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Abstract

Although alcohols are one of the largest pools of alkyl substrates, approaches to utilize them 

in cross-coupling and cross-electrophile coupling are limited. We report the use of 1° and 2° 

alcohols in cross-electrophile coupling with aryl and vinyl halides to form C(sp3)–C(sp2) bonds in 

a one-pot strategy utilizing a very fast (<1 min) bromination. The reaction’s simple benchtop setup 

and broad scope (42 examples, 56% ± 15% ave yield) facilitates use at all scales. The potential 

in parallel synthesis applications was demonstrated by successfully coupling all combinations of 8 

alcohols with 12 aryl cores in a 96-well plate.

Graphical Abstract

Cross-coupling reactions to form C(sp3)–C(sp2) bonds are increasingly important for the 

synthesis of structurally diverse molecules in medicinal chemistry1 and natural product 

synthesis.2 In medicinal chemistry, small-scale high-throughput experimentation is now 

routine to allow rapid synthesis of focused libraries to explore structure-activity relationships 

(SAR) and optimize lead compounds while preserving valuable material.3 In these studies, 

the size of the substrate pool is crucial and even one-step activation approaches that 

require intermediate isolation or purification can be limiting (Figure 1a). Alcohols have 

long been the primary source of alkyl diversity in cross-coupling via their conversion 

to alkyl halides, sulfonate esters,4 and (more recently) other redox-activated derivatives.5 
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Conversion of alcohols to halides and pseudohalides represents the most-used functional 

group interconversion in medicinal chemistry,1a, 6 however such reactions require additional 

time and resources for each synthesis and purification, imposing an inherent bottleneck in 

the conversion of alcohols to libraries of pharmaceutical compounds (Figure 1b). General 

one-pot activation/coupling strategies compatible with high-throughput experimentation 

(HTE) approaches7 have been elusive and largely limited to activated alcohols.8

A direct, yet under-explored, approach would be the in-situ conversion of alcohols to 

alkyl bromides in tandem with cross-electrophile coupling (XEC).9,10 While building upon 

established chemistry, this approach presents several challenges. First, the activating agent 

must be selective for the target alcohol over other Lewis-basic functionalities (e.g., amides, 

ketones) and not directly react with other components of the reaction (catalyst, reductant, 

solvent). Second, the co-products of this activation (e.g., phosphine oxide, acid) must be 

tolerated by the coupling reaction. Finally, the reaction must be fast and high yielding to 

avoid the need for multiple manipulations of each reaction (Figure 1b and 1c).

We have found that employing oxophilic P(V) reagents, especially Hendrickson’s POP 

reagent ([(Ph3P)2O](OTf)2),11 for one-pot alcohol activation is compatible with XEC 

conditions, procedurally simple, general, fast, and well-suited to μmol-scale HTE format 

(Figure 1c). Concurrent with these studies, two other exciting advances towards this goal 

have appeared that utilize paired electrolysis9 and metallaphotoredox catalysis.12 While all 

three approaches are impressively general, our approach appears better suited to parallel 

synthesis,13,14 does not require excess of either coupling partner to achieve selective 

cross-coupling, and requires no specialized electrochemical or photochemical equipment 

for preparative or HTE applications.

Keys to the success of this approach are: 1) the discovery of a fast, homogeneous 

bromination system, POP/TBAB (Bu4NBr) in MeCN, that is compatible with reductive 

coupling conditions; and 2) the development of a new ligand, 4,4′-di-tert-butyl-6-N-

cyanocarboxamidine-2,2-bipyridine (t-BuBpyCamCN or L1) that, alone or in combination 

with dtbbpy,15 provides high yields of product. Because the new catalyst mixture works well 

in acetonitrile, problematic amide solvents can be avoided16 and the bromination can occur 

concurrent with the cross-electrophile coupling (Table 1).

A significant practical advantage of our approach is the use of a POP/TBAB reagent 

solution in MeCN, which can be easily handled outside of a glovebox and facilitates 

parallel reaction assembly. While amide solvents appeared better at solubilizing this 

reagent and are established for cross-electrophile coupling, we obtained low yields in 

DMA (Table 1, entry 15) and POP reagents have been reported to be reactive with 

amides.17 The tetrabutylammonium cation is critical for the solubility of the POP reagent 

in acetonitrile as other cations resulted in slurries that would be impractical on small 

scale (see Supplementary Table S3). The solution is stable for months when stored in 

a septum vial in a desiccator without any decrease in reactivity (entry 8). Compared to 

triphenylphosphine dibromide (the intermediate invoked in the paired electrolysis report9), 

we found bromination with POP/TBAB faster (complete in 5 min at rt). This allowed us to 
run reactions without any monitoring of the bromination.
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Control reactions showed that each component of the system is necessary for high 

yields (Table 1, entry 2–5). Triphenylphosphine dibromide and [(Me3P)2O](OTf)2/TBAB 

were both reasonable alternatives to POP (Table 1, entries 6 and 7). Triphenylphosphine 

dibromide proved useful with substrates prone to elimination,18 (3ah, Scheme 1) and 

(Me3P)2O](OTf)2 could be useful on larger scale because Me3P=O is water soluble. While a 

variety of non-nucleophilic organic bases were effective, Barton’s base ((Me2N)2C=N(t-Bu)) 

was superior (entries 1, 9, Supplementary Table S2). The reactions worked best with an 

excess of Mn (entries 1, 12–13),19 but could be run at lower temperature and without a 

glovebox, if needed (entries 14, 8).

Informed by our previous studies on carboxamidine ligands20 and mixed-ligand systems,15 

we found that a new mixed-ligand system with t-BuBpyCamCN (L1)21 and dtbbpy provided 

enhanced selectivity for the cross-coupled product in comparison to a single ligand system 

(Table 1, entry 9–10 and Supporting Information Table S1). Examination of our results with 

single ligands showed that L1 and dtbbpy had complementary reactivity: dtbbpy-ligated 

Ni primarily consumed the aryl bromide, whereas L1-ligated Ni favored alkyl bromide 

consumption. The synergistic effect of both catalysts22 enabled the development of a 

general, tunable reaction system (vide infra, Scheme 2), even in a non-amide solvent.23

These new conditions enable a simple, one-pot reaction for the cross-coupling of alcohols 

with aryl bromides by stepwise addition of reagents. The alcohol is combined with the 

POP/TBAB solution and Barton’s base for about 1 min before being combined with the 

catalyst, aryl bromide, and Mn.

This system proved effective for the coupling of a wide array of 1° and 2° unactivated 

alcohols with aryl, heteroaryl, and vinyl bromides (Scheme 1).24 The one-pot bromination/

cross-coupling reaction has a wide functional group tolerance for both aryl and alkyl 

coupling partners. Aryl substrates bearing esters (3h, 3i, 3n, 3t), ethers (3c, 3g, 3k), ketones 

(3m, 3s), carbamates (3b), chloride (3l), and heteroarenes (3b-f) were compatible under 

these conditions. Sterically hindered aryl substrates bearing ortho substituents such as in 

2-naphthalene, methoxy, and isopropyl could also be coupled (3j, 3k, 3an). Because the 

alcohol activation is usually complete before aryl bromide is added, the development of 

reactions that tolerate free alcohols on the aryl bromide is feasible: in the coupling of 3q 
the less reactive alcohol is coupled over the benzylic alcohol, albeit in only 34% yield 

(unoptimized). Future improvements will enable telescoped three-component reactions and 

sequential cross-couplings.

While the optimized two-ligand system worked best for electron-rich aryl halides, more 

reactive C(sp2) electrophiles, such as 2-bromopyridines (3e, 3x, 3y, 3ab, 3ad, 3ae, 3af, 
3ai, 3ao), aryl bromides with strong electron withdrawing groups in the para position (3t, 
3u), and alkenyl electrophiles (3z, 3aa, 3ak) performed best using only L1 (10 mol%) with 

no dtbbpy. Furthermore, the ratio of L1 to dtbbpy can be adjusted to improve yields: the 

coupling between primary alcohol 1b and methyl 3-bromobenzoate 2i afforded the product 

3i in 72% yield with 75:25 L1/dtbbpy compared to 62% using a 1:1 ligand ratio.
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We next explored the scope of the alcohol coupling partner. Our attention was focused on 

alcohol substrates for which the corresponding alkyl bromide was either not commercially 

available or is an order of magnitude more expensive per mole (Supporting Information 

Table S3). A wide variety of primary and secondary alcohols25 could be coupled with aryl, 

heteroaryl, and vinyl substrates to give a structurally diverse set of products. Finally, we 

could scale the reaction of 3al from 0.25 mmol to 3.6 mmol scale using standard glassware 

with about the same yield (from 70% to 67% yield).

More hindered alcohols and those with β-heteroatoms reacted more slowly and were 

prone to form elimination products, consistent with literature reports on the POP 

reagent.18 A preliminary workaround is the use of Ph3PBr2 instead of POP/TBAB, which 

enabled coupling with serine to form heteroaryl phenylalanine derivative 3ah with useful 

stereoretention (93% cee).

As noted above, the ability to directly use alcohols in cross-electrophile coupling reactions 

without extra steps will be of particular advantage in the generation of small libraries in 

medicinal chemistry.1,20c To explore this application, we coupled all combinations of 12 aryl 

halide cores with 8 alcohols on 10 μmol scale in a 96 well plate using three ligand regimes 

(dtbbpy only, 1:1 dtbbpy/L1, and L1 only). All reagents except Mn were dosed using 

liquid handling and standard multichannel pipettes. We used the AbbVie Mn@Chembead 

approach20c to dose the Mn using a calibrated scoop, and a shaker/heater was used in 

place of a tumble stirrer. These results show that 1:1 dtbbpy/L1 is the most general set of 

conditions (product observed in 95/96 cases, 99% hit rate), but that L1 alone can improve 

yields for some combinations: E10 had no detected product with L1/dtbbpy but product was 

detected with L1 alone. When combined, the two catalyst combinations, dtbbpy/L1 and L1, 

provided product in all 96 combinations. Screening at this scale requires minimal material 

investment per 96-well plate – 0.96 mmol of each coupling partner and 0.05 mmol each of 

L1 (16 mg) and dtbbpy (13 mg).

Mechanistically, the bromination and cross-electrophile coupling reactions are expected to 

proceed by their established mechanisms.26 The bromination reaction is quantitative in about 

5 min at rt (monitored by GC). Nickel-mediated cross-electrophile coupling then occurs 

between the alkyl bromide and the aryl electrophile. Our data show that (L1)Ni is capable 

of activating both substrates, but it appears to form too much alkyl radical, leading to alkyl 

dimerization. On the other hand, (dtbbpy)Ni is a less-effective catalyst for alkyl radical 

generation under these conditions but readily consumes ArBr, leading to poor selectivity 

for cross-product. We hypothesize that, in the dual-catalyst system, the (dtbbpy)Ni catalyst 

forms cross-product by capturing the excess alkyl radical produced by (L1)Ni.27 This 

system can be rationally adjusted to improve yields. For example, reactions that consume 

aryl bromide too fast benefit from increasing the ratio of L1 to dtbbpy (3i in Scheme 1).

The synthetic utility of this approach is exemplified by the fact that 37 out of the 41 

products in Scheme 1 are new compounds, despite being simple derivatives of commercial 

materials. This advance, in tandem with related advances from MacMillan5 and Li,9 may 

lead to alcohols supplanting alkyl halides in the synthesis of Csp3–Csp2 bonds. Further, 

these reactions set the stage for selective deoxygenation of more complex polyols, such as 
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those recently reported by Diao5c and MacMillan,12 and improved activating agents tuned 

to cover an even wider range of alcohols. Indeed, while this work was in review, Gong and 

Ma reported on another approach to in situ bromination/cross-electrophile coupling that is 

capable of selectively monofunctionalizing diols!10c
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Figure 1. 
Cross-Electrophile Coupling of Alcohols with Aryl Bromides Via In-Situ Bromination.
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Scheme 1. 
Alcohol and Aryl Halide Scope for the Bromination/Cross-Electrophile Coupling Reaction.a

aIsolated yields after purification. Alcohol 1, POP/TBAB solution, and base were mixed 

for 1 min before being combined with the rest of the reagents. b1.5 Equiv of alcohol, 

POP, TBAB, and Barton’s base used. cOnly dtbbpy (10 mol%) was used. dOnly L1 (10 

mol%) was used. e(1:3) dtbbpy:L1 used. fYield adjusted to account for <5% of inseparable 

impurity. gAlcohol 1 mixed with base before addition of POP/TBAB solution. h1.25 equiv of 

PPh3Br2, and DIPEA used. iProduct appears to decompose on silica gel.
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Scheme 2. 
Coupling of Alcohols with Aryl Halides on 10 μmol Scale in 96-Well Plate Format.a

aReactions run at 10 μmol scale. Assay yields are raw product/Internal standard (UV) ratios 

vs. 1,3,5-trimethoxybenzene.
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Table 1.

Optimization and Control Studies.
a

entry deviations from above conditions 3a
b
 (%)

1 none 89 (79)

2 no POP/TBAB
c 0

3 no TBAB 28

4 no base 41

5 no ligand 2

6 PPh3Br2 in place of POP/TBAB 43

7 [(Me3P)2O](OTf)2 in place of POP 62

8 benchtop assembly
d 89

9 DIPEA instead of Barton’s base 57

10 only dtbbpy (10 mol %) as ligand 34

11 only L1 (10 mol %) as ligand 23

12 4 equiv of Zn instead of Mn 58

13 2 equiv of Mn 82

14 rt instead of 60 °C 75

15 DMA instead of CH3CN 4

a
Reactions run at a 0.25 mmol scale. The alcohol was mixed with POP/TBAB solution (30 s) and base (30 s) before being combined with the rest 

of the reagents.

b
Corrected GC yields. Isolated yields shown in parentheses.

c
TBAB = tetrabutylammonium bromide.

d
Reaction run with POP/TBAB solution stored in a desiccator for 2 months.
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