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ABSTRACT Objective: Motor variability — performance variations across task repetitions — has been as-
sumed to be undesirable. But recent studies argue that variability facilitates early motor learning by allowing
exploratory search of reward-generating motion, and that variability’s structure may be modulated by neural
circuits for furthering learning. What are the neural sources of learning-relevant motor variability and its
modulation in humans of different ages? Methods: Elderlies and young adults played a 3-session virtual
bowling while multi-muscle electromyographic signals were collected. We quantified trial-to-trial variability
of muscle synergies — neuromotor control modules — and of their activations. Results: In elderlies, bowling-
score gain correlated with change of activation timing variability of specific synergies, but in young adults,
with variability changes of synergy-activation magnitude, and of the synergies themselves. Conclusions:
Variability modulation of specific muscle synergies and their activations contribute to early motor learning.
Elderly and young individuals may rely on different aspects of motor variability to drive learning.

INDEX TERMS Ageing, EMG, Motor Learning, Motor Variability, Muscle Synergy.

IMPACT STATEMENT Modulating variability of specific muscle synergies and their activations may acceler-
ate motor learning. Analyzing muscle-synergy variability could be a new way to understand motor learning,

development, and recovery from injury.

I. INTRODUCTION

Humans do not move robotically. An expert gymnast, after
decades of practice on a relatively simple maneuver, would
still perform the maneuver a little differently each time. The
structure of motor variability, defined as “the variation of
performance across repetitions or continuous performance of
the same task™ [1], may be a window for inferring fundamen-
tal motor control principles because it is assumed that any
neuromotor control strategies must have evolved to minimize
the impact of motor variability — an undesirable movement

feature — on achieving behavioral goals. In [2], for instance, it
was argued that movement planning is based on the selection
of a trajectory shape that diminishes the variance of the final
end-effector position originating from signal-dependent noise
in the motor command.

Recently, multiple investigators have emphasized instead
the functional benefits of motor variability in relation to mo-
tor learning [4], [31], [43]. As performance improves dur-
ing learning, motor-output variability eventually decreases
[3]. But during early learning, motor variability could
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allow randomized, active exploration of the motor-command
space, thus enabling faster learning because higher variability
implies a higher chance of hitting a command conducive to
task goal accomplishment. The task-relevant motor command
can then be reinforced through rewards for driving learning
progress. In a recent study that employed a reward-based
reaching task [4], across subjects pre-training kinematic vari-
ability along task-relevant dimensions correlated well with
subsequent learning rate. Importantly, task training also al-
tered the structure of variability in a way that, after training,
motor output varied along the dimensions that complied with
the task demands, thus facilitating further learning [4].

The above result implies that motor variability may not
result just from random fluctuations (“noise” [5]) of senso-
rimotor activities, but may be under active regulation during
motor learning by dedicated neural circuits. Indeed, during
courtship song learning of zebra finches, typically variable
songs became highly stereotyped after the lateral magnocel-
lular nucleus (LMAN) was inactivated [6], suggesting that
LMAN injects variability into the vocal motor pathway to
facilitate song production.

In humans, the neural source of motor variability relevant
to learning has remained obscure. Prior studies that explore
variability and learning in humans [2], [4] have characterized
variability in kinematics or force profile, but not variability
in the neuromotor outputs as reflected in neurophysiological
recordings. Presumably, motor variability owes most of its
origin to variance in the muscle pattern, which in turn arises in
part from fluctuations of the neuronal activities that coordinate
muscle activations. One neuronal type whose activity fluctu-
ation should result in myoelectric variability is the one that
encodes muscle synergies — neuromotor modules that coordi-
nate muscle activities with across-muscle activation balance
profiles scaled by time-varying coefficients, and whose com-
bination could explain the experimental electromyographic
signals (EMGs) (Fig. 1) [7]-[10]. Muscle synergies are popu-
larly identified by applying factorization algorithms to multi-
muscle EMGs [11], [12]. Recent neurophysiological data have
argued that factorization-derived muscle synergies may reflect
muscle coordinative structures encoded by lower-level spinal
interneuronal networks whose temporal activations are spec-
ified by the afferent systems and descending drives from the
higher-level motor areas [10], [13]-[17].

Given that muscle synergies may be entities of neural origin
[18], [19] and that variations of multi-muscle activities may
promote early motor learning, it is possible that trial-to-trial
variability of the muscle synergies themselves and/or their
activation patterns could be meaningful fluctuations that drive
learning. Here, we ask whether learning-relevant motor vari-
ability owes its origin to (1) fluctuations of the higher-level
neural commands that drive the downstream muscle syner-
gies, or (2) activation variability of the lower-level synergy-
encoding interneurons and motoneurons that result in fluc-
tuation of the muscle synergies themselves. We addressed
this question by examining whether trial-to-trial variability of
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FIGURE 1. Schematic of muscle synergy combination. Each muscle synergy
is a time-invariant unit vector across muscles (W), and scaled by a
time-varying activation coefficient (C). The waveforms from the synergies
are linearly summed to explain the EMGs normalized to maximum
voluntary contraction (MVC) of the muscles. The quantities whose
variability are correlated to performance measures here - W, trial
maximum of C (Cmax), and time interval between Cnax's of synergy pairs -
are marked by blue asterisks. Figure adapted from [42].

muscle-synergy activations, or variability of the muscle syner-
gies, correlate with the initial learning rate in the early phase
of a reward-based task. This should allow a better understand-
ing of the neural sources of learning-relevant variability in
humans.

In addition, we seek to reveal here the difference between
young and old individuals in how motor learning is achieved
vis-a-vis their reliance on motor variability in driving learning.
Per previous results, elderlies, when compared with young
adults, have a more-or-less preserved potential to acquire mo-
tor skills. Some studies have failed to detect any difference
in the rate and extent of learning between younger and older
groups [20], [21]. Others have found that elderlies could reach
almost the same degrees of skill learning as those of young
adults, albeit with slower learning rates [22]-[25], in tasks
including mirror tracking [22] and rotary pursuit task [22].
We therefore hypothesized that young adults can better exploit
and modulate motor variability for achieving their motor-
learning goals with faster rates than elderlies, and anticipated
a salient correlation between muscle-synergy variability and
learning rate in young adults but not elderlies.

Il. RESULTS

Young adults (N = 8, mean age = 23.8) and elderlies (N =
8, mean age = 71.1) were trained to play a virtual bowling
game for 3 daily sessions. To make scoring more difficult,
all subjects were trained to bowl with the non-dominant arm.
Game performance was quantified by the ball release speed
(derived from wrist kinematics) and the bowling score (aver-
age number of knocked-down pins per trial) recorded on the
first and last sessions. Both age groups exhibited equivalent
increase in ball release speed from sessions 1 to 3 (p < 0.01;
Fig. 2(A)—(B)), but showed no statistically significant change
in the across-subject average of the bowling score (p > 0.05;
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FIGURE 2. Measures for assessing game performance across sessions.
A,B, The release speed of the virtual ball was estimated by calculating the
peak forward speed of a reflective marker on the wrist (Vicon). In both
elderlies (A) and young adults (B), there was an increase of ball release
speed (group mean + SE) from session 1 to 3 (t-test, p < 0.05, ). Thick
lines, subjects showing an increase; dotted lines, subjects showing a
decrease. C,D, We also monitored the number of pins knocked down in the
first throw of each trial (bowling score), averaged across all trials of a
session. In both groups, differences between session mean scores were
not statistically significant (t-test, p > 0.05). But there were more young
adults (D) showing score increases (6 of 8, thick lines) then elderlies (C)

(3 of 8). Note the substantial across-subject variability in score increases in
both groups. Note also that only the score achieved, but not ball release
speed, was explicitly fed back to each subject during the game.

Fig. 2(C)—(D)). We note, however, that in both groups there
was substantial across-subject variability in how the bowling
score changed. Also, while 6 of 8 young adults showed an
increase in bowling score (Fig. 2(D), thick red), only 2 of 8 el-
derlies showed an increase (Fig. 2(C), thick blue). Thus, both
age groups were capable of kinematic change after training,
but more young adults were able to derive reward (i.e., scores)
from aspects of kinematic change including, but not limited to,
the ball release speed.

To address our scientific question of whether there is
any age-related difference in how the muscle synergies are
changed by bowling training, we began by performing a “con-
ventional” muscle synergy analysis on EMGs (11 muscles)
that were normalized to levels at maximum voluntary contrac-
tion of the muscles. We identified muscle synergies from the
EMGs of whole sessions using non-negative matrix factoriza-
tion (NMF) [26], [27] (Fig. 1). The extracted synergies were
then compared between sessions and groups, with similarity
between synergy sets quantified by the average scalar product
between matched muscle-synergy pairs [10]. This analysis did
not reveal any salient age-related difference in muscle synergy
during learning (Fig. S1-S4).
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The above result notwithstanding, it is possible that insights
into age-related difference in the muscle synergies (W) and/or
their activations (C) during learning can only be revealed by
going beyond a straight-forward inter-group comparison of
the W’s. Below, we will characterize, in two analytic stages,
the trial-to-trial variability of W and C of each session of every
subject, and asked whether the initial W- or C-variability in
session 1 correlates with the change of ball release speed or
bowling score from session 1 to 3 in either age group. We
also went one step further and examined whether the across-
session change of W- and C-variability correlates with the
change of the performance measures, assuming that W- and
C-variability are themselves modulated by the nervous system
[4], [6] for driving motor behavioral change.

A. CHANGE OF VARIABILITY OF SYNERGY ACTIVATION
MAGNITUDE CORRELATED WITH BOWLING SCORE
CHANGE IN YOUNG ADULTS BUT NOT ELDERLIES

In the first stage of our variability analysis, for every subject
we characterized the spatiotemporal variability of C witha W
that was fixed through all trials of each session. To ensure cor-
respondence of the W’s for the two sessions so that the change
of C variability could be meaningfully quantified, the W of ei-
ther session was extracted by initializing NMF with the same
initial guess, one that was the cluster centroids from k-means
clustering (9 clusters, Fig. S4) of the W’s identified from the
combined EMGs of sessions 1 and 3 of all subjects in each age
group. This way, NMF was provided with prior knowledge
of W based on its average representation across all sessions
of the group. The C-magnitude variability of a synergy was
quantified by the across-trial variance of its trial-maximum
magnitude (Cpax). Both the mean and maximum, across the
set of synergies of each subject, of the initial and change of
Cmax Vvariability were calculated as predictors of the change
in performance measures, thus making 4 (predictors) x 2
(performance measures) = 8§ correlations to consider in each
group.

Among the correlations involving the bowling score as the
response variable, we found that the maximum change (from
session 1 to 3) of Cy,x variability correlated positively, and
very significantly, with the change of bowling score in young
adults (Pearson’s r = 0.93, p = 0.0007) but not elderlies
(p = 0.91) (Fig. 3(A)-(B)). We verified that across young
adults, the W’s corresponding to the C’s with maximum Ciyyx-
variability changes remained almost unaltered from session 1
to 3 (Fig. 3(C)). Interestingly, for 5 of 8 subjects, these W’s
involved the same set of elbow and wrist flexors relevant to
ball release — flexor carpi ulnaris (FlexCarUln), pronator teres
(PronTer), and biceps brachii (Biceps) (Fig. 3(C)).

It is true that with 9 synergies (from 11 muscles), about half
of all session-fixed W’s were dominated by single muscles
(% of synergies with just 1 muscle with >0.1 component
weight: elderlies session 1, 40%, session 3, 40%; young adults
session 1, 46%, session 3, 44%:;). But the value of muscle
synergy analysis can be readily appreciated by noting the fol-
lowing: (1) correlation between score change and maximum
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FIGURE 3. Characterization of C-magnitude variability when W was fixed
across the trials of a session. A,B, In both age groups, the change of
average bowling score was correlated against the maximum (across each
subject’s synergies) session-1-to-3 change of Cnax variability. A highly
statistically significant correlation was found in young adults (B, solid line)
but not elderlies (A, dotted line). r, Pearson’s correlation coefficient; p, the
p-value of the correlation. C, The muscle synergies (W) showing maximum
Cmax variability in the young adults (each row corresponds to a muscle;
each column, a subject). Note consistency of these session-fixed W's from
session 1 to 3. Also note how muscles including Biceps, PronTer, and
FlexCarUIn were consistently recruited. Interestingly, their biomechanical
functions - wrist/elbow flexion and wrist internal rotation - align with
those demanded of high-scoring bowlers [39].

EMG,x-magnitude variability change of individual muscles
in young adults yielded a much lower r with borderline sta-
tistical significance (r = 0.72, p = 0.045); (2) most synergies
showing maximum Cpax-variability change in young adults
involved >1 muscles (Fig. 3(C)). In fact, when the same
analysis was performed by initializing NMF at the original,
lower dimensionality of each subject (elderlies, number of
synergies = 5.6 + 0.7 at R2~90%; young adults, 6.3 #+ 0.9),
we still obtained a very significant correlation only in young
adults between score change and maximum Cp,x-magnitude
variability change (elderlies, p = 0.87; young adults, r = 0.92,
p = 0.001).

In addition, we found a significant, but weaker, negative
correlation between the mean initial Cpyx variability and
change of ball release speed in elderlies (r = —0.74, p =
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0.03) but not young adults (p = 0.69). No other significant
correlation involving Cy,x magnitude was observed in this
stage (Table S1 lists all r and p values).

B. INITIAL AND CHANGE OF VARIABILITY OF SYNERGY
ACTIVATION TIMING CORRELATED WITH BOWLING SCORE
CHANGE IN ELDERLIES BUT NOT YOUNG ADULTS

We proceeded to characterize the initial and change of the
variability of C activation timing, defined first by noting, in
every synergy and trial, the time at which Cpy,x occurred
(Tcmax), and then calculating the across-trial variance of the
time interval between the Tcmax’s of every pair of the 9
synergies (Fig. 1). When the bowling score change was the
response variable, we found only 3 statistically significant
correlations, all positive and observed only in elderlies but
not young adults; 2 of 3 involved the initial (session 1)
time-interval variability as covariates (Fig. 4(A)—(B)), and 1
involved the change (from session 1 to 3) of time-interval
variability (Fig. 4(C)—(D)).

When the change of ball release speed was the response
variable, we identified 3 negative correlations in young
adults — all with the change of variability as covariates —
that were statistically significant (Fig. 4(E)—(F)). In elderlies,
the initial Tcmax-time interval between two synergies, domi-
nated by pectoralis major and infraspinatus, respectively, also
correlated significantly with the change of ball speed (r =
0.78, p = 0.02) (not shown). Beyond these correlations, none
of the others in either group was significant.

C. CHANGE OF MUSCLE-SYNERGY VARIABILITY
CORRELATED WITH BOWLING SCORE CHANGE IN YOUNG
ADULTS BUT NOT ELDERLIES
The variability analysis described above aimed at understand-
ing the variability of C while assuming a session-fixed W.
In our second stage of analysis, we entertained the possi-
bility that W may itself exhibits trial-to-trial variability that
is relevant to learning. Such an approach would demand a
new computational formulation that can reasonably estimate
trial-specific W’s from the EMGs — and importantly, while
having the across-trial averages of the trial-specific W’s to still
globally explain the data — so that a trial-specific W would
represent a variant of a “true global W’ rather than just a fit to
the data peculiarities of the trial. To achieve this, we developed
a procedure that exploits the fact that in NMF, the initial
estimate of W corresponds to prior knowledge of how W may
be structured [27], [28]. It follows that a trial-specific W, as
understood above, can be identified by initializing NMF with
the “global” W extracted from the EMGs of all trials, so that
the extraction of the trial-specific W amounts to fine-tuning
the global W to suit the EMGs of each trial. This approach
is conceptually similar to how an artificial neural network can
be pretrained to learn general-purpose features by another data
set before being fine-tuned for the target task [29], [30].

In Fig. 5 we demonstrated the extraction of trial-specific
W’s with an example of the initial guess for W that was
identified from the combined EMGs of sessions 1 and 3
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(Fig. 5(A)), and all the trials-specific W’s and Cpax’s that
resulted from this prior (Fig. 5(B)—(C)). We validated that
the same prior would not lead to the identification of grossly
different synergies across trials by matching each set of trial-
specific W to the set of W prior, and showing that most of
the trial-specific synergies indeed were matched back to their

own priors (Fig. 5(E)). The variability of the W’s can also be
appreciated in Fig. 5(D) in which we projected the W prior (+)
and all trial-specific W’s (.) of a subject onto a 2-D plane by
Sammon mapping. Specifically, the W variability of a synergy
(red) increased conspicuously from session 1 to 3 while those
of others decreased or remained unchanged.
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FIGURE 6. Correlating W and C variability with performance measures.
A-C, In elderlies, we did not find any statistically significant correlations
between bowling score gain and the change (from session 1 to 3) of W and
C variability. D-F, In young adults, on the other hand, the mean (across the
synergies) (D) and maximum (E) change of W variability, and the mean
change of Cp,ax variability (F) correlated significantly with score gain.

We proceeded to quantify W variability of each synergy
by calculating its total across-trial variance, and correlate this
variability against change of performance measures. We found
that both the mean and maximum (across the set of synergies)
change of W variability correlated positively and significantly
with the change of bowling score in young adults (Fig. 6(D)—
(E)) but not elderlies (Fig. 6(A)—(B)). In addition, we found
a significant correlation between the mean change of Cpy,x-
magnitude variability with the change of bowling score, again
only in young adults (Fig. 6(F)) but not elderlies (Fig. 6(C)),
consistent with the result obtained when W was session-fixed
(Fig. 3(B)). Otherwise, none of the other correlations were
found to be significant (Table S2-S3).

I11. DISCUSSION

The most salient result here is that in both age groups, except-
ing the 2 correlations involving the initial C-timing variability
of elderlies, by and large the change (rather than the initial) of
variability of either the muscle synergies (W) or the magnitude
or timing of their activations (C) correlated with the gain of
bowling score. For elderlies, variability change of C activa-
tion time was relevant to score gain (Fig. 4(D)); for young
adults, variability changes of both W (Fig. 6(D)—(E)) and
C activation magnitude (Fig. 3(B); Fig. 6(F)) were relevant.
These results suggest that variability of specific task-relevant
muscle synergies and/or their spatiotemporal activation pat-
terns may be suitably modulated by the CNS during early
learning, so that the structure of motor-command variabil-
ity within the space of commands would be biased towards
the directions conducive to furthering task-goal achievement
(Fig. 7(A)). This interpretation is consistent with the finding
of Wu et al. [4], that motor training altered the kinematic
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FIGURE 7. Modulating the structure of motor variability through specific
muscle synergies. A, A schematic illustrating how increasing the variability
of a specific W or its C from session 1 (green circle) to session 3 (blue
ellipse) could result in score gain. Score gain can be facilitated if W or C
variability is modulated such that the subspace of motor commands from
W and C is enlarged towards the command subspace that is conducive to
scoring. B, A hypothetical neural circuit for modulating learning-relevant
motor variability. The conjectured human homolog of the finches’ LMAN
injects variability to the higher motor areas for generating the C for a
specific synergy (solid purple line), and for young adults only, to the
lower-level brainstem/spinal circuits for structuring that synergy, W
(dotted purple line). Reward signals from successful actions serve to
reinforce the W and C variants conducive to task achievement, and also
the LMAN for that synergy, so that the synergy’s variability can be
modulated for more reward-generating actions.

variability structure so that post-training motor output varied
along the task-compliant dimensions, thus facilitating more
learning. Our results further suggest that this observation in
[4] may be underpinned by variability modulation of select
muscle synergies and/or their activations.

We speculate that variability modulation of specific W’s
and C’s may be underscored by a neuronal network func-
tionally similar to the zebra finch lateral magnocellular nu-
cleus (LMAN), which injects variability into the vocal motor
pathway during early song learning [6], [31]. The human
homolog of LMAN has not been identified [32], but conceiv-
ably it could be a network within the various premotor areas
[33]. To modulate the synergies’ variability, this conjectured
LMAN homolog should have access to the networks for the
W’s and C’s, and be susceptible to modulation by the reward
signals that reinforce any specific W and C variants result-
ing in reward-generating actions. The reward reinforcement
would then direct how LMAN should modulate the variability
levels of different synergies, thereby altering the structure of
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motor-command variability in a manner that favors rewarding
outcomes (Fig. 7(B)).

Another salient result from our analysis concerns how el-
derlies relied on the initial and change of C-timing variability
for score gain (Fig. 4(A)—(D)) while young adults relied on
the change of C-magnitude variability (Fig. 3(B), Fig. 6(F)).
Elderlies, when compared with young adults, have less muscle
strength [34], [35], and hence are less able to produce and sus-
tain high-magnitude muscle forces. Because of the decreased
maximal force, the elderly motor system is probably less ca-
pable of generating functionally sufficient motor variability
by varying muscle-activation magnitude, and has therefore
learned to depend instead on timing variability for driving
learning. We speculate that for many motor tasks, varying
the timing of C may be a less effective strategy for learning
than one based on varying magnitude, and this may partially
explain why elderlies display slower learning rates than young
adults in prior studies [22]-[25]. We note, however, that elder-
lies’ slower learning may also be attributed to their striatal and
dopaminergic systems whose activations are less sensitive to
the changing reward outcomes [36], [37].

Our study is limited in several ways. We have characterized
motor variability and performance during early learning by
training our subjects for 3 sessions, but we do not know
whether the initial or change of variability during these first
sessions would predict the learning rate in the ensuing ses-
sions during longer-term training. Answering this question
would require an even more demanding motor task. Even
though bowling is biomechanically fairly complex [38]-[41],
by session 3 both age groups already managed to achieve ~7—
8/10 pins per trial (Fig. 2(C)—(D)). A more challenging task
would permit long-term behavioral changes to be manifested.

IV. CONCLUSIONS

We have demonstrated that trial-to-trial fluctuations of spe-
cific muscle synergies and their spatiotemporal activations can
be sources of learning-relevant motor variability. Our results
imply that one strategy to accelerate motor learning — es-
pecially when the “best” muscle patterns for the task is not
known a priori — may be to promote and modulate the vari-
ability of specific synergies or their activations. Our analyses
have also defined a paradigm for characterizing variability of
multi-muscle coordination, which could be useful in many
applications in neural and rehabilitation engineering.

SUPPLEMENTARY MATERIALS

The Results section of supplementary materials contains a
detailed description of the conventional muscle synergy anal-
ysis performed on the EMGs (Fig. S1-S4). Supplementary
materials also includes a full description of the Materials
and Methods employed for this study. Finally, the tables in
Supplementary Materials (Table S1-S3) list all Pearson’s r
correlation coefficients and their associated p values for the
correlations performed in both stages of our W and C variabil-
ity analyses.
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