiments strive to minimize bias, sample preparation procedures can strongly 

McCord et al. Page 12

Environ Int. Author manuscript; available in PMC 2023 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



affect recoveries for individual compounds. Thus, the estimated concentration in a prepared 

extract does not directly translate to the environmental concentration. A naive baseline 

assumption is that the preparation procedure is well suited for the analyte(s) of interest, and 

that all chemicals are transferred into the final extract (i.e., recovery = 100%). In practice, 

adjustment is needed to estimate concentrations in both targeted and qNTA methods.

Solid phase extraction (SPE) is a common preparatory technique for concentration of dilute 

environmental samples, and there are hundreds of SPE methods, such as the dispersive SPE 

QuEChERS approach (Perestrelo et al., 2019). Extracts can also be prepared using direct 

solvent extraction, for example multi-solvent extraction of soil(Fisher et al., 1997) or small 

molecule solvent extractions from biological samples (Vuckovic et al., 2020). Recovery 

of chemicals of interest is dependent on the same chemicals factors that influence MS 

response (e.g. pH, hydrophobicity, pKa) along with the choice of extraction solvents and 

SPE phases. Comparing common preparation techniques reveals that optimized methods 

can achieve near 100% recovery, but naïve applications of the same methods can have 

yields as low as 10%.(Chambers et al., 2007) This sample preparation variability adds 

another layer of uncertainty to qNTA predictions. Most NTA studies that have calculated 

recoveries did so for benchmarking purposes (Parry and Young, 2016; Crimmins et al., 

2014; McCord and Strynar, 2019) with only limited examples of correction for predicted 

concentrations. A notable exception is the previously mentioned work of Aalizadeh et al, 

who applied chemical similarity measures to predict matrix effects and analyte recovery 

for chemicals based on surrogates (Aalizadeh et al., 2021). Importantly, robust recovery 

estimates are only known for chemicals with available standards. Therefore, there is 

significant uncertainty in chemical recovery for unknowns which compounds with other 

sources of error when determining quantitative estimates (note that recovery has a theoretical 

upper bound of 100%, but no definable lower bound [e. g., 10%, 1%, 0.1%...]). It is possible 

to account for the interaction of chemical structure with matrix, sample preparation, and 

analysis conditions using recovery surrogates. However, recovery surrogates from a lack of 

quantitative measures for surrogate suitability, just as was discussed for surrogate calibration 

(Aalizadeh et al., 2021; Alygizakis et al., 2021). Surrogate and purely computational models 

of recovery estimation will require expansive training sets to predict the recoveries for 

arbitrary chemicals and conditions. The development of these models is a final barrier 

to generating true concentrations needed to carry out a risk characterization from qNTA 

experiments.

5. Risk characterization as part of an NTA workflow

There are three anticipated scenarios when identifying chemical substances in qNTA studies, 

differentiated by the amount of existing guidance information available. In the simplest 

scenario, direct comparison can be made between estimated concentrations and an existing 

guidance or reference level, such as a drinking water maximum contaminant level. While 

straightforward, this scenario is seldom expected given: 1) the comparative paucity of 

chemicals with source-specific regulatory guidance/reference levels; and 2) the primary 

focus of NTA studies being data-poor and/or novel compounds.
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In a second scenario (Fig. 5), the identified chemical would not have fixed source-specific 

guidance/reference levels, but instead have only provisional bioactivity or toxicity data and 

provisional risk thresholds. EPA’s Toxicity Forecaster (ToxCast) project, for example, has 

generated in vitro bioactivity data for thousands of chemicals across hundreds of assays 

(Thomas et al., 2018). Using this readily available data, a lower-bound bioactivity threshold 

(e.g., 5th percentile) could be selected from a distribution of all existing potency measures 

(e.g., AC50 values, which are concentrations associated with half-maximal assay activity) 

(Richard et al., 2016) to represent a surrogate POD in the absence of traditional in vivo 
dose–response data (Paul Friedman et al., 2020). Linking these measures to qNTA estimates 

would require several modeling efforts. First, toxicokinetic modeling (for example, using 

EPA’s HTTK modeling platform) (Pearce et al., 2017) would be needed for in vitro 
to in vivo extrapolation, yielding a plausible distribution of dose-equivalent values that 

correspond to the lower-bound potency measure. This would answer the question of what 

dose levels (e.g., μg/kg/day) are expected to produce steady-state blood levels that are 

consistent with in vitro assay concentrations. Next, source-specific exposure modeling (e.g. 

EPA’s SHEDS-HT modeling platform (Isaacs et al., 2014), or numerous QSAR models from 

the NORMAN ecotox database) would be needed to determine what matrix concentrations 

(e.g., ng/L of drinking water) would be protective given the lower bound dose-equivalent 

value. Finally, the acceptable matrix concentrations and qNTA estimated concentrations 

could be compared to enable provisional risk evaluation for particular single source or 

aggregate exposure (s).

The third scenario pertains to identified chemicals for which there is no existing bioactivity 

or toxicity data – this is likely the most common scenario for chemicals identified in NTA 

experiments. Here, there are no existing hazard-based measures and, instead, researchers 

must rely on chemical read-across techniques (Cohen Hubal et al., 2010; Rovida et al., 2020) 

or in silico toxicity predictions (US-EPA, User’s Guide for TEST (version 4.2)(Toxicity 

Estimation Software Tool): A Program to Estimate Toxicity from Molecular Structure. 

Washington (USA): US-EPA, 2016; Raies and Bajic, 2016). Given hazard-based metrics 

derived from read-across and predictive models, the risk-based interpretation of qNTA data 

can use computational results as provisional estimates for exposure and/or toxicity. It is 

expected that most estimated upper-bound concentrations based on NTA data will be smaller 

than risk-limiting lower-bound concentrations based on bioactivity/toxicity data. This would 

suggest that environmental levels of individual chemicals are too low to elicit an adverse 

biological response. If this circumstance holds true, many observed compounds could be 

considered “low-risk” despite potentially large uncertainties in concentration estimates. For 

example, the credible intake ranges of Ring et al. spanned up to eight orders of magnitude, 

but of ~ 500,000 chemicals modeled only ~ 2,000 were expected to have exposures 

exceeding 0.1 mg/kg/day (Ring et al., 2019). Quantitative NTA estimates discussed in 

Section 3 broadly possess errors of only one or two orders of magnitude, which is similar 

to the uncertainty of the toxicokinetic modeling. Substantial overlap between concentration 

estimates and effects-based thresholds would indicate a need for more robust predictions 

of the anticipated exposure levels and/or toxicity thresholds due to increased risk potential. 

In the short term, it will still be necessary to acquire or synthesize chemical standards 

and to apply targeted analytical methods for chemical substances with a high degree of 
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risk. However, this focused use of resources on higher risk chemicals is more feasible 

than attempting to perform rigorous quantitation on all compounds detected in an NTA 

experiment.

6. The future of quantitative NTA

Our review has highlighted the motivating need for higher-throughput chemical safety 

assessments in the modern chemical landscape and explored the existing data/methodology 

gaps between current NTA implementation and its incorporation into a rapid risk 

characterization workflow as a quantitative data source. Moving forward, we can 

foresee qNTA experiments that contribute to every step of the risk assessment process, 

providing chemical identities to support components of existing frameworks (e.g., hazard 

identification) and sample concentration estimates to facilitate next generation dose, 

exposure, and risk assessments. The goal is to enable seamless linkage between outputs 

of qNTA experiments and computational toxicology studies that will yield rapid risk 

categorizations (e.g., high, medium, low) for emerging chemicals.

Current NTA approaches rely on data processing pipelines to yield large chemical feature 

lists and putative structures. Future developments should retain and improve the automated 

nature of data analysis to allow high-throughput processing while improving the accuracy 

of compound identifications and subsequent characterization. Further, the adoption of one 

or more general qNTA techniques should provide for bounded estimates of concentrations, 

with continuous improvements to prediction accuracy and domain of applicability. Existing 

methods function well for specific chemical sub-classes but may have limited utility outside 

of their defined chemical domain. Ideal quantitative methods should therefore strive to 

extend to any arbitrary chemical structure or possess the ability to flag chemicals (or 

chemicals sub-classes) that are likely to be not well estimated. Finally, while there is clearly 

a desire to maximize the accuracy of any predictive model, it must be universally recognized 

that quantitative estimates will possess intrinsic error and future methods must bound this 

error to facilitate protective decision making.

Integration of qNTA methods with other HT chemical evaluation tools offers a means 

to radically advance the utility of NTA data. In addition to enabling detection of 

chemicals, qNTA will allow the immediate prioritization of emerging contaminants based 

on anticipated risk; importantly, this utility extends to unexamined chemicals not covered 

by traditional chemical registration efforts. Quantitative NTA will further provide a pathway 

for efficient hazard screening in rapid-response scenarios, such as chemical spills or natural 

disasters, where chemical exposures may be heterogenous in scale and complexity. Finally, 

qNTA will provide a means to rapidly communicate chemical-related risks to potentially 

affected populations in all manner of environmental and biological monitoring studies. 

Provided that existing challenges can be addressed, it is likely that qNTA will ssupport rapid 

and defensible risk-based decisions for hundreds to thousands of understudied chemical 

stressors.
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Fig. 1. 
Relationship between sample processing for MS analysis (top) and level of chemical 

information derived (bottom). NTA techniques primarily focus on the identification 

chemical species in MS analysis (bottom-right), but quantitative modeling approaches allow 

estimation of the likelihood of given concentrations in prepared sample extracts and parent 

samples (bottom-left).
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Fig. 2. 
Integration of targeted and non-targeted analysis data (ovals) into the traditional risk 

assessment paradigm (rectangles). Current non-targeted analysis provides primarily 

qualitative data for hazard identification (via compound discovery) and occurrence 

information (presence/absence) for exposure assessment; this influences the development 

of targeted analysis methods for follow-up quantitative examinations. Further connection 

of NTA to existing dose–response, exposure assessment, and risk-characterization tools, 

designed for compatibility with targeted analysis approaches, requires reformulation of NTA 

data to adhere to workflows designed for quantitative inputs.
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Fig. 3. 
Prioritizing chemical features by statistically significant fold change using volcano plots 

of individual chemical features compared between two study groups (data reprocessed 

from Rager et al.56). The fold-change (FC) for each feature intensity (where FC = 

MeanIntensityGroup1 / MeanIntensityGroup2) is plotted versus p-values for the unadjusted 

(left) and Benjamini–Hochberg corrected (right) group differences. Dashed lines show 

designated p-value (horizontal lines; p = 0.05) and FC (vertical lines; FC = 3) thresholds. 

Red chemical features are elevated (above designated thresholds) in study group 1 and blue 

chemical features are elevated in study group 2.
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Fig. 4. 
Estimation of the concentration of an unknown compound from a measured intensity 

(horizontal green line) and multiple surrogate calibration curves (blue and orange lines) with 

95% prediction bands (grey envelopes). In this theoretical example, the uncertainty incurred 

from surrogate selection (i.e., calibration curve 1 vs. 2) far outweighs the calibration 

estimate uncertainty associated with either individual curve.
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Fig. 5. 
Toxicity/bioactivity assay measures (e.g. ToxCast AC50, top left) can be scaffolded to 

lower bound acceptable concentrations via in vitro to in vivo extrapolation (IVIVE) and 

exposure modeling. Chemical instrument response from NTA experiments (bottom left) can 

likewise be converted to protective upper-bound estimates via quantitative NTA modeling 

and estimation of sample recovery. Risk assessment decision making can then be based on 

the comparison between upper-bound estimated concentration and a lower-bound acceptable 

concentration. Even sizable estimation errors may be acceptable for risk-based prioritization 

if the degree of separation is large.
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