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Summary Paragraph

Accurate assessment of cardiac function is crucial for diagnosing cardiovascular disease1, 

screening for cardiotoxicity2, and deciding clinical management in patients with critical illness3. 

However human assessment of cardiac function focuses on a limited sampling of cardiac 

cycles and has significant inter-observer variability despite years of training4,5. To overcome 

this challenge, we present the first video-based deep learning algorithm, EchoNet-Dynamic, 

that surpasses human expert performance in the critical tasks of segmenting the left ventricle, 

estimating ejection fraction, and assessing cardiomyopathy. Trained on echocardiogram videos, 

our model accurately segments the left ventricle with a Dice Similarity Coefficient of 0.92, 

predicts ejection fraction with mean absolute error of 4.1%, and reliably classifies heart failure 

with reduced ejection fraction (AUC of 0.97). In an external dataset from another healthcare 

system, EchoNet-Dynamic predicts ejection fraction with mean absolute error of 6.0% and 

classifies heart failure with reduced ejection fraction with an AUC of 0.96. Prospective evaluation 

with repeated human measurements confirms that the model has comparable or less variance than 

human experts. By leveraging information across multiple cardiac cycles, our model can rapidly 
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identify subtle changes in ejection fraction, is more reproducible than human evaluation, and lays 

the foundation for precise diagnosis of cardiovascular disease in real-time. As a new resource to 

promote further innovation, we also make publicly available the largest medical video dataset of 

10,030 annotated echocardiogram videos.

Cardiac function is essential for maintaining normal systemic tissue perfusion with cardiac 

dysfunction manifesting as dyspnea, fatigue, exercise intolerance, fluid retention and 

mortality1,2,3,5-8. Impairment of cardiac function is described as “cardiomyopathy” or “heart 

failure” and is a leading cause of hospitalization in the United States and a growing 

global health issue1,9,10. A variety of methodologies have been used to quantify cardiac 

function and diagnose dysfunction. In particular, left ventricular ejection fraction (EF), 

the ratio of change in left ventricular end systolic and end diastolic volume, is one of 

the most important metrics of cardiac function, as it identifies patients who are eligible 

for life prolonging therapies7,11. However, echocardiography is associated with significant 

inter-observer variability as well as inter-modality discordance based on methodology and 

modality2,4,5, 11-14.

Human assessment of EF has variance in part due to the common finding of irregularity 

in the heart rate and the laborious nature of a calculation that requires manual tracing of 

ventricle size to quantify every beat4,5. While the American Society of Echocardiography 

and the European Association of Cardiovascular Imaging guidelines recommend tracing 

and averaging up to 5 consecutive cardiac cycles if variation is identified, EF is often 

evaluated from tracings of only one representative beat or visually approximated if a 

tracing is deemed inaccurate5,15. This results in high variance and limited precision with 

inter-observer variation ranging from 7.6% to 13.9%4,12-15. More precise evaluation of 

cardiac function is necessary, as even patients with borderline reduction in EF have been 

shown to have significantly increased morbidity and mortality16-18.

With rapid image acquisition, relatively low cost, and without ionizing radiation, 

echocardiography is the most widely used modality for cardiovascular imaging19,20. There is 

great interest in using deep learning techniques on echocardiography to determine EF21-23. 

Prior attempts to algorithmically assess cardiac function with deep learning models relied on 

manually curated still images at systole and diastole instead of using actual echocardiogram 

videos and they have substantial error compared to human evaluation of cardiac function 

with R2 ranging between 0.33 and 0.5021,22. Limitations in human interpretation, including 

laborious manual segmentation and inability to perform beat-to-beat quantification may be 

overcome by sophisticated automated approaches5,22,23. Recent advances in deep learning 

suggest that it can accurately and reproducibly identify human-identifiable phenotypes as 

well as characteristics unrecognized by human experts25-28.

To overcome current limitations of human assessment of cardiac function, we propose 

EchoNet-Dynamic, an end-to-end deep learning approach for left ventricular labeling and 

ejection fraction estimation from input echocardiogram videos alone. We first perform 

frame-level semantic segmentation of the left ventricle with weakly supervised learning 

from clinical expert labeling. Then, a 3-dimensional (3D) convolutional neural network 

(CNN) with residual connections predicts clip level ejection fraction from the native 
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echocardiogram videos. Finally, the segmentations results are combined with clip level 

predictions for beat-by-beat evaluation of EF. This approach provides interpretable tracings 

of the ventricle, which facilitate human assessment and downstream analysis, while 

leveraging the 3D CNN to fully capture spatiotemporal patterns in the video5,29,30.

Video-based deep learning model

EchoNet-Dynamic has three key components (Figure 1). First, we constructed a CNN 

model with atrous convolutions for frame-level semantic segmentation of the left ventricle. 

The technique of atrous convolutions enables the model to capture larger patterns and has 

been previously shown to perform well on non-medical imaging datasets29. The standard 

human clinical workflow for estimating ejection fraction requires manual segmentation 

of the left ventricle during end-systole and end-diastole. We generalize these labels in 

a weak supervision approach with atrous convolutions to generate frame-level semantic 

segmentation throughout the cardiac cycle in a 1:1 pairing with the original video. The 

automatic segmentation is used to identify ventricular contractions and provides a clinician-

interpretable intermediary that mimics the clinical workflow.

Second, we trained a CNN model with residual connections and spatiotemporal convolutions 

across frames to predict ejection fraction. Unlike prior CNN architectures for medical 

imaging machine learning, our approach integrates spatial as well as temporal information 

with temporal information across frames as the third dimension in our network 

convolutions25,29,30. Spatiotemporal convolutions, which incorporate spatial information in 

two dimensions as well as temporal information in the third dimension has been previously 

used in non-medical video classification tasks29,30. However it has not been previously 

attempted on medical data given the relative scarcity of labeled medical videos. Model 

architecture search was performed to identify the optimal base architecture (Extended Data 

Figure 1).

Finally, we make video-level predictions of ejection fraction for beat-to-beat estimation 

of cardiac function. Given that variation in cardiac function can be caused by changes in 

loading conditions as well as heart rate in a variety of cardiac conditions, it is recommended 

to perform ejection fraction estimation in up to 5 cardiac cycles, however this is not always 

done in clinical practice given the tedious and laborious nature of the calculation5,15. 

Our model identifies each cardiac cycle, generates a clip of 32 frames, and averages 

clip-level estimates of EF for each beat as test-time augmentation. EchoNet-Dynamic was 

developed using 10,030 apical-4-chamber echocardiograms obtained through the course of 

routine clinical practice at Stanford Medicine. Extended Data Table 1 contains the summary 

statistics of the patient population. Details of the model and hyperparameter search is further 

described in Methods and Extended Data Table 2.

Evaluation of model performance

In test dataset from Stanford Medicine not previously seen during model training, EchoNet-

Dynamic's EF prediction has mean absolute error of 4.1%, root mean squared error of 

5.3% and R2 of 0.81 compared to the human expert annotations. This is well within the 
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range of typical measurement variation between different clinicians, typically described as 

inter-observer variation ranging up to 13.9%5,13-16 (Figure 2A). Using a common threshold 

of EF less than 50% to classify cardiomyopathy, EchoNet-Dynamic’s prediction had an 

area under the curve of 0.97 (Figure 2B). We compared EchoNet-Dynamic’s performance 

with that of several additional deep learning architectures that we trained on this dataset, 

and EchoNet-Dynamic is consistently more accurate, suggesting the power of its specific 

architecture (Extended Table 2). Additionally, we performed blinded clinician re-evaluation 

of the videos where EchoNet-Dynamic’s EF prediction diverged the most from the original 

human annotation. Many of these videos had inaccurate initial human labels (in 43% of 

the videos, the blinded clinicians preferred the model’s prediction), poor image quality, or 

arrhythmias and variation in heart rate (Extended Data Table 3).

Generalization to a different hospital

To assess the cross-healthcare system reliability of the model, EchoNet-Dynamic was 

additionally tested, without any tuning, on an external test dataset of 2,895 echocardiogram 

videos from 1,267 patients from an independent hospital system (Cedars-Sinai Medical 

Center). On this external test dataset, EchoNet-Dynamic demonstrated robust prediction of 

ejection fraction with mean absolute error of 6.0%, root mean squared error of 7.7%, R2 of 

0.77 and an AUC of 0.96 compared to the Cedars-Sinai cardiologists.

Comparison with human variation

To investigate model prediction variability, we performed a prospective study comparing 

EchoNet-Dynamic’s prediction variation with human measurement variation on 55 patients 

evaluated by two different sonographers on the same day. Each patient was independently 

evaluated for metrics of cardiac function by multiple methods as well as our model for 

comparison (Figure 2C). EchoNet-Dynamic assessment of cardiac function had the least 

variance on repeat testing (median difference of 2.6%, SD=6.4) compared to EF obtained 

by Simpson’s biplane method (median difference of 5.2%, SD=6.9, p < 0.001 for non-

inferiority), EF from Simpson’s monoplane method (median difference of 4.6%, SD=7.3, 

p < 0.001 for non-inferiority), or global longitudinal strain (median difference of 8.1%, 

SD=7.4% p < 0.001 for non-inferiority). Of the initial 55 patients, 49 patients were also 

assessed with a different ultrasound system never seen during model training and EchoNet-

Dynamic assessment had similar variance (median difference of 4.5%, SD=7.0, p < 0.001 

for non-inferiority for all comparisons with human measurements).

Analysis of left ventricle segmentation

EchoNet-Dynamic automatically generates segmentations of the left ventricle, which 

enables clinicians to better understand how it makes predictions. The segmentation is also 

useful because it provides a relevant point for human interjection in the workflow and for 

physician oversight of the model in clinical practice. For the semantic segmentation task, 

the labels were 20,060 frame-level segmentations of the left ventricle by expert human 

sonographers and cardiologists. These manual segmentations were obtained in the course 

of standard human clinical workflow during end-systole and end-diastole. Implicit in the 
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echocardiogram videos is that, in all intermediate frames, the left ventricle is constrained 

in shape and size between the labels at end-systole and end-diastole. We used these sparse 

human labels to train EchoNet-Dynamic to generate frame-level segmentations for the entire 

video (Figure 2D). On the test dataset, the Dice Similarity Coefficient (DSC) for the end 

systolic tracing was 0.903 (95% CI 0.901 – 0.906) and the DSC for the end diastolic 

tracing was 0.927 (95% CI 0.925 – 0.928) (Figure 2D). There was significant concordance 

in performance of end-systolic and end-diastolic semantic segmentation and the change in 

segmentation area was used to identify each cardiac contraction (Figure 2E,F).

Variation in beat-to-beat model interpretation was seen in echocardiogram videos of patients 

with arrhythmias and ectopy (Figure 3). When undergoing an individual beat-by-beat 

evaluation of the Stanford test dataset, videos with arrhythmia and higher variance had 

fewer beats with an ejection fraction close to the human estimate (Extended Data Figure 

2, 51% vs. 72% of beats within 5% of ejection fraction from human estimate respectively, 

p < 0.0001). In addition to correlation with irregularity in intervals between ventricular 

contractions, these videos were independently reviewed by cardiologists and found to have 

atrial fibrillation, premature atrial contractions, and premature ventricular contractions. By 

aggregating across multiple beats, EchoNet-Dynamic significantly reduces ejection fraction 

estimation error (Figure 3D). Additionally, even with only one GPU, EchoNet-Dynamic 

rapidly performs the predictions (less than 0.05 seconds per prediction), and enables real-

time left ventricle segmentation and EF prediction (Extended Data Table 4).

Discussion

EchoNet-Dynamic is a new video deep learning algorithm that achieves state-of-the-art 

assessment of cardiac function. It uses expert human tracings for weakly supervised learning 

of left ventricular segmentation and spatiotemporal convolutions on video data to achieve 

beat-to-beat cumulative evaluation of EF across the entire video. EchoNet-Dynamic is the 

first deep learning model for echocardiogram videos and its performance in assessing EF 

is substantially better than previous image based deep learning attempts to assess EF20,22. 

EchoNet-Dynamic’s variance is comparable to or less than human expert measurements 

of cardiac function5. Moreover, its performance in predicting EF was robustly accurate 

when ported to a validation dataset of echocardiogram videos from an independent medical 

center without additional model training. With only one GPU, EchoNet-Dynamic completes 

these tasks in real-time, with each prediction task taking only 0.05 seconds per frame and 

much more rapidly than human assessment of EF. EchoNet-Dynamic could potentially aid 

clinicians with more precise and reproducible assessment of cardiac function and detect 

subclinical change in ejection fraction beyond the precision of human readers. Furthermore, 

we release the largest annotated medical video dataset, which will stimulate future work on 

machine learning for cardiology. We have also released the full code for our algorithm and 

data processing workflow.

Some of the difference between model and human evaluation is, in part, a feature of 

comparing EchoNet-Dynamic’s beat-to-beat evaluation of EF across the video with human 

evaluations of only one “representative” beat while ignoring additional beats. Choosing 

the representative beat can be subjective, contribute to human intra-observer variability, 
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and ignores the guideline recommendation of averaging 5 consecutive beats. This 5-beat 

workflow is rarely completed, in part due to the laborious and time intensive nature of 

the human tracing task. EchoNet-Dynamic greatly decreases the labor for cardiac function 

assessment with automating of the segmentation task and provide the opportunity for more 

frequent, rapid evaluation of cardiac function. Our end-to-end approach generates beat and 

clip level predictions of EF as well as segmentation of the left ventricle throughout the 

cardiac cycle for visual interpretation of the modeling results. In settings where sensitive 

detection of change in cardiac function is critical, early detection of change can significantly 

affect clinical care2,3.

We worked with stakeholders across Stanford Medicine to release our full dataset of 

10,030 de-identified echocardiogram videos as a resource for the medical machine learning 

community for future comparison and validation of deep learning models. To the best of our 

knowledge, this is the largest labeled medical video dataset to be made publicly available 

and first large release of echocardiogram data with matched labels of human expert tracings, 

volume estimates, and left ventricular ejection fraction calculation. We expect this dataset to 

greatly facilitate new echocardiogram and medical video-based machine learning work.

Our model was trained on videos obtained by trained sonographers at an academic medical 

center that reflect the variation in that clinical practice. With expansion in the use of 

point-of-care ultrasound for evaluation of cardiac function by non-cardiologists, further 

work needs to be done to understand model performance with input videos of more variable 

quality and acquisition expertise as well comparison with other imaging modalities. Our 

experiments to simulate degraded video quality and across health systems suggest EchoNet-

Dynamic is robust to variation in video acquisition, however further work in diverse clinical 

environments remains to be done.

The results here represent an important step towards automated evaluation of cardiac 

function from echocardiogram videos through deep learning. EchoNet-Dynamic could 

augment current methods with improved precision, accuracy, and allow earlier detection of 

subclinical cardiac dysfunction, and the underlying open dataset can be used to advance 

future work in deep learning for medical videos and lay the groundwork for further 

applications of medical deep learning.

Methods

Data Curation

A standard full resting echocardiogram study consists of a series of 50-100 videos and 

still images visualizing the heart from different angles, locations, and image acquisition 

techniques (2D images, tissue Doppler images, color Doppler images, and others). Each 

echocardiogram video corresponds to a unique patient and a unique visit. In this dataset, one 

apical-4-chamber 2D gray-scale video is extracted from each study. Each video represents 

a unique individual as the dataset contains 10,030 echocardiography videos from 10,030 

unique individuals who underwent echocardiography between 2016 and 2018 as part of 

clinical care at Stanford Health Care. Videos were split 7,465, 1,277, and 1,288 patients 

respectively for the training, validation, and test sets.
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The randomly selected patients in our data have a range of ejection fractions representative 

of the patient population going through the echocardiography lab (Extended Data Table 

1). Images were acquired by skilled sonographers using iE33, Sonos, Acuson SC2000, 

Epiq 5G, or Epiq 7C ultrasound machines and processed images were stored in Philips 

Xcelera picture archiving and communication system. Video views were identified through 

implicit knowledge of view classification in the clinical database by identifying images and 

videos labeled with measurements done in the corresponding view. For example, apical-4-

chamber videos were identified by selecting videos from the set of videos in which a 

sonographer or cardiologist traced left ventricle volumes and labeled for analysis to calculate 

ejection fraction. The apical-4-chamber view video was thus identified by extracting the 

Digital Imaging and Communications In Medicine (DICOM) file linked to measurements of 

ventricular volume used to calculate the ejection fraction.

An automated preprocessing workflow was undertaken to remove identifying information 

and eliminate unintended human labels. Each subsequent video was cropped and masked 

to remove text, ECG and respirometer information, and other information outside of the 

scanning sector. The resulting square images were either 600x600 or 768x768 pixels 

depending on the ultrasound machine and down sampled by cubic interpolation using 

OpenCV into standardized 112x112 pixel videos. Videos were spot checked for quality 

control, confirm view classification, and exclude videos with color Doppler.

This research was approved by the Stanford University Institutional Review Board and data 

privacy review through a standardized workflow by the Center for Artificial Intelligence in 

Medicine and Imaging (AIMI) and the University Privacy Office. In addition to masking 

of text, ECG information, and extra data outside of the scanning sector in the video files 

as described below, each DICOM file's video data was saved as an AVI file to prevent any 

leakage of identifying information through public or private DICOM tags. Each video was 

subsequently manually reviewed by an employee of the Stanford Hospital with familiarity 

with imaging data to confirm the absence of any identifying information prior to public 

release.

EchoNet-Dynamic development and training

Model design and training was done in Python using the PyTorch deep learning 

library. Semantic segmentation was performed using the Deeplabv3 architecture30. The 

segmentation model had a base architecture of 50-layer residual net and minimized a 

pixel level binary cross entropy loss. The model was initialized with random weights and 

was trained using a stochastic gradient descent optimizer with a learning rate of 0.00001, 

momentum of 0.9, and batch size of 20 for 50 epochs (Extended Data Figure 3). Our 

model with spatiotemporal convolutions was initialized with pretrained weights from the 

Kinetics-400 dataset31. We tested three model architectures with variable integration of 

temporal convolutions (R3D, MC3, R2+1D) and ultimately chose decomposed R2+1D 

spatiotemporal convolutions as the architecture with the best performance to use for 

EchoNet-Dynamic32,33 (Extended Data Figure 1 and Extended Data Table 2). In the 

R3D architecture, all convolutional layers consider the spatial and temporal dimensions 

jointly and consists of five convolutional blocks. The MC3 and R2+1D architectures 
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were introduced as a middle ground between 2D convolutions that consider only spatial 

relationships and the full 3D convolutions used by R3D32. The MC3 architecture replaces 

the convolutions in the final three blocks with 2D convolutions, and the R2+1 architecture 

explicitly factors all 3D convolutions into a 2D spatial convolution followed by a 1D 

temporal convolution.

The models were trained to minimize the squared loss between the prediction and true 

ejection fraction using a stochastic gradient descent optimizer with an initial learning rate 

of 0.0001, momentum of 0.9, and batch size of 16 for 45 epochs. The learning rate was 

decayed by a factor of 0.1 every 15 epochs. For model input, video clips of 32 frames were 

generated by sampled every other frame (sampling period of 2) with both clip length and 

sampling period determined by hyperparameter search (Extended Data Figure 1). During 

training, to augment the size of the dataset and increase the variation of exposed training 

clips, each training video clip was padded with 12 pixels on each side, and a random 

crop of the original frame size was taken to simulate slight translations and changes in 

camera location. For all models, the weights from the epoch with the lowest validation loss 

was selected for final testing. Model computational cost was evaluated using one NVIDIA 

GeForce GTX 1080 Ti GPU (Extended Data Figure 4).

Test Time Augmentation with Beat-by-Beat Assessment

There can be variation in the ejection fraction, end systolic volume, and end diastolic 

volumes during atrial fibrillation, and in the setting of premature atrial contractions, 

premature ventricular contractions, and other sources of ectopy. The clinical convention 

is to identify at least one representative cardiac cycle and use this representative cardiac 

cycle to perform measurements, although an average of the measurements of up to five 

cardiac cycles is recommended when there is significant ectopy or variation. For this reason, 

our final model used test time augmentation by providing individual estimates for each 

ventricular beat throughout the entire video and outputs the average prediction as the final 

model prediction. We use the segmentation model to identify the area of the left ventricle 

and threshold-based processing to identify ventricular contractions during each cardiac 

cycle. Each ventricular contraction (‘systole’) was identified by choosing the frames of 

smallest left ventricle size as identified by the segmentation arm of EchoNet-Dynamic. For 

each beat, a subsampled clip centered around the ventricular contraction was obtained and 

used to produce a beat-by-beat estimate of EF. The mean ejection fraction of all ventricular 

contractions in the video was used as the final model prediction.

Assessing Model Performance and Prospective Clinical Validation

We evaluated the relationship between model performance and echocardiogram video 

quality. Our dataset was not curated on clinical quality and we did not exclude any videos 

due to insufficient image quality. On the internal Stanford test dataset, we evaluated the 

model performance with variation in video saturation and gain, and EchoNet-Dynamic’s 

performance is robust to the range of clinical image acquisition quality (Extended Data 

Figure 5). To further test the impact of variable video quality, we simulated noise and 

degraded video quality by randomly removing a proportion of pixels from videos in the test 
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dataset and evaluated model performance on the degraded images (Extended Data Figure 6). 

EchoNet-Dynamic is also robust to a wide range of synthetic noise and image degradation.

Prospective validation was performed by two senior sonographers with advanced cardiac 

certification and greater than 15 years of experience each. For each patient, measurements 

of cardiac function were independently acquired and assessed by each sonographer on the 

same day. Every patient was scanned using Epiq 7C ultrasound machines, the standard 

instrument in the Stanford Echocardiography Lab, and a subset of patients were also 

rescanned by the same two sonographers using a GE Vivid 95E ultrasound machine. 

Tracing and measurement was done on a dedicated workstation after image acquisition. For 

comparison, the independently acquired apical-4-chamber videos were fed into the model 

and the variance in measurements assessed.

External Health Care System Test Dataset

Transthoracic echocardiogram studies from November 2018 to December 2018 from an 

independent external healthcare system, Cedars-Sinai Medical Center, were used to evaluate 

EchoNet-Dynamic’s performance in predicting ejection fraction. The same automated 

preprocessing workflow was used to convert DICOM files to AVI files, mask information 

outside of the scanning sector, and resize input to 112x112 pixel videos of variable length. 

Previously described methods were used to identify apical-4-chamber view videos22. After 

manual exclusion of incorrect view classifications, long cine loops of bubble studies, 

videos with injection of ultrasonic contrast agents, and videos with color doppler, we 

identified 2,895 videos from 1,267 patients. These videos were used as the input for 

EchoNet-Dynamic trained on the Stanford dataset and model predictions were compared 

with human interpretations from physicians at Cedars-Sinai. The input video sampling 

period set to one since the external dataset’s frame rate was roughly half of videos from the 

Stanford dataset. Model predictions from multiple videos of the same patient were averaged 

for the composite estimate of ejection fraction.

Expert Clinician Re-Evaluation

Recognizing the inherent variation in human assessment of ejection fraction5,13-16, five 

expert sonographers and cardiologists who specialize in cardiovascular imaging performed 

blinded review of the echocardiogram videos with the highest absolute difference between 

initial human label and EchoNet-Dynamic’s prediction (mean absolute difference of 15.0%, 

SD = 3.79%). Each expert was independently provided the relevant echocardiogram video 

and a set of two blinded measurements of ejection fractions corresponding to the initial 

human label and EchoNet-Dynamic’s prediction. The experts were asked to select which 

ejection fraction corresponded more closely with their evaluation of ejection fraction as 

well as note any limitations in echocardiogram video quality that would hinder their 

interpretation. In blinded review, experts rated 38% (15 of 40) of videos as having 

significant issues with video quality or acquisition and 13% (5 of 40) of videos having 

significant arrhythmia limiting human assessment of ejection fraction (Extended Data Table 

3). In this setting, the consensus interpretation of the expert clinicians preferred EchoNet-

Dynamic’s prediction over the initial human label in 43% (17 of 40) of the echocardiogram 

videos.
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Statistical Analysis

Confidence intervals were computed using 10,000 bootstrapped samples and obtaining 95 

percentile ranges for each prediction. The performance of the semantic segmentation task 

was evaluated using the Dice Similarity Coefficient compared to human labels in the hold-

out test dataset. The performance of ejection fraction task was evaluated by calculating the 

mean absolute difference between EchoNet-Dynamic’s prediction and the human calculation 

of ejection fraction as well as calculating the R2 between EchoNet-Dynamic’s prediction 

and the human calculation. Prospective comparison with human readers was performed with 

the uniformly most powerful invariant equivalence test for two-sample problems.

Extended Data

Extended Data Figure 1: Hyperparameter search for spatiotemporal convolutions on video 
dataset to predict ejection fraction.
Model architecture (R2+1D which is the architecture selected by EchoNet-Dynamic for 

EF prediction, R3D, and MC3), initialization (Kinetics-400 pretrained weights with solid 

line and random initial weights with dotted line), clip length (1, 8, 16, 32, 64, 96, and all 

frames), and sampling period (1, 2, 4, 6, and 8) were considered. (a) When varying clip 

lengths, performance is best at 64 frames (corresponding to 1.28 seconds), and starting from 

pretrained weights improves performance slightly across all models. (b) Varying sampling 

period with a length to approximately correspond to 64 frames prior to subsampling. 

Performance is best at a sampling period of 2.
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Extended Data Figure 2: Individual beat assessment of ejection fraction for each clip in the test 
dataset.
The left panel shows patients with low variance across beats (SD < 2.5, n = 3,353) and 

the right panel shows patients with high variance across beats (SD > 2.5, n = 717). Each 

patient video is represented by multiple points representing the estimate of each beat and 

a line signifying 1.96 standard deviations from the mean. A greater proportion of beats are 

within 5% of ejection fraction from the human estimate (the shaded regions) in videos with 

low variance compared to individual beat assessment of ejection fraction in high variance 

patients.
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Extended Data Figure 3: Model performance during training.
Mean square error (MSE) loss for left ventricular ejection fraction prediction during training 

on training dataset (a) and validation dataset (b). Pixel level cross entropy loss for left 

ventricle semantic segmentation during training on training dataset (c) and validation dataset 

(d).

Extended Data Figure 4: Relationship between clip length and speed and memory.
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Hyperparameter search for model architecture (R2+1D, which is used by EchoNet-Dynamic 

for EF prediction, R3D, and MC3) and input video clip length (1, 8, 16, 32, 64, 96 frames) 

and impact on model processing time and model memory usage.

Extended Data Figure 5: Variation in echocardiogram video quality and relationship with 
EchoNet-Dynamic model performance (n = 1,277).
Representative quintile video frames are shown with respective (a) mean pixel intensity and 

(b) standard deviation of pixel intensity with mean absolute error of EchoNet-Dynamic’s 

ejection fraction prediction and Dice Similarity Coefficient for segmentation of the left 

ventricle. Boxplot represents the median as a thick line, 25th and 75th percentiles as upper 

and lower bounds of the box, whiskers up to 1.5 times the interquartile range from the 

median.
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Extended Data Figure 6. Impact of degraded image quality with model performance.
Random pixels were removed and replaced with pure black pixels to simulate ultrasound 

dropout. Representative video frames with dropout shown across range of dropout. 

The proportion of dropout was compared with model performance with respect to R2 

of prediction of ejection fraction and Dice Similarity Coefficient compared to human 

segmentation of the left ventricle.

Extended Data Table 1.
Summary statistics of patient and device characteristics 
in the Stanford dataset.

Data obtained from visits to Stanford Hospital between 2016 and 2018.

Stastistic Total Training Validation Test

Number of Patients 10,030 7,465 1,288 1,277

Demographics

 Age, years (SD) 68 (21) 70 (22) 66 (18) 67 (17)

 Female, n (%) 4,885 (49%) 3,662 (49%) 611 (47%) 612 (48%)

 Heart Failure, n (%) 2,874 (29%) 2,113 (28%) 356 (28%) 405 (32%)

 Diabetes Mellitus, n (%) 2,018 (20%) 1,474 (20%) 275 (21%) 269 (21%)

 Hypercholesterolemia, n (%) 3,321 (33%) 2,463 (33%) 445 (35%) 413 (32%)

 Hypertension, n (%) 3,936 (39%) 2,912 (39%) 525 (41%) 499 (39%)

 Renal Disease, n (%) 2,004 (20%) 1,475 (20%) 249 (19%) 280 (22%)

 Coronary Artery Disease, n (%) 2,290 (23%) 1,674 (22%) 302 (23%) 314 (25%)

Metrics
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Stastistic Total Training Validation Test

 Ejection Fraction, % (SD) 55.7 (12.5) 55.7 (12.5) 55,8 (12.3) 55.3 (12.4)

 End Systolic Volume, mL (SD) 43.3 (34.5) 43.2 (36.1) 43.3 (34.5) 43.9 (36.0)

 End Diastolic Volume, mL (SD) 91.0 (45.7) 91.0 (46.0) 91.0 (43.8) 91.4 (46.0)

Machine

 Epiq 7C, n (%) 6,505 (65%) 4,832 (65%) 843 (65%) 830 (65%)

 iE33, n (%) 3,329 (33%) 2,489 (33%) 421 (33%) 419 (33%)

 CX50, n (%) 83 (1%) 62 (1%) 12 (1%) 9 (1%)

 Epiq 5G, n (%) 60 (1%) 44 (1%) 5 (0%) 11 (1%)

 Other, n (%) 53 (1%) 38 (1%) 7 (1%) 8 (1%)

Transducer

 X5, n (%) 6,234 (62%) 4,649 (62%) 794 (62%) 791 (62%)

 S2, n (%) 2,590 (26%) 1,913 (26%) 345 (27%) 332 (26%)

 S5, n (%) 1,149 (12%) 863 (12%) 141 (11%) 145 (11%)

 Other or Unspecified, n (%) 57 (1%) 40 (1%) 8 (1%) 9 (1%)

Day of the Week

 Monday, n (%) 1,555 (16%) 1,165 (16%) 210 (16%) 180 (14%)

 Tuesday, n (%) 1,973 (20%) 1,411 (19%) 269 (21%) 293 (23%)

 Wednesday, n (%) 2,078 (21%) 1,522 (20%) 270 (21%) 286 (23%)

 Thursday, n (%) 2,144 (21%) 1,642 (22%) 248 (19%) 254 (20%)

 friday, n (%) 2,018 (20%) 1,461 (20%) 237 (18%) 221 (17%)

 saturday, n (%) 221 (2%) 155 (2%) 35 (3%) 31 (2%)

 sunday, n (%) 140 (1%) 109 (1%) 19 (1%) 12 (1%)

Extended Data Table 2:
EchoNet-Dynamic performance compared to alternative 
deep learning architectures in assessing cardiac 
function (n = 1,277).

EchoNet-Dynamic with beat-by-beat evaluation refers to the full model including using 

segmentation of the left ventricle to identify each ventricular contraction for prediction 

aggregation, while frame sampling refers to the performance of the base architecture on 

individual video clips or simple averaging across the entire video. We trained all of these 

architectures on the same set of Stanford videos.

Model Evaluation Sampling Period MAE RMSE R 2

EchoNet-Dynamic Beat-by-beat 1 in 2 4.05 5.32 0.81

EchoNet-Dynamic (EF) 32 frame sample 1 in 2 4.22 5.56 0.79

R3D 32 frame sample 1 in 2 4.22 5.62 0.79

MC3 32 frame sample 1 in 2 4.54 5.97 0.77

EchoNet-Dynamic (EF) All frames All 7.35 9.53 0.40

R3D All frames All 7.63 9.75 0.37

MC3 All frames All 6.59 9.39 0.42
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Extended Data Table 3:
Videos with the most discordance between model 
prediction and human label of ejection fraction.

‘A’ represented expert preference for EchoNet-Dynamic’s prediction and ‘B’ represented 

preference for the initial human label. The label of “Incorrect label” designated when at least 

3 of 5 blinded experts preferred EchoNet-Dynamic’s prediction of ejection fraction over 

initial human label in side-by-side comparison.

Video File Model 
EF

Human 
EF Difference Rev 

1
Rev 

2
Rev 

3
Rev 

4
Rev 

5 Notes

0X4EFB94EA8F9FC7C2 44.6 17.7 26.9 B B B B A Poor image 
quality

0XB3FFC4AE334E9F4 55.4 30.1 25.4 B A B B B

0X15C0D7DBFF8E4FC8 57.8 34.8 23.1 A A A A A
Poor image 
quality, 
incorrect label

0X41AC5C5FC2E3352A 59.5 37.9 21.6 A A A A A Arrhythmia, 
incorrect label

0X211D307253ACBEE7 31.0 10.7 20.3 A B B B B
Poor image 
quality, 
foreshortening

0X5A8D9673920F03FE 46.3 26.7 19.6 A B B B B

0X75AF130134AADF00 46.8 28.4 18.4 B A B A B Arrhythmia

0X6703FCFAD2E7CBCA 37.1 54.5 17.4 A A A A A
Poor image 
quality, 
incorrect label

0X345D4E0B1B2EBAA1 67.2 84.5 17.3 B A A A A Incorrect label

0X1B2BCDAE290F6015 43.8 28.4 15.4 B A B A B Poor image 
quality

0X15CC6C50F1763B61 34.9 50.2 15.2 A A B B B

0X7D567F2A870FD8F0 44.1 29.1 15.0 B B B A A

0X2507255D8DC30B4E 52.0 66.8 14.8 A A A A A
Poor image 
quality, 
incorrect label

0X493E34208D40DBB5 51.8 37.1 14.7 B B B A A

0X56FD0409BFA202DF 39.1 53.7 14.6 A A B A A Incorrect label

0X2D4304FA6A09F93E 37.2 23.2 14.0 A B A B B

0X1EDA0F3F33F97A9D 49.0 35.0 14.0 B B B B B Poor image 
quality

0X66C8EAE88FFB77EE 54.0 40.1 13.9 B B A B B

0X1EF35FFC92F4F554 47.7 61.4 13.7 B A A B A Incorrect label

0X1CDE7FECA3A1754B 37.2 50.9 13.7 B A A A B Arrhythmia, 
incorrect label

0X777692B30E35465A 39.4 53.0 13.6 B A B B B

0X29E66C557C99EC32 52.0 65.5 13.6 B B B B B

0X31B6E6B67B97806A 54.0 40.4 13.5 A A A A A Incorrect label

0X30DF42C999969D67 43.4 30.0 13.3 B B B B B

0X36715FD73D74BF39 49.2 36.0 13.2 A B B B A
Poor image 
quality, 
Effusion

Ouyang et al. Page 16

Nature. Author manuscript; available in PMC 2022 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Video File Model 
EF

Human 
EF Difference Rev 

1
Rev 

2
Rev 

3
Rev 

4
Rev 

5 Notes

0XAA3E06425E1A23E 46.3 33.1 13.1 A B A B A Incorrect label

0X60361B7F301DEBB7 55.2 68.3 13.0 B A A A A Incorrect label

0X32AFF6A0BED73A67 74.2 61.6 12.6 A A A B A Incorrect label

0X8558D35ED09F890 52.7 40.4 12.4 A B B A A
Poor image 
quality, 
incorrect label

0X868028466F66DE2 43.9 56.2 12.3 B A B B B

0X41130893A44122AB 54.0 66.3 12.3 B A B B A Poor image 
quality

0X69447E46FEDD2A3F 49.3 61.5 12.3 A A A B A
Poor image 
quality, 
incorrect label

0X797CA10A7CDE384B 62.8 75.0 12.2 B A B A A
Poor image 
quality, 
incorrect label

0XBCEAB22A81A23C1 25.4 13.3 12.2 A B B B A Foreshortening

0X2889D8C33077C148 57.0 69.1 12.1 B A A B B Arrhythmia

0X6DFE8F195ACC3BA4 18.0 30.1 12.1 B A B B B

0X62431BB9CF3A33EE 44.4 56.4 12.1 A A A A A Arrhythmia, 
incorrect label

0X27250C8B6DF1D971 67.7 79.7 12.0 B A B B A
Poor image 
quality, 
foreshortening

0X79DFCFF4867CB797 31.9 43.9 12.0 B A B B B

0X2DF88C27BB20C25D 55.9 43.9 12.0 B A A B A Foreshortening, 
incorrect label

Extended Data Table 4:

Model parameters and computational cost.

Task Model Parameters 
(millions)

Time per prediction (sec) Memory per prediction 
(GB)

Train Test Train Test

End-to-end EchoNet-
Dynamic 71.1 0.221 0.048 1.191 0.276

EF Prediction

EchoNet-
Dynamic (EF) 31.5 0.150 0.034 1.055 0.246

R3D 33.4 0.084 0.025 0.394 0.184

MC3 11.7 0.110 0.035 0.489 0.151

Segmentation EchoNet-
Dynamic (Seg) 39.6 0.071 0.014 0.136 0.030
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Figure 1. EchoNet-Dynamic workflow.
For each patient, EchoNet-Dynamic uses standard apical-4-chamber view echocardiogram 

video as input. The model first predicts ejection fraction for each cardiac cycle using 

spatiotemporal convolutions with residual connections and generates frame-level semantic 

segmentations of the left ventricle using weak supervision from expert human tracings. 

These outputs are combined to create beat-by-beat predictions of ejection fraction and to 

predict the presence of heart failure with reduced ejection fraction.
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Figure 2. Model Performance.
(a) EchoNet-Dynamic’s predicted EF vs. reported EF on the internal test dataset from 

Stanford (blue, n = 1,277) and the external test dataset from Cedars-Sinai (red, n = 2,895). 

The blue and red lines indicate the least-squares regression line between model prediction 

and human calculated EF. (b) Receiver operating characteristic curves for diagnosis of 

heart failure with reduced ejection fraction on internal test dataset (blue, n = 1,277) and 

external test dataset (red, n = 2,895). (c) Variance of metrics of cardiac function on repeat 

measurement. The first four boxplots highlights clinician variation using different techniques 

(n=55), and the last two boxplots show EchoNet-Dynamic’s variance on input images from 

standard ultrasound machines (n=55) and an ultrasound machine not previously seen by the 

model (n=49). Boxplot represents the median as a thick line, 25th and 75th percentiles as 

upper and lower bounds of the box, and individual points for instances greater than 1.5 

times the interquartile range from the median. (d) Weak supervision with human expert 

tracings of the left ventricle at end-systole (ESV) and end-diastole (EDV) is used to train 

a semantic segmentation model with input video frames throughout the cardiac cycle. (e) 

Dice Similarity Coefficient (DSC) was calculated for each ESV/EDV frame (n = 1,277). (f) 

The area of the left ventricle segmentation was used to identify heart rate and bin clips for 

beat-to-beat evaluation of EF.
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Figure 3. Beat-to-beat evaluation of ejection fraction.
(a) Atrial fibrillation and arrhythmias can be identified by significant variation in intervals 

between ventricular contractions. (b) Significant variation in left ventricle segmentation area 

was associated with higher variance in EF prediction. (c) Histogram of standard deviation 

of beat-to-beat evaluation of EF (n = 1,277) across the internal test videos. (d) Assessing 

the effect of beat-to-beat based on the number of sampled beats averaged for prediction. 

Each boxplot represents 100 random samples of a certain number of beats and comparison 

with reported ejection fraction. Boxplot represents the median as a thick line, 25th and 

75th percentiles as upper and lower bounds of the box, and whiskers up to 1.5 times the 

interquartile range from the median.
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