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Abstract

Older adults with lower education are at greater risk for dementia. It is unclear which brain 

changes lead to these outcomes. Longitudinal imaging-based measures of brain structure and 

function were examined in adult individuals (baseline age, 45–86 years; two to five visits 

per participant over 1–9 years). College degree completion differentiates individual-based and 

neighborhood-based measures of socioeconomic status and disadvantage. Older adults (~65 

years and over) without a college degree exhibit a pattern of declining large-scale functional 

brain network organization (resting-state system segregation) that is less evident in their college-

educated peers. Declining brain system segregation predicts impending changes in dementia 

severity, measured up to 10 years past the last scan date. The prognostic value of brain network 

change is independent of Alzheimer’s disease (AD)-related genetic risk (APOE status), the 

presence of AD-associated pathology (cerebrospinal fluid phosphorylated tau, cortical amyloid) 

and cortical thinning. These results demonstrate that the trajectory of an individual’s brain network 
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organization varies in relation to their educational attainment and, more broadly, is a unique 

indicator of individual brain health during older age.

Educational attainment differences are closely linked to health disparities across individuals 

(for example, ref.1). Adults with higher education live longer and healthier lives than 

their peers with less education2. Conversely, lower education is associated with increased 

risk of mental health disorders3,4 and dementia5–7 during advanced age. Education-related 

differences in health outcomes during older age are likely mediated by a complex 

combination of socioeconomic factors that are realized via the opportunities that higher 

education affords over an individual’s adulthood. These factors include access to resources 

and environmental stimulation, health habits and exposure to different levels and types 

of stress (for example, ref.8; reviewed in ref.9). Critically, however, efforts to link an 

individual’s education and environment to their brain changes, including both brain structure 

(for example, refs.10,11; also see ref.12 for review) and measures of brain pathology (for 

example, refs.13–15), have yielded mixed results. Establishing a link between educational 

attainment and specific brain changes during older age is not only an important step 

toward understanding environmental determinants of brain disease16 but could also catalyze 

discovery and incorporation of new brain health ‘biomarkers’ (for example, ref.17).

Due to its devastating threat to older adults and to public health systems, there is an urgent 

need to elucidate the causes of AD. Except in rarer forms of the disease (for example, 

autosomal-dominant AD), there are no known direct determinants of AD, indicating an 

interaction between genetic risk and various environmental, psychosocial and lifestyle 

factors18. AD brains are characterized by the presence of two types of pathology: abnormal 

levels of extracellular beta amyloid (Aβ) plaques and intracellular tau proteins in the form 

of neurofibrillary tangles19,20. A recently proposed framework incorporates biomarkers 

sensitive to both of these neuropathologies (measured using positron emission tomography 

(PET) or from cerebrospinal fluid (CSF)) as well as measures of neurodegeneration (for 

example, brain atrophy, assessed by gray matter cortical thinning and volume loss, and 

hypometabolism, assessed by fluorodeoxyglucose uptake) to help classify and stage AD 

(that is, the amyloid, tau and neurodegeneration (A/T/N) framework21). There has been 

substantial progress in understanding the trajectory of these AD-related biomarkers (for 

example, refs.22–24) and their potential relationships with impending cognitive decline (for 

example, refs.25,26). However, it has also been clear that individuals with comparable 

biomarker profiles may still have different clinical profiles17,27, suggesting that other 

moderators exist that have yet to be accounted for, which could also be more broadly 

informative in understanding trajectories of brain aging.

Progress in incorporating measures of brain function into models of aging, AD and dementia 

more generally has been slow. This is largely due to inherent constraints associated with 

characterizing brain signals in older and cognitively impaired populations with task-related 

functional imaging (that is, challenges with participant compliance and feasibility), but is 

also due to the complexities of accounting for brain variability associated with differing 

behavioral performance. However, brain function is also reflected in the correlation structure 

of brain region signals in the absence of overt task performance (that is, during the 
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‘resting state’ (ref.28)). Resting-state functional correlations (RSFCs) represent ‘Hebbian-

like’ statistical histories of coactivation between areas of the brain29. When sets of RSFC 

signals sampled across multiple brain areas are examined in aggregate, complex large-scale 

brain network organization is evident (review in ref.30). While RSFC networks remain 

relatively stable on a day-to-day basis and with variations of state (for example, ref.31), they 

have been shown to differ across the lifespan (for example, refs.32–34), reflecting protracted 

periods of changes in brain function that accompany childhood development and adult 

aging. Importantly, RSFC networks vary in relation to cognitive ability among healthy adults 

(for example, refs.35,36) and also differ based on disease status (for example, refs.37,38). The 

present work is motivated by the hypothesis that an individual’s large-scale brain network 

organization reflects their brain’s functional integrity and that functional brain network 

degradation may be prognostic of cognitive impairment beyond global measures of brain 

atrophy and pathological burden.

Large-scale RSFC networks are organized into a modular architecture (for example, 

ref.39); modules correspond to functionally specialized brain systems, and the segregation 

of these systems supports brain function40,41. Multiple reports have now demonstrated 

that increasing adult age is associated with less-segregated brain networks33,34,42. This 

‘dedifferentiation’ of functional systems has been associated with age-accompanied 

differences in patterns of brain activity, worse cognitive and motor ability, lower energy 

metabolism and altered neurotransmitter levels (for example, refs.43–47). Cross-sectional 

comparisons have also revealed that middle-aged adults with lower socioeconomic status 

(SES) (35–64 years of age) exhibit lower brain system segregation than that of their peers of 

the same age with higher SES48, suggesting that there may exist environmental determinants 

of brain network aging. Finally, comparisons of patients with AD relative to age-matched 

healthier adults have provided some evidence that patterns of reduced segregation exist in 

the brain’s functional systems among individuals with dementia (for example, refs.49,50). 

This collective work motivates the current study, which aims to determine (1) whether a link 

exists between an individual’s educational attainment and longitudinal changes in their brain 

system segregation during adulthood and (2) whether changes in brain network organization 

are prognostic of impending clinical decline in aging adult individuals.

To answer these questions, we have assembled and examined data from a diverse participant 

cohort of varying adult ages across multiple longitudinal magnetic resonance imaging (MRI) 

sessions and clinical visits (including clinical visits that were conducted up to 10 years 

after the participant’s last available MRI session). The richness of the dataset allows us 

to examine the relationship between educational attainment and changes in brain system 

segregation in individual adult participants over time while accounting for demographics and 

various measures of health and pathology. These brain network changes are then evaluated 

in relation to trajectories of clinical decline to examine the prognostic utility of changes in 

functional brain network organization over and above an individual’s AD-related genetic 

risk and presence of AD-related brain pathology.
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Results

Longitudinal changes in brain system segregation were examined in predominantly 

cognitively normal middle-aged and older adult participants (n = 265; 45–86 years of age 

at baseline) enrolled in ongoing studies of normal aging and dementia at the Charles F. 

and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) at Washington 

University in St. Louis. Each participant had two to five visits during which MRI was 

conducted, which included resting-state scans, collected over 323–3,372 d (0.88–9.24 years). 

Over 95% of longitudinal sessions were collected >1 year after previous sessions; all 

available sessions were included to maximize accuracy of individual change estimates (Fig. 

1a). While a large portion of participants in the final sample came from the city of St. Louis 

and areas in the immediately surrounding St. Louis County, a sizable portion of participants 

came from other zip codes within the greater St. Louis metropolitan statistical area, which 

altogether encompassed reasonable geographical diversity (Fig. 1b).

College degree attainment differentiates individual-based and neighborhood-based 
measures of socioeconomic advantages

For each individual, educational attainment was considered categorically. The categorical 

distinction of having a college degree or not has been shown to confer significant health1,4 

and socioeconomic advantages51 even after accounting for the economic costs to obtain the 

degree. Consistent with this, examination of the present study’s participant characteristics 

confirmed the relation between education and other socioeconomic outcomes. For 

participants for whom relevant information was available, a college education (‘college+’ 

versus ‘below college’) was associated with higher occupation-based socioeconomic index 

(SEI)52 (t132 = −10.791, P < 0.0001, CI95% = (−20.122, −13.888)) (Fig. 1c; CI95% of mean 

difference is reported), living in neighborhoods that had a higher median household income 

(t168 = −3.455, P < 0.001, CI95% = (−24,169.742, −6,591.351)) (Fig. 1d; after removing 

the ten participants that resided in two zip codes with a median household income above 

$150,000 per year (Ladue, MO and Chesterfield, MO), the estimated median household 

income remained marginally higher for ‘college+’ participants than that for ‘below college’ 

participants (t141 = −1.813, P = 0.072, CI95% = (−14,283.871, 618.663)); after outliers 

were removed, ‘below college’ mean = $79,620.19 and ‘college+’ mean = $86,452.80) and 

lower scores on an index that combines multiple environmental variables to characterize 

area deprivation (area deprivation index (ADI)53) (t170 = 3.197, P = 0.002, CI95% = (3.417, 

14.443)) (a single statistical outlier was present in the ADI data, but removing it did not 

yield a qualitative difference in the statistical comparison; Fig. 1e).

Participants’ ages at their baseline scan session did not significantly differ between 

education groups; there was a higher proportion of females in the ‘below college’ group than 

the ‘college+’ group. Further, with the exception of mild depressive symptoms (measured 

by the Geriatric Depression Scale (GDS)), variables related to clinical status, AD-related 

pathology, cardiovascular health and history of traumatic brain injury (TBI) did not differ 

across education groups. We note that the participant sample was constructed from studies 

collected at the Knight ADRC, which typically have a higher proportion of participants with 

the APOE ε4 genotype than the general population; however, the proportion of participants 
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positive for the APOE ε4 genotype did not significantly differ across education groups (see 

Table 1 for statistical descriptions and comparisons).

Older adults with less education exhibit greater declines in brain system segregation

Following rigorous quality control and data-cleaning procedures (Methods), each 

participant’s resting-state functional brain network (brain network graph) was constructed 

using a surface-based node set (brain area parcellation33), with each node labeled according 

to its functional system assignment39 (Fig. 2a). Generally, resting-state correlations between 

functional areas from the same systems are higher than those of different systems, 

reflecting a modular network organization (Fig. 2b). This modular organization promotes 

the functional specialization of distinct systems41, which can be effectively summarized 

using a measure of brain system segregation33.

Changes in brain system segregation were examined as a function of participants’ 

educational attainment and age, with follow-up analyses examining whether this relationship 

was independent of other health indicators that have established and hypothesized 

associations with education and brain function. A linear mixed-effects model revealed a 

significant main effect of education group (F1,271 = 5.073, P = 0.025, CI95% = (−1.973, 

−0.149); CI95% of the linear mixed-model term estimate is reported) and age at baseline 

(F1,269 = 7.029, P = 0.008, CI95% = (−0.032, −0.005)); participants with a college degree 

exhibited a higher level of brain system segregation, and older age was associated with lower 

brain system segregation. The statistical test also revealed significant interactions between 

education group and age at baseline (F1,270 = 4.949, P = 0.027, CI95% = (0.002, 0.029)) and 

between time (that is, normalized from baseline) and education group (F1,186 = 5.756, P = 

0.017, CI95% = (0.139, 1.368)). Most importantly, the model revealed a significant three-way 

interaction between time, education group and age at baseline (F1,193 = 6.814, P = 0.010, 

CI95% = (−0.021, −0.003)) after accounting for the effect of self-reported sex and in-scanner 

head motion on brain system segregation. The nature of this interaction can be appreciated 

in Fig. 3a; older adults (more than ~65 years of age) without a college degree exhibited 

reliable and declining brain system segregation over time, which was not uniformly evident 

in older adults with a college degree. These observations were reinforced in simple slope 

(Fig. 3b) and Johnson–Neyman (Fig. 3c) analyses. In the Johnson–Neyman analysis, it was 

evident that the predicted slopes in ‘below college’ adults became negative in older age, but 

the predicted slopes in ‘college+’ adults remained relatively close to zero (that is, a flatter 

slope). In keeping with this, while the model indicated positive predicted slopes for some 

individuals in both education groups (for example, younger age for ‘below college’ and 

older age for ‘college+’), these positive slopes were relatively weaker and not statistically 

significant, as evidenced by the fact that the confidence intervals for these portions of 

participants included zero (shaded intervals in Fig. 3c).

Although the proportion of minority (non-white) participants in the present sample is limited 

(n = 26, ~10%), we reanalyzed the model while accounting for participant self-reported 

race. The three-way interaction between time, education group and age at baseline remained 

significant for predicting brain system segregation (F1,192 = 6.399, P = 0.012, CI95% = 

(−0.021, −0.002)). Further, while the proportion of female participants across education 
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groups differed (Table 2), including sex as an interaction term revealed no significant 

four-way interaction between time, education group, age at baseline and sex (F1,175 = 0.073, 

P = 0.788, CI95% = (−0.014, 0.010)).

Education-related brain network decline is independent of clinical status, AD-related 
genetic risk and pathology, and general measures of health

The participants in the present dataset were recruited in research studies targeting 

populations with higher AD risk (for example, based on their age, family history or clinical 

status). Given that lower educational attainment is associated with greater risk of dementia 

in older age5, it is important to determine whether the observed brain network changes are 

linked to baseline differences in clinical status and/or subclinical AD-related pathology but 

also other available measures of health more broadly.

Multiple statistical models relating educational attainment to brain system-segregation 

changes were conducted while accounting for individual variability in measures related 

to baseline clinical status (clinical dementia rating (CDR);54 see section 1.1 in the 

Supplementary Information for an analysis excluding a small subset of individuals (n 
= 25) with a CDR of 0.5 at baseline, indicating very mild dementia), AD genetic risk 

(APOE status), baseline AD-related pathology (a categorical measure based on the presence 

of elevated CSF phosphorylated tau 181 (CSF pTau) and/or elevated cortical amyloid 

levels measured using Pittsburgh compound B (PiB) PET), baseline cardiovascular health 

(an aggregate measure including body mass index (BMI), incidents of hypertension, 

hypercholesterolemia and other cardiovascular incidents), baseline depressive symptoms 

(as measured by the GDS) and history of traumatic brain injury. The results of statistical 

models incorporating these measures are summarized in Table 2. The observed relationships 

between educational attainment and changes in brain system segregation largely persisted 

after accounting for the various measures individually or in aggregate.

Education-related changes in brain system segregation are not captured by measures of 
cortical thinning

Multiple studies have reported cross-sectional relationships between environmental variables 

and brain structure in adulthood (for example, refs.10,48,55,56). Accordingly, it is important 

to determine whether the observed education-related brain network changes are captured by 

changes in brain structure. We first determined that there was a lack of relationship between 

brain system segregation and mean cortical thickness after controlling for age-related 

variance (partial correlation controlling for age, r262 = 0.066, P = 0.284, CI95% = (−0.055, 

0.185); raw cross-sectional correlation, r263 = 0.176, P = 0.004, CI95% = (0.057, 0.291)). 

In keeping with this, the interaction between time, education group and age at baseline 

predicting brain system segregation remained significant after controlling for longitudinal 

measures of mean cortical thickness (F1,195 = 5.915, P = 0.016, CI95% = (−0.021, −0.002)).

Modeling longitudinal mean cortical thickness as a dependent measure resulted in a main 

effect of age at baseline (F1,264 = 82.683, P < 0.001, CI95% = (−0.062, −0.040)) and an 

interaction between time and age at baseline (F1,173 = 6.711, P = 0.010, CI95% = (−0.011, 

−0.002)). However, time, age and education group did not significantly interact (F1,178 
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= 0.003, P = 0.954, CI95% = (−0.005, 0.005)). This observation reveals that longitudinal 

decline in brain structure is more uniformly observed across participants, and, unlike brain 

system segregation, it does not vary in relation to educational attainment (see section 1.2 

in the Supplementary Information and Supplementary Fig. 1 for simple slope and Johnson–

Neyman analyses).

Aging-related system-specific changes vary as a function of educational attainment

Brain system segregation is a summary of the entire brain’s network organization. Further 

examination revealed system-specific distinctions in the observed network changes as a 

function of educational attainment. Fig. 4 illustrates that older adults in both education 

groups exhibit changes in resting-state correlation within and between partially overlapping 

brain systems over time. However, differences in RSFC changes between education groups 

were also observed, in particular, among brain systems that support integrative processing 

(that is, association systems57). These differences include greater changes in relationships 

involving the default system and frontal–parietal control system among ‘below college’ 

older adults, which were less evident in ‘college+’ older adults (white outlines in Fig. 4; 

also see section 1.3 in the Supplementary Information and Supplementary Fig. 2 for further 

analyses).

Brain system segregation decline predicts impending cognitive and functional impairment

While studies have established relationships between brain system segregation and cognitive 

ability (for example, refs.33,43,47), the long-term prognosis of changes in brain network 

organization during adulthood is unknown. To determine whether the observed changes in 

brain network organization were predictive of impending clinical events, clinical data were 

examined, including data collected beyond the last available MRI (resting-state) scan (Fig. 

5a depicts when clinical sessions occurred with respect to MRI sessions). The majority of 

participants had clinical data available beyond their last available MRI scan (n = 238; on 

average up to 3.77 years after the last scan, s.d. = 2.02 years, maximum = 10.10 years). 

Including these clinical sessions allowed us to examine whether brain network changes 

predicted future cognitive and functional changes. CDR sum of boxes scores (CDR-SB58), 

a clinical measure of cognitive and functional impairment (dementia severity) derived from 

six categories (Methods) were obtained for each individual, where higher CDR-SB reflect 

greater levels of impairment. CDR-SB was chosen to detect changes in impairment given 

its wider range of scores as compared to global CDR (0–18 versus 0–3), thus providing 

improved capability to differentiate levels of impairment. Supplemental analyses using 

participant’s global CDR scores in place of CDR-SB yielded qualitatively comparable 

results (section 1.4.1 in the Supplementary Information and Supplementary Fig. 3).

A linear mixed-effects model predicting CDR-SB revealed a significant three-way 

interaction between time, age at baseline and change in brain system segregation (observed 

difference between baseline and the last available measurement of brain system segregation; 

Methods) (F1,258 = 4.292, P = 0.039, CI95% = (−0.033, −0.001)). This model and all 

subsequent reported models controlled for sex, average head motion, time (in days) between 

baseline and the last MRI scan and also education group. In older adults, greater declines in 

brain system segregation were associated with greater future cognitive impairment.
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We next investigated whether changes in brain system segregation explained unique variance 

in the changes in cognitive impairment beyond known moderators of cognitive decline. 

Including measures of baseline AD-related pathology and APOE status in the model 

revealed that both AD-related pathology (F1,233 = 3.277, P = 0.072, CI95% = (−0.041, 

0.002)) and APOE status (F1,234 = 3.057, P = 0.082, CI95% = (−0.040, 0.002)) marginally 

interacted with time and age in predicting changes in CDR-SB (Fig. 5c,d), while changes in 

brain system segregation significantly interacted with time and age in predicting changes in 

CDR-SB (F1,242 = 7.957, P = 0.005, CI95% = (−0.052, −0.010); Fig. 5b). None of the higher-

order interactions (four or five way) that included brain system segregation together with 

AD-related genetic risk and baseline pathology were statistically significant or marginally 

significant in predicting CDR-SB (Fs < 2.608, Ps > 0.108).

Together, the results suggest that changes in brain system segregation impact cognitive 

and functional status through a pathway independent of AD-related genetic risk or 

pathology. However, given the number of terms in the model that includes five independent 

variables (not including covariates), the present sample may be underpowered to detect 

higher-order interactions between these variables (for example, four-way or five-way 

interactions; Statistical analysis in the Methods). Based on the hypothesis that there may 

exist additive consequences across these variables that were not revealed in primary 

analyses, a supplemental analysis was conducted to depict possible relationships between 

these variables. These comparisons revealed some plausible additive effects that were not 

captured by the present statistical models (section 1.5 in the Supplementary Information and 

Supplementary Fig. 4).

In addition to amyloid and tau burden, another common biomarker for dementia is 

neurodegeneration21. Measures of neurodegeneration can be estimated using structural 

changes (for example, changes in gray matter cortical thickness or hippocampal volume) 

measured by in vivo structural imaging59,60. However, including either longitudinal changes 

in mean gray matter cortical thickness or hippocampal volume as a covariate did not 

qualitatively alter the interaction between time, age at baseline and change in brain system 

segregation in predicting CDR-SB (Fs > 7.969, Ps < 0.005). Further, when change in brain 

system segregation was replaced by either change in cortical thickness or hippocampal 

volume as the independent variable interacting with time and age at baseline, these models 

did not significantly predict CDR-SB (Fs < 0.785, Ps > 0.377).

Importantly, accounting for changes in CDR-SB observed during the period of time between 

an individual’s baseline MRI and last MRI scans did not qualitatively alter the relationship 

between changes in brain system segregation and impending cognitive decline among older 

adults (interaction between time, age at baseline and change in brain system segregation, 

F1,250 = 7.273, P = 0.007, CI95% = (−0.037, −0.006)). This demonstrates that changes 

in brain system segregation predicted future cognitive impairment beyond an individual’s 

clinical trajectory from the same time period that the brain measures were collected (for 

additional analyses, see section 1.4.2 in the Supplementary Information).

Notably, none of the observed relationships between changes in brain system segregation 

and changes in CDR-SB in any of the models were moderated by educational attainment 
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(for example, primary model, interaction between education group, time, age at baseline 

and change in brain system segregation in predicting CDR-SB, F1,250 = 0.317, P = 0.574, 

CI95% = (−0.014, 0.025)). While declining brain system segregation was more prominent in 

older adults with less education, individuals who exhibited brain network decline were more 

likely to exhibit future cognitive and functional impairment, irrespective of their educational 

attainment.

Discussion

Functional brain network decline is greater in older adults without a college education 

than that in their college-educated peers. In addition, decreasing resting-state brain system 

segregation is predictive of impending cognitive and functional impairment (dementia 

severity) among older adult individuals, independent of known AD-related genetic risk 

factors and measures of brain pathology or cortical thinning. However, educational 

attainment does not moderate the link between brain network changes and changes in 

clinical outcomes. While an individual’s education relates to their brain network changes 

during older age, if and when brain network changes occur, the impact on cognition is 

equally devastating irrespective of educational attainment.

Declining brain system segregation foreshadows impending cognitive decline in older 
adults

The segregation of large-scale resting-state brain systems supports brain function throughout 

the lifespan41. Previous research has revealed that individual differences in measures of 

brain system segregation are related to differences in cognitive ability, such as episodic 

memory and processing speed, among normative adult samples33,47,61. It has been unclear 

whether changes in brain system segregation translate to any clinically meaningful 

changes in cognition or functional status as an individual grows older. The present study 

demonstrates that declining brain system segregation during older age is predictive of 

impending changes in dementia severity, independent of AD-related genetic risk and 

neuropathology or cortical thinning in older adults. Interestingly, this relationship was 

evident for impending decline beyond the available scan sessions, in some cases up to 10 

years following an individual’s final MRI scan. Further analyses revealed that the predictive 

utility of changes in functional brain network organization on future clinical decline was also 

independent of the trajectory of clinical changes that coincided with scan sessions.

It is important to acknowledge that clinical observations measured from an individual’s 

CDR-SB scores are not necessarily specific to AD but can also capture impairment related 

to other forms of dementia62. However, we focused here on AD given the targeted study 

population (recruited under studies from the Knight ADRC) and the richness of the dataset, 

which has available measures of AD-related genetic risk and biomarkers of AD-related 

neuropathology. APOE ε4 is a genetic risk factor for AD that contributes to altered amyloid 

formation and clearance63 and was shown to be associated with cognitive decline in healthy 

middle-aged and older adults64,65 and during all stages of AD66,67. As expected, the 

presence of at least one ε4 allele was predictive of impending decline across older adults 

in the present sample. Critically, however, declining brain system segregation explained 
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cognitive decline independently of APOE status. This observation is consistent with the 

current understanding of AD prognosis, in which genetics alone do not completely predict 

disease development in typical AD (that is, late-onset AD). Instead, a combination of 

environmental, psychosocial and lifestyle factors18 likely interact to alter brain structure 

(and, as evidenced here, functional brain network organization), which can then manifest as 

cognitive and behavioral impairment when brain degradation is substantial.

Multiple abnormal brain changes define AD and cognitive impairment, including Aβ 
deposition20,25, the presence of tau neurofibrillary tangles19 and neurodegeneration68. 

Validated proxies of these brain changes have been incorporated into an influential 

model of major biomarkers of AD, which summarizes the presence of pathology and 

neurodegeneration (A/T/N: abnormal levels of Aβ deposition (‘A’), abnormal levels of 

tau (‘T’) and neurodegeneration (‘N’)21). The A/T/N model has catalyzed efforts for in 

vivo disease staging and classification (for example, ref.69). The present results demonstrate 

that changes in functional brain network organization and its downstream consequence are, 

at least in part, independent of the cascade of known pathological and neurodegenerative 

burdens that form the basis of existing models of AD and should be incorporated into 

future models of AD. Future studies examining AD risk and dementia risk more broadly 

should aim at more targeted examination of the interactive effects and relationships between 

changes in functional brain network organization and changes in brain pathology and 

neurodegeneration, and their collective contributions to preclinical and clinical cognitive 

impairment70 (section 1.5 in the Supplementary Information).

Brain system segregation as a measure of ‘reserve’ in aging

Past studies have shown that, when compared to those with lower education, highly educated 

individuals can maintain cognitive and functional abilities despite harboring greater amounts 

of pathologic burden (for example, refs.13,71,72). These observations helped motivate the 

‘reserve’ theory of aging, which postulates the presence of an undetermined substrate that 

helps resist cognitive dysfunction despite the presence of neuropathology73. Reserve has 

typically been indexed by an individual’s educational attainment, which itself often serves 

as a proxy for SES and other environmental factors. But what aspects of brain structure 

or function actually allow an individual to seemingly resist the impacts of pathology? 

We previously hypothesized that an individual’s functional brain network organization, 

and brain system segregation more specifically, may be a brain measure of ‘reserve’ 

(refs.41,48), and the present observations support this hypothesis. Lower education was 

associated with greater declines in brain system segregation, independently of baseline 

AD-related pathology or longitudinal measures of cortical thickness. However, educational 

attainment did not moderate the relationship between changes in brain system segregation 

and cognitive decline: some individuals with higher education also exhibited declining 

brain system segregation, and, when they did, they were not immune to the deleterious 

cognitive impact of this pattern of brain network change. The preceding observations are 

also consistent with the idea that education may be a crude index of other variables that 

modify an individual’s brain structure and function. For example, educational attainment has 

been linked to cognitive and intellectual engagement during adulthood, which were shown 

to relate to age-related cognitive differences (for example, refs.74,75) and predict dementia 
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risk76. However, given the lack of explicit measurement of cognitive engagement in the 

present participant sample, we were not able to directly determine whether and how aspects 

of engagement during adulthood related to changes in brain system segregation (see below 

for additional discussion on this and related issues).

In contrast to RSFC brain network organization, longitudinal structural changes (that 

is, mean gray matter cortical thinning) in older adults did not vary as a function of 

educational attainment (section 1.2 in the Supplementary Information). The absence of a 

relationship between education and longitudinal structural changes in adult individuals is 

consistent with a number of reports examining these relationships11,77. Accordingly, the 

present observations provide evidence that changes in functional network organization are 

more sensitive to an individual’s environment than changes in brain structure (at least 

globally defined) and motivate focus on resting-state network organization as a target for 

understanding environment-related and experience-related brain plasticity in studies of brain 

aging.

The mechanism by which changes in brain system segregation occur are uncertain41. One 

possibility is that focal degeneration of specific network nodes and their downstream 

outcomes (for example, refs.78,79) may alter functional networks. There is some 

evidence that SES-related variables and cumulative experiences linked to an individual’s 

environments may relate to structural differences in specific brain regions80–82. Potentially 

in line with this idea, closer examination of the changes in functional brain network 

topology highlighted specific brain circuits that may be particularly vulnerable to 

environment-related changes during older age (Fig. 4). For example, differences in RSFC 

changes between education groups were most prominently observed across association 

systems that support integrative processing. In particular, changes existed in ‘below college’ 

older adults that were not evident in ‘college+’ older adults, including decreases in RSFC in 

the cingulo–opercular system and greater between-system RSFC among nodes of the default 

mode, memory-retrieval and frontal–parietal systems (the latter aligning with a previous 

cross-sectional study83; see section 1.3 in the Supplementary Information for subsets of 

system changes in functional network organization). It remains to be determined whether 

and how specific structural changes may relate to specific functional network changes.

Educational attainment is linked to social, economic and health disparities

Broadly, lower education is associated with greater incidence of dementia6 including 

AD5 but also greater incidence of mental health disorders3,4. Education does not dictate 

these brain health outcomes directly or in isolation; education has been shown to 

differentiate many important aspects of health, resources and lifestyle (for example, 

refs.1,4,8,9,51), a reality that was echoed in the present data (Fig. 1c–e and section 1.6 

in the Supplementary Information). Because the complex relationship between education 

and economic opportunities broadly shapes an individual’s life course behaviors and 

environment, an important task is to understand what mediates the relationship between 

education and aging-accompanied brain changes12. Multiple candidate processes exist, many 

of which converge on biological pathways reflecting chronic exposure to environmental 

stressors, in which chronic stress results in elevated cumulative allostatic load that causes 
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deterioration of the body and brain84,85. Admittedly, measures of physical and mental health 

included in the present study are neither clinically comprehensive nor complete. Further, 

absent in these measurements are deeper descriptions of lifestyle-level differences including 

nutrition and leisurely exercise (for example, refs.86,87), health behaviors (for example, 

nicotine and alcohol use88), cognitive and intellectual engagement (for example, refs.74,75) 

and access to or utilization of healthcare resources89, all of which likely play a critical 

role in stress and brain aging. Finally, an individual’s educational attainment can often be 

linked to environmental factors defining their childhood. Similar to the cumulative effects 

of childhood and adulthood adversity on health and mortality2, early life experiences from 

infancy to adolescence relate to brain structure and cognition in older age81. While the 

present observations do not differentiate early life from present experiences, an earlier study 

by members of our group reported that parental education (that is, childhood SES) did 

not attenuate the observed cross-sectional relationship between adult SES and brain system 

segregation48. Thus, it is likely that educational attainment and childhood experience have 

additive and unique effects on changes in brain network organization over the lifespan.

The present results fit with multiple lines of evidence demonstrating education-related 

disparities in brain health during advanced age (for example, refs.5,6) but offer a measurable 

feature of brain function, changes in which also signal the risk of impending cognitive 

decline before its occurrence. An important goal of follow-up work will be to understand 

the complex relationships that intertwine social determinants of health, longevity, lifestyle 

factors and changes in brain network organization16. Ultimately, a deeper understanding 

about the interplay between one’s environment and the brain could fill in the missing links 

between broader psychosocial societal factors and dementia risk, prevalence and prevention 

(for example, ref.90).

Limitations

Using graph theory to analyze brain networks necessitates selection of multiple 

preprocessing and analytic parameters29,30. Supplemental analyses confirmed that the 

reported results were not limited to our decisions regarding the trade-off between resting-

state data quality and quantity (section 1.7.1 in the Supplementary Information) or graph 

construction (that is, possible age-related differences in node definition; section 1.7.2 in the 

Supplementary Information and Supplementary Fig. 5). However, continued examination 

of longitudinal resting-state data will be crucial not only to confirm but also to better 

understand the properties of brain network organization that underlie the reported results.

The present dataset drew from a broader Knight ADRC dataset pool that is relatively 

diverse and representative of the catchment area where the data were collected. However, 

as is the problem with many neuroimaging studies, the final participant sample that passed 

rigorous data quality control included few participants with very low education (less than 

high school) and also included fewer non-white participants than would be expected based 

on the broader Knight ADRC data sample. In addition to possible selection biases due to 

health or education, longitudinal measurement also exposes the data to attrition bias, in 

which individuals with poorer health and, by association, poorer cognition, are less likely to 

remain in the study. Altogether, the detrimental effect of lower education on the declining 
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trajectory of brain system segregation and the latter’s relation to clinical decline are likely 

underestimated given the under-representation of adults with very low education and health 

disparities that are prevalent among individuals with lower education.

Conclusion

Older adults who never completed a college degree exhibit greater declines in resting-state 

brain system segregation, a measure of large-scale network organization and function. 

Declining brain system segregation predicts impending cognitive and functional impairment 

beyond known AD-related biomarkers of pathology and genetic risk and irrespective 

of an individual’s educational attainment. These observations demonstrate that changing 

functional network organization is an important preclinical warning signal of cognitive 

impairment that is not captured by measures of brain structure or pathology. Future 

studies should aim at both further elucidating the time course of brain network changes 

relative to clinical decline but also identifying environmental factors that mediate the 

relationship between an individual’s educational attainment and changes in their brain 

network organization. These developments would help establish causal pathways and 

identify modifiable targets for intervention. The urgency for continued work in this 

area cannot be overstated in the face of population aging, the prevalence of AD and 

other dementias that accompany increasing age, and growing health disparities among 

economically disadvantaged individuals.

Methods

Participants

Adult participant data were provided by the Knight ADRC at Washington University in St. 

Louis. Written informed consent was obtained from all participants in the study at the time 

of enrollment. Each of the datasets obtained from the Knight ADRC was collected under 

a study that had been approved by the Human Research Protections Office of Washington 

University in St. Louis. The data analysis included in the present work was approved 

by the Institutional Review Board of the University of Texas at Dallas. Participants’ data 

were only included in the present study if they had available (1) a minimum of two 

resting-state fMRI scan sessions to allow longitudinal functional brain network analysis 

and (2) demographic (age and self-reported sex) and education information; a total of 417 

participants from the Knight ADRC satisfied the criteria. Participants’ structural and resting-

state scans underwent structural and fMRI preprocessing, motion processing and surface 

mapping. Following initial processing, 266 participants had two or more sessions of data that 

passed all quality checks (QCs) listed in the Neuroimaging section below. Of the participants 

who were excluded from subsequent analysis, 28 participants failed preprocessing QCs 

(for example, poor skull stripping or FreeSurfer surface estimates due to artifacts in their 

T1 images), 116 participants failed the motion-processing QC (that is, they did not have 

adequate data after motion ‘scrubbing’) and seven participants failed the surface-mapping 

QC. Lastly, a single participant with a baseline CDR score54 of 1 was excluded because of 

their clinical diagnosis of mild dementia at baseline.
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The final sample of 265 participants were 45–86 years old (n female = 154) at their 

baseline resting-state scan (mean age = 67.01 years, s.d. = 9.26 years). Variables associated 

with clinical status, AD-related pathology, cardiovascular health, neurological health and 

mental health were measured during separate data-collection sessions (for example, PET 

sessions). Data sessions closest to a participant’s baseline resting-state scan session were 

used for purposes of analysis (81% of data from these separate experimental sessions were 

collected within 1 year of the baseline resting-state scan session). The sample was largely 

cognitively normal, with 240 participants rated as cognitively normal at baseline on the 

CDR, corresponding to a CDR of 0; 25 participants had a CDR of 0.5, indicating the 

presence of very mild dementia. See Table 1 for a breakdown of other variables across 

education groups.

Educational attainment and grouping

Across participants, the range of self-reported education time was between 6 and 22 years 

(education time above 22 years was recoded as 22 years), with four participants reporting 

less than 12 years of education (that is, they did not complete high school). While education 

time was collected as a numerical variable, each education year is not a uniform measure. 

The difference between 13 and 14 years of education is likely minimal, as both represent 

an individual completing some college. However, the difference between 15 and 16 years 

of education typically reflects the difference between someone with or without a college 

degree.

Importantly, the categorical distinction of having a college degree or not was shown to 

confer significant socioeconomic advantages, even when accounting for economic costs to 

obtain a degree51. This distinction is evident across large segments of adulthood, and this 

effect spans various fields of study, whereby even relatively less economically lucrative 

majors from a four-year degree translate into economic advantages91. Accordingly, for 

each participant, their self-reported time of formal education was converted into a variable 

coding for college degree attainment, for which 16 or more years of formal education was 

categorized as ‘college+’, as it approximates the time when most people complete a college 

degree. Those with fewer than 16 years of formal education were categorized as ‘below 

college’ (see section 1.8 in the Supplementary Information and Supplementary Figs. 6 and 7 

for further analysis and discussion regarding categorization of education).

Neuroimaging

Each participant had two or more resting-state scan sessions available, enabling longitudinal 

comparisons of their functional brain networks. On average, a participant’s second scan was 

3.22 years (s.d. = 1.55 years) after their baseline scan, with their third, fourth and fifth 

scans (if available) being 5.70 years, 6.78 years and 8.05 years (s.d. = 0.43–1.62 years) after 

their baseline scan (see Fig. 1a and the embedded table for the spread of longitudinal data 

across participants and a breakdown of the number of scans in relation to the number of 

participants). For each MRI session, a T1-weighted structural image was also collected and 

used when preprocessing resting-state fMRI data for each scan session.
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Structural imaging acquisition and preprocessing.—T1-weighted images 

(magnetization-prepared rapid-acquisition gradient echo sequence) were processed using 

FreeSurfer 5.3 to obtain measures of the participant’s cortical surface and cortical thickness 

at each time point. Manual examination was performed on all FreeSurfer outputs, and, 

when necessary, manual editing (that is, control points, white and pial surface edits) was 

performed to ensure accurate construction of the cortical surface. Initial segmentation and 

manual editing were available with each of the structural images obtained from the Knight 

ADRC; every T1 segmentation (gray matter, white matter and CSF tissue mask) and surface 

generation (pial and white surfaces) of every participant were rechecked, and additional 

manual editing was performed based on procedures developed by our laboratory92.

Resting-state fMRI acquisition and preprocessing.—RSFCs were computed using 

functional brain images that are sensitive to blood-oxygen-level-dependent (BOLD) activity 

obtained using an echo-planar sequence (TR = 2,200 ms, TE = 27 ms; flip angle = 90°; FOV 

= 256 × 256 mm; 36 slices, interleaved acquisition; resolution = 4 × 4 × 4 mm). During 

each of the resting-state functional scans, participants were instructed to fixate on a visual 

cross-hair, remain still, keep their eyes open and not fall asleep. In general, each imaging 

session included two runs of resting-state scans, each consisting of 164 volumes. However, 

there were five sessions of data that included extra resting-state scans (four with three runs, 

and a single session had four runs); participant data for each of these sessions were inspected 

and processed along with the first two runs available for that session.

BOLD images (resting state) corresponding to the same session as each of the structural 

images described above were processed using a standard fMRI preprocessing pipeline 

using Nipype 0.8.0, including the following steps: (1) slice-timing correction to remove 

odd–even slice intensity differences due to interleaved acquisition, (2) rigid body correction 

for estimating and correcting head movement between volumes and (3) realignment to the 

T1-weighted image from the same session. All steps were performed using FSL 5.0.2.2, 

except for realignment between volumes and rigid body correction, for which SPM8 was 

used, as it provided more accurate estimates in our sample. The intensity of BOLD data was 

scaled to a mode of 1,000 (ref.93).

Following standard fMRI preprocessing, additional RSFC-specific processing and head-

motion correction were applied to reduce spurious variance from non-neuronal activity, 

including the following steps: (1) demeaning and detrending; (2) multiple regression to 

remove variance related to whole-brain signal, ventricular signal, white matter signal, their 

derivatives and the ‘Friston 24’ motion regressors; (3) removing and interpolating motion-

contaminated frames that were flagged as having FD > 0.3 mm or data between two 

contaminated frames that were less than five frames apart (‘scrubbing’ (ref.94)); (4) bandpass 

filtering (0.009–0.08 Hz); (5) removing the interpolated frames that were used to preserve 

the time series during regression and bandpass filtering.

While a part of the global signal may contain variance related to general levels of arousal 

and genuine neural activity (for example, refs.95,96), there is considerable evidence that 

a major component of the global signal includes spatially nonspecific signal artifacts 

related to head motions94,97–99. Failure to explicitly remove the global signal prohibits 
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the control of these known influences of artifact94,98,100. As no method presently exists 

for denoising known artifactual signals while retaining ‘real’ signals101,102, the alternate 

option of retaining the global signal in each participant is likely to result in misestimation 

of correlations and the resultant network estimates. Accordingly, we employed data-

censoring (‘scrubbing’) and signal-processing procedures, which, together with global signal 

regression, were shown to best reduce global and distance-dependent artifacts98,103.

RSFC processed data were registered to the fs_LR (32k) surface-based atlas for analysis104. 

Using the transformation matrix and deformation maps generated during preprocessing of 

the corresponding structural data, volumetric functional data were resampled to the fs_LR 

surfaces through a one-step transformation. Lastly, surface-mapped functional data on fs_LR 

surfaces were smoothed using a Gaussian smoothing kernel (σ = 2.55).

To ensure that varying amounts of data across individuals and sessions did not alter the 

estimation of their brain network, the number of frames in each session was fixed at 100 

frames. Note that the results in the present study remained largely the same when using more 

stringent frame thresholds (that is, discarding participants that did not have at least 125 and 

150 frames; section 1.7 in the Supplementary Information). However, using a higher frame 

threshold reduced the number of participants retained, reducing the power to test secondary 

models; thus, the 100-frame threshold was used to report the primary results.

Brain network construction

For each session of surface-mapped resting-state data, a functional correlation matrix 

was generated with 349 surface-based nodes that were defined from previous boundary-

based analyses33,105 and were labeled based on their spatial overlap with the vertex-wise 

community map published by Power et al. (not the 264 nodes39). This is the same approach 

that we adopted in previous publications33 with an additional constraint (see step 3 below; 

as in refs.44,48). Briefly, nodes were constructed using the following steps: (1) identifying 

putative area centers that were at least 8 mm apart based on an RSFC-boundary map105, (2) 

creating disks with a radius of 3 mm around the identified area centers to avoid area borders 

that may exhibit more variance between individuals, and (3) discarding nodes that were in 

areas of low signal intensity in the original data that were used to create the boundary map 

(<800 (ref.44)). All vertices within a node disk were identified based on their spatial overlap 

with an a priori vertex-wise community map in the same fs_LR space39, where each disk 

was labeled with a functional system based on a winner-take-all approach.

The BOLD time series of all vertices within each node were averaged to obtain the node’s 

mean time series. A correlation matrix (brain network) was constructed by computing the 

pairwise Fisher’s z-transformed Pearson’s correlation of each of the 349 nodes.

As described above, while the use of global signal regression in RSFC processing 

has attracted varying opinions, it is objectively effective for minimizing motion-related 

artifacts94,99 and is the recommended method to reliably remove global respiration-related 

artifacts when direct estimates of respiration are unavailable101. However, due to the 

application of global signal regression during preprocessing, negative correlations may be 

artifactually introduced through this procedure106,107; therefore, similar to past studies39,48, 
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negative correlations were excluded in the final brain network matrices (negative values 

were set to zero). Computing brain system segregation (described below) does not require 

a sparse network matrix, which avoids ambiguous parameter selection such as edge density 

thresholding. Therefore, weights of matrices were unaltered, and additional edge density 

thresholding was not applied.

Measures

Measurement of functional brain network organization.

Brain system segregation: System segregation measures the degree to which the functional 

brain network is organized into distinct subnetworks33,41. When referring to the measure 

here, we use the phrase ‘brain system segregation’ to insulate it from any sociopolitical 

connotation of segregation. Brain system segregation is calculated by taking the difference 

between mean within-system and mean between-system correlations as a proportion of mean 

within-system correlation, as noted in the following formula:

Brain systemsegregation =

∑w
W Zw
W −

∑b
BZb
B

∑w
W Zw
W

,

where Z is a Fisher’s z-transformed correlation value, representing an edge between a pair 

of nodes. Zw represents the edges (correlations) between pairwise nodes that belong to the 

same system (within system), Zb represents the edges between pairwise nodes that belong to 

different systems (between system), W is the total number of within-system edges across all 

subnetworks, and B is the total number of between-system edges across all subnetworks. In 

the past, we expressed this calculation as shown in the following equation (as in ref.33):

Brain systemsegregation =
Zw − Zb

Zw
,

where Zw is the mean within-system correlations, and Zb is the mean between-system 

correlations. The updated formula more accurately specifies the exact computation of the 

measure to minimize ambiguity. Higher brain system-segregation values correspond to brain 

networks with greater separation of constituent functional systems.

Measures of brain structure.

Mean gray matter cortical thickness: A measure of brain structure was available at 

every time point when resting-state data were collected. Using the edited FreeSurfer 

segmentations, gray matter cortical thickness was estimated as the distance (in mm) between 

pial and white matter surfaces across the vertices on the cortical surface. The mean cortical 

thickness was calculated by averaging the cortical thickness measurement of the left and 

right hemispheres. Intracranial volume (ICV) was obtained from FreeSurfer to adjust the 

cortical thickness. Using non-ICV-adjusted cortical thickness yielded qualitatively similar 

results.
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Hippocampal volume: At every time point when resting-state data were collected, left and 

right hippocampal volume measures (mm3) were extracted from FreeSurfer segmentation 

estimates and averaged together to form a mean hippocampal volume measurement. 

Participants’ hippocampal volumes were adjusted by their individual head sizes using their 

ICV obtained from FreeSurfer.

Measures of Alzheimer’s disease clinical status, pathology and genetic risk.

Clinical status: Clinical status was measured by the CDR scale54, which is based on 

scoring for six categories: memory, orientation, judgment or problem solving, community 

affairs, home and hobbies, and personal care. These categories represent both cognitive 

and functional behaviors. CDR was used to provide a global classification of dementia 

stage at baseline, and 25 participants (9%) were classified with a CDR of 0.5 at baseline, 

indicating the presence of very mild dementia. In the analysis predicting longitudinal brain 

system-segregation changes, the raw baseline CDR score (ranging from 0 to 0.5) was 

included as a covariate in the models predicting education-related longitudinal brain network 

changes.

Longitudinal CDR-SB was used as a dependent variable in the models examining 

longitudinal changes in cognitive impairment. CDR-SB was used as the primary dependent 

variable due to its finer resolution for differentiating mild cases of cognitive impairment 

(range, 0–18), which facilitates detection of change in clinically relevant cognitive decline58. 

See Supplementary Fig. 8 in section 1.9 of the Supplementary Information for distribution of 

longitudinal CDR-SB scores across the two education groups.

Alzheimer’s disease-related pathology: The presence of elevated cortical amyloid uptake 

and CSF pTau 181 levels was used to categorize participant’s AD-related neuropathology. 

Processed amyloid and CSF pTau values were provided by the Knight ADRC108,109. Mean 

cortical amyloid levels were measured with PiB, a PET imaging tracer that binds to fibrillar 

deposits of Aβ. A cutoff value of 1.42 SUVR using the cerebellar cortex as the reference 

region108 was used to identify participants with elevated levels of amyloid deposits (amyloid 

PiB+, n = 47; PiB−, n = 160). CSF pTau values were obtained by analyzing CSF samples 

using enzyme-linked immunosorbent assays (Innotest, Innogenetics110). Participants with 

a value above 67 pg/ml were categorized as having elevated levels of pTau (pTau+, n = 

61; pTau−, n = 176)109. A large portion of the final sample had both of these variables 

available (n = 193 of 265 in the final sample); however, a subset was missing some form 

of AD-related pathology data (see Table 1 for missing data). Participants with one or 

more elevated AD-related pathology markers were categorized as positive for AD-related 

pathology.

APOE ε4 status: APOE genotyping was performed following standard procedures for 

extracting DNA from peripheral blood samples (see detail for APOE genotyping in ref.111). 

Participants with at least one copy of the ε4 allele were categorized as APOE ε4+ (n = 94, 

36%).
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Measures of cardiovascular health and mental health.—Each participant’s 

cardiovascular health was incorporated into analyses by including independent measures 

related to cardiovascular risk and cardiovascular incidents. Cardiovascular health was 

quantified as the proportion of cardiovascular-related variables that were available and met 

the following criteria: (1) BMI > 30, (2) recent or remote hypertension, (3) recent or remote 

hypercholesterolemia, (4) recent or remote incident of heart attack or cardiac arrest, atrial 

fibrillation, angioplasty or endarterectomy or stent, cardiac bypass procedure, pacemaker or 

congestive heart failure. All incident measures represented a binary distinction as to whether 

a participant had either recently or remotely experienced the particular health issue or had 

never experienced it (that is, absent) at the time of their first scan.

Measures of participant’s neurologic and mental health included details of traumatic brain-

injury incidents and depressive symptoms, respectively. Traumatic brain-injury incidents 

were categorized and included in analyses as a categorical variable. Participants with any 

recent or remote incident of the following were categorized as positive for incidence of 

traumatic brain injury: traumatic brain injury accompanied by (1) brief loss of consciousness 

(<5 min), (2) extended loss of consciousness (≥5 min) or (3) chronic deficit or dysfunction. 

Ten participants were missing traumatic brain-injury-incident data. Depressive symptoms 

were measured by the GDS and included as a continuous variable in the analyses112. The 

scale has a possible range from 0 to 15 (0–4, no depression; 5–8, mild depression; 9–11, 

moderate depression; 12–15, severe depression). The present sample had a GDS score 

ranging from 0 to 8, with nine participants scoring between 5 and 8. One participant was 

missing GDS data.

Measurement of alternate socioeconomic variables.

Occupational socioeconomic index: Each participant’s self-reported occupation was 

matched to a corresponding occupation code in the US census and then assigned a sex-

specific SEI based on predicted occupation prestige, a composite score reflecting one’s 

occupational wages, occupational education and wage–occupation–prestige index52. If an 

occupation listed had no direct match in the US census occupation code, the occupation code 

for the most related job was used. Two independent coders (C.A.C. and R.M.R.) examined 

occupations without direct occupation codes to reach a consensus coding. Any participants 

listing their occupation as homemaker or student were not coded (coded as N/A) because a 

prediction of occupation-related prestige is not available. As such, SEI values were available 

for 228 of 265 participants.

Neighborhood median household income (2011–2015 American Community 
Survey): Each participant’s neighborhood income was estimated based on the median 

household income of the zip codes in which they resided. Beginning in 2010, the median 

household income of a zip code became available from the American Community Survey 

(ACS). Because some participants’ scans were collected before 2010, it was not possible 

to have individualized estimates based on the years in which the scan was collected for all 

participants. Instead, 5-year ACS data from 2011 to 2015 were used because they encompass 

the median scan date across all available scanning sessions (median scan date, 2011). 

Five-year ACS estimates were chosen over 3-year or 1-year ACS estimates because they 
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covered a greater proportion of zip codes (that is, more areas are missing from 3-year or 

1-year data) and used larger sample sizes to determine estimates. Not every zip code had 

5-year ACS estimates available; therefore, some participants with zip code data did not have 

a matching neighborhood median household income estimate; thus they were excluded from 

the comparison in Fig. 1d. Neighborhood median household income data were estimated for 

171 of 265 participants.

National area deprivation index (2011–2015 American Community Survey): The 

national ADI represents the percentile ranking of neighborhood SES disadvantages, 

calculated using multiple variables (for example, home value, gross rent, percent of families 

below poverty level, percent of households without a motor vehicle53). ADI data used in the 

present study were obtained from https://www.neighborhoodatlas.medicine.wisc.edu113,114, 

calculated using 5-year ACS data from 2011 to 2015. ADI scores were calculated on the 

block group level, for which data were first linked to nine-digit zip codes. Nine-digit zip 

codes are sub-areas of five-digit zip codes. To estimate the ADI for a participant from the 

Knight ADRC, ADI scores of all nine-digit zip codes within the participant’s five-digit zip 

code were averaged together. ADI was available for 236 of 265 participants. Because ADI 

data are aggregated from nine-digit zip codes and multiple measures of ACS data, more 

participant ADI data were available than median household income data.

Statistical analysis

The present study used a longitudinal design, in which the measure of time (that is, days 

from baseline) was included as a within-participant variable. Both analyses examining brain 

changes and cognitive impairment changes used a linear mixed-effects approach. First, 

in the analysis predicting longitudinal brain changes, linear mixed-effects models were 

used to examine how the dependent variable (for example, primary analysis, brain system 

segregation; supplementary analyses, cortical thickness) was predicted by time (normalized 

time from baseline; within participant) and its interaction with education group (between 

participant) and age at baseline (between participant). Age at each scan was not used as a 

measure of time to allow us to investigate the interaction between age and time. For the time 

variable, the number of days that a scan was collected after that individual’s baseline scan 

was normalized and adjusted to the point where 0 is the baseline.

In the primary model, in-scanner head motion (mean FD; within-participant variable 

collected at each longitudinal time point) and sex (between-participant variable) were 

included as covariates. The linear mixed-effects model was calculated as follows:

Yij = γ00 + γ01 sexj + γ02 agej + γ03 edugrpj + γ04 agej × edugrpj
+ γ10 timeij + γ20 motionij + γ11 timeij × sexj + γ12 timeij × agej
+ γ13 timeij × edugrpj + γ14 timeij × agej × edugrpj + μ0j + μij timeij + ϵij

where Yij denotes brain system segregation for each participant j at time i, γ denotes the 

estimated fixed-effect coefficients, μ denotes the estimated random-effect coefficients, ϵ 
denotes the residual for each participant j at time point i, and edu grp is the education 

group. Sex and its interaction with time was included to account for the fixed effect of sex 
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on the random effect of time. Following a similar approach, subsequent models included 

between-participant covariates (for example, AD-related pathology, cardiovascular health 

factor) and their interaction with time by entering additional terms γ0k (covariateij) and 

γ1k (timeij × covariatej) where k is the kth covariate. When a covariate was collected 

longitudinally (for example, motion, cortical thickness), it was included simply as γk0

Multiple-comparison correction was applied when examining the two unique longitudinal 

brain change measures (brain system segregation and cortical thickness). After correction, 

the comparison would require a P value of 0.025 to be considered significant. The 

interaction between age, time and education predicting brain system segregation surpassed 

this corrected P value, while the three-way interaction predicting cortical thickness remained 

insignificant. All reported P values in the text are raw P values.

In the analysis on longitudinal changes in cognitive impairment, similar linear mixed-effects 

models were constructed, with the dependent variable being CDR-SB or CDR (section 1.4.1 

in the Supplementary Information). Changes in brain system segregation were defined as 

the observed difference between brain system segregation measured from the last time point 

and baseline, as opposed to estimated changes from mixed models. Although a substantial 

number of participants had more than two time points of resting-state data available, a 

notable portion only had two time points; therefore, estimates for these individuals were 

more prone to shrinkage (that is, coefficients shifted more toward population values than 

within-participant least square estimates115). Accordingly, difference scores were used to 

ensure a consistent means to obtain within-person changes across all participants, which also 

meant that the conclusion from the model predicting CDR-SB was based on actual changes 

in brain system segregation instead of estimated changes from a separate mixed-effect 

model. Furthermore, when predicting changes in CDR-SB, in addition to sex and average 

head motion (baseline and last scan), time (in days) between baseline and the last MRI scan 

was included to account for the varying length of time available to quantify changes in brain 

system segregation. Education group was also included as a covariate in all models except 

when its interaction was tested.

Normality of the dependent and independent variables was examined qualitatively using 

Q–Q plots, in which normality was relatively high for most variables. The normality of brain 

system segregation increased through quadratic transformation although not substantially. 

We repeated the analyses using squared brain system segregation as the dependent variable, 

and the results presented in Table 2 remained qualitatively the same. CDR-SB is not 

normally distributed due to the higher number of participants with 0 or relatively low CDR-

SB scores. Following a previous study examining CDR-SB in relation to continuous time 

scale25, when quadratic time was included in the model predicting CDR-SB, the interaction 

between time, age at baseline and brain system-segregation change remained qualitatively 

the same.

Residuals of the linear mixed-effects models were examined to ensure that they were not 

correlated with the fitted values of the fixed-effects portion of the model, nor were the 

residuals associated with the independent variables (for example, age at baseline, education 

group).
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Block-level matrix comparisons across time

Longitudinal RSFC changes in older participants (65 years and over) within each education 

group were conducted by comparing their RSFC matrix from the first time point to that at 

the latest time point. Each node-by-node RSFC matrix at each time point was combined 

into ‘blocks’ based on predefined system labels33,39. Correlations among nodes from the 

same system were averaged together to form within-system blocks, and correlations among 

nodes across every pair of systems were averaged together to form between-system blocks. 

Observed block-wise comparisons across time were computed using paired t-tests (last 

scan versus first scan). Permutation was used to generate null distributions of block-level t 
statistics (permutation n = 10,000). Each permutation iteration shuffled the matrices within 

an education group across participants and time points, and the t value from a paired t-test 

using the permuted sample was recorded. For each block, the P value was calculated as 

the proportion of sampled statistics more extreme than the actual statistic. A two-tailed P 
value less than 0.05 was considered significant, and t values for each statistically significant 

block were visualized (blocks that survived false discovery-rate correction were further 

highlighted).

Software

Linear mixed models and data visualization were carried out in R 3.6.0 using the following 

packages: lmer4 (1.1–26) for linear mixed-effects models; emmeans (1.3.5) for extracting 

model estimates; ggplot2 (3.3.3), tigris (0.9.4) and choroplethrZip (1.5.0) for visualization. 

Block-level matrix permutation was conducted in MATLAB 2019a using in-house scripts. 

Longitudinal spring-embedded graphs were generated using SoNIA (1.2.2) and exported 

using Cytoscape (3.2.0) to generate high-resolution images. Visualization of nodes on 

cortical surfaces were generated using Connectome Workbench (1.3.2).

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Longitudinal MRI sessions and geographical and SES-related information of participants.
a, Every participant had at least two MRI (including resting-state) scan sessions, with 36% 

of participants having three to five separate sessions over multiple years (maximum range, 

9.2 years). b, Number of participants from zip codes within the St. Louis metropolitan 

statistical area. The border of the city of St. Louis (solid), the county of St. Louis (dotted) 

and the state border between Missouri (MO) and Illinois (IL; dashed) are also depicted. 

c, Participants with a college degree have higher socioeconomic index (SEI) (data are 

available for 86% (n = 228) of participants; t132 = −10.791, P < 0.001, Cohen’s d = 1.552, 

95% confidence interval (CI95%) = (−20.122, −13.888)) and d, live in areas (calculated 

using participants’ zip codes) with higher neighborhood median household income (data 

available for 65% (n = 171) of participants; t168 = −3.455, P < 0.001, d = −0.520, CI95% 

(−24,169.742, −6,591.3510); see text for additional comments about outlier observations) 

and e, lower scores on the area deprivation index (ADI), an index that combines multiple 

environmental variables to characterize area deprivation (data available for 89% (n = 236) 

of participants; t170 = 3.197, P = 0.002, d = 0.435, CI95% = (3.417, 14.443)). Each box plot 

depicts the median (center line) and first and third quartiles (bounds of box), and whiskers 

extend to 1.5 times the interquartile range. The whisker does not extend to the minimum 

and maximum of the data, as individual data points are also plotted. Two-sided Welch’s 

two-sample t-tests were performed for c–e (significance is denoted in c–e with asterisks: **P 
< 0.01, ***P < 0.001).

Chan et al. Page 29

Nat Aging. Author manuscript; available in PMC 2022 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Examining individual changes in resting-state brain system segregation across years.
a, For each participant, resting-state brain network graphs were created using functional 

nodes (Chan et al.33) labeled by their corresponding functional systems (Power et al.39). 

b, While the exact topology of networks differs between individuals, examples of brain 

graphs are depicted here for two individuals of equivalent age at their first scan but with 

differing degrees of longitudinal change in brain system segregation. Relative to their 

baseline networks, greater reductions in brain system segregation are observable in the 

participant on the right than in the participant on the left over a comparable time span (white 

dashed circle, reduced separation of brain systems).
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Fig. 3. Brain system segregation declines most in older adults without a college degree.
a, Predicted brain system-segregation values from the linear mixed-effects model plotted 

against a participant’s age when the brain scan was acquired. A greater decline in brain 

system segregation is evident in participants who are older (~65 years and over) and without 

a college degree than in more educated individuals. Norm., normalized. b, Simple slope 

analysis depicts the predicted slope of brain system segregation at three representative ages: 

58, 67 and 76 years (age < 1 s.d., mean age and age > 1 s.d. across the entire sample, 

respectively). Brain system segregation declines in older participants without a college 

degree (dashed red line, middle and right (ages 67 and 76 years) but stays relatively flat for 

individuals with a college degree regardless of age (solid black lines). AU, arbitrary units. 

c, A Johnson–Neyman analysis fully illustrates how changes in brain system segregation 

over time (y axis) differ based on the participant’s age (x axis) and educational attainment. 

The predicted slope calculated from the linear mixed-effects model for each age within both 
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education groups is illustrated; envelopes represent CI95%. In participants without a college 

degree (left), the analysis identifies the ages at which longitudinal changes in brain system 

segregation are statistically significant (darker shade represents a slope with P < 0.05, 

where the CI95% of the slope does not cross 0). The decline in brain system segregation is 

statistically significant for individuals without a college education starting at approximately 

69 years of age; reliable changes in brain system segregation are not evident at any segment 

of age for those with a college degree (right). To facilitate the comparison between both 

education groups, the slopes of predicted brain system segregation for both ‘below college’ 

and ‘college+’ groups are shown for the full age range of the entire sample (45–86 years).
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Fig. 4. Network matrices comparing changes in resting-state correlations among older adults (65 
years and over) with and without college degrees.
Matrices depict significant changes in resting-state correlations (paired t-tests between 

baseline and the last time point) at the system level for older adults (65 years and over) 

in each education group. We highlight certain larger circuits that appear to exhibit education-

related differences in patterns of change over time. This includes changes (typically 

increases) in between-system correlations involving regions of the default system, the 

frontal–parietal control system and the memory-retrieval system (white dotted borders) and 

decreases in within-system correlations of cingulo–opercular control and visual systems 

(white arrows), all of which are evident in ‘below college’ older adults but less so in 

‘college+’ older adults. Some of these changes also contribute to changes in brain system 

segregation that were more evident in this ‘below college’ older adult group. Permutation 

was used to identify which system-level effects (blocks) were significant within each 

education group (see Methods for permutation details). Within each group, system-level 

changes (calculated by paired t-tests) that were not significant (cutoff of P < 0.05) (based on 

10,000 permutations) are in gray, and the effects that survived false discovery-rate correction 

(at P < 0.05) are enclosed by solid gray borders.
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Fig. 5. Changes in dementia severity are predicted by changes in brain system segregation, 
independently of AD-related brain pathology and APOE ε4 status and independently of 
education.
a, Data from participants’ clinical sessions (CDR-SB data collection) that were collected 

within 1 year of baseline MRI scans and any time after (including sessions after their 

last MRI (resting-state) scans) were included. In total, 96% of participants had 3–17 

available clinical sessions. The size and color of circles represent the magnitude of CDR-SB 

scores, binned according to global CDR scores (larger size and darker red represent higher 

CDR-SB scores; higher CDR-SB indicates greater cognitive or functional impairment). The 

corresponding global CDR ratings for the range of CDR-SB is also provided for ease of 

interpretation (section 1.4.1 in the Supplementary Information). For each participant, the 

dark black line represents the period of time between baseline and the last MRI scan. b–d, 

Simple slope plots depict the predicted slope of CDR-SB at three representative ages: 58, 

67 and 76 years. b, Greater declines in brain system segregation (solid line) are associated 

with higher CDR-SB in older adults. Similar patterns, although statistically not significant 

in the present sample (see text), are observed for the presence of baseline AD-related 

pathology (path) (aggregate category based on the presence of elevated CSF pTau and/or 

elevated cortical amyloid levels; the solid line indicates the presence of pathology) (c) and 

positive APOE ε4 carrier status (the solid line indicates the presence of AD genetic risk) 

(d), separately. The depicted relationships (b–d) were not altered by structural changes 

(longitudinal measures of whole-brain gray matter cortical thickness or mean hippocampal 

volume). Further, these relationships were evident irrespective of participants’ educational 

attainment.
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Table 2

Linear mixed-model interaction statistics between time, education group and age at baseline on brain system 

segregation, accounting for different covariates

Covariates Interaction between time, education group and age at baseline

n F P 2.5% CI 97.5% CI

Accounting for participant demographics

Head motion
a
 and sex

265 6.814 0.010 −0.021 −0.003

Head motion
a
, sex and race

b 265 6.399 0.012 −0.021 −0.002

Accounting for baseline measures of clinical status, AD-related genetic risk and pathology, cardiovascular health, neurological health, 
and mental health

Clinical status, head motion
a
 and sex

265 6.652 0.011 −0.021 −0.003

APOE status, head motion
a
 and sex

260 6.393 0.012 −0.021 −0.003

AD-related pathology, head motion
a
 and sex

251 3.949 0.048 −0.020 −0.000

Cardiovascular health, head motion
a
 and sex

265 6.836 0.010 −0.021 −0.003

GDS, head motion
a
 and sex

264 7.092 0.008 −0.022 −0.003

TBI, head motion
a
 and sex

255 6.559 0.011 −0.021 −0.003

Clinical status, APOE status, AD-related pathology, cardiovascular health, 

GDS, TBI, head motion
a
, sex and race

b
240 3.257 0.073 −0.020 0.001

Accounting for longitudinal measures of brain structure

Cortical thickness
a
, head motion

a
 and sex

265 5.915 0.016 −0.021 −0.002

a
Variables are longitudinal measures collected at the same time as fMRI scans (for example, head motion, cortical thickness).

b
Race is categorized as white and non-white; <10% of the present sample is non-white. CI, confidence interval.
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