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Abstract

Lensless imaging has emerged as a potential solution towards realizing ultra-miniature cameras 

by eschewing the bulky lens in a traditional camera. Without a focusing lens, the lensless 

cameras rely on computational algorithms to recover the scenes from multiplexed measurements. 

However, the current iterative-optimization-based reconstruction algorithms produce noisier and 

perceptually poorer images. In this work, we propose a non-iterative deep learning-based 

reconstruction approach that results in orders of magnitude improvement in image quality for 

lensless reconstructions. Our approach, called FlatNet, lays down a framework for reconstructing 

high-quality photorealistic images from mask-based lensless cameras, where the camera’s forward 

model formulation is known. FlatNet consists of two stages: (1) an inversion stage that maps 

the measurement into a space of intermediate reconstruction by learning parameters within the 

forward model formulation, and (2) a perceptual enhancement stage that improves the perceptual 

quality of this intermediate reconstruction. These stages are trained together in an end-to-end 

manner. We show high-quality reconstructions by performing extensive experiments on real and 

challenging scenes using two different types of lensless prototypes: one which uses a separable 

forward model and another, which uses a more general non-separable cropped-convolution model. 

Our end-to-end approach is fast, produces photorealistic reconstructions, and is easy to adopt for 

other mask-based lensless cameras.
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1 INTRODUCTION

Emerging applications such as wearables, augmented reality, virtual reality, biometrics, 

and many others are driving an acute need for highly miniaturized imaging systems. 

Unfortunately, current-generation cameras are based on lenses – and these lenses typically 

account for more than 90% of the cost, volume and weight of cameras. While lenses 

and optics have been miniaturized by two orders of magnitude, over the last century, we 

are inching up against fundamental laws (diffraction limit and Lohman’s scaling law [3]) 

precluding further miniaturization.

Over the last decade, lensless imaging systems have emerged as a potential solution for 

light-weight, ultra-compact, inexpensive imaging. The basic idea in lensless imaging is to 

replace the lens with an amplitude [1] or a phase mask [2], [4]; typically placed quite 

close to the sensor. These lensless imaging systems provide numerous benefits over lens-

based cameras. The need for a lens, which is a major contributor towards the size and 

weight of a camera, is eliminated. In addition, a lensless design permits a broader class of 

sensor geometries, allowing sensors to have more unconventional shapes (e.g. spherical or 

cylindrical) or to be physically flexible [5]. Moreover, lensless cameras can be produced 

with traditional semiconductor fabrication technology and therefore exploit all of its scaling 

advantages - yielding low-cost, high-performance cameras [6].

Due to the absence of any focusing element, the sensor measurements recorded in a 

lensless imager are no longer photographs of the scene but rather highly multiplexed 

measurements. Reconstruction algorithms are needed to undo the effects of this multiplexing 

and produce photographs of the scene being imaged. However, the design of a recovery 

algorithm for lensless cameras is a challenging task mainly because of the large support of 

the Point Spread Functions (PSFs) inherent to lensless design. In particular, the recovery 

algorithms face the following challenges. First, large support of PSFs result in large linear 

systems which makes such systems difficult to store and invert. Second, large PSFs also 

result in a very high degree of global multiplexing. Conventional data-driven methods 

like convolutional neural networks which are designed for natural images are not suited 

to handle this amount of multiplexing due to their limited receptive field. Third, lensless 

design results in ill-conditioned systems which affect the quality of reconstruction as well as 

noise characteristic of such systems. The poor reconstruction quality can be observed in the 

Tikhonov regularized reconstructions shown in Figure 1. Therefore, lensless cameras need 

robust and efficient algorithms to overcome these challenges.

Keeping the above challenges in mind, we propose a feed-forward deep neural network for 

photorealistic lensless reconstruction, which we refer to as FlatNet. FlatNet learns a direct 

mapping from lensless measurements to scene outputs. FlatNet consists of two stages: the 

first stage is a learnable inversion stage that brings the multiplexed measurements back to 

image space. This stage depends on the camera model. The second stage enhances this 

intermediate reconstruction using a fully convolutional network. It should be noted that the 

two stages are trained in an end-to-end fashion. It was shown in [2] that separable lensless 

mask based lensless cameras have inferior characteristics as compared to their existing 

non-separable counterparts. In our previous work [7], we had demonstrated FlatNet’s 

Khan et al. Page 2

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effectiveness for separable lensless model. But it cannot be trivially used for non-separable 

mask based lensless cameras. Here we extend the previous work to handle non-separable 

lensless model. In particular, we propose an efficient implementation of the learnable 

intermediate mapping for non-separable lensless model which is based on Fourier domain 

operations. We also propose an initialization scheme for this learnable intermediate stage 

that doesn’t require explicit PSF calibration. We show that the intermediate mapping is 

robust for cases where the lensless model is non-circulant. This happens when the sensor 

size is smaller than the full measurement size required for deconvolution. Finally, to verify 

the robustness and efficiency of FlatNet, we perform extensive experiments on challenging 

real scenes captured using separable mask based lensless camera called FlatCam [1] and 

the non-separable mask based lensless camera called PhlatCam [2]. To summarize, the key 

contributions of this paper are:

• We propose an efficient implementation for the learnable intermediate stage of 

non-separable or general lensless model. In [7], we had only shown this for the 

separable lensless model. Here we non-trivially extend it to the general lensless 

case.

• We verify the robustness of the proposed learnable intermediate mapping for the 

non-separable lensless model on challenging scenarios where the lensless system 

does not follow a full convolutional or circulant assumption.

• We propose an initialization scheme for the non-separable lensless model that 

doesn’t require explicit PSF calibration.

• Similar to the display and direct captured measurements collected using the 

separable mask FlatCam and described in our previous work [7], we collect 

corresponding datasets for the non-separable mask PhlatCam [2].

• We also collect a dataset of unconstrained indoor lensless measurements paired 

with corresponding unaligned webcam images which is finally used to finetune 

our proposed FlatNet to robustly deal with unconstrained real-world scenes.

• Our method outperforms previous traditional and deep learning based lensless 

reconstruction methods.

1.1 Related work

1.1.1 Lensless imaging—Lensless imaging involves capturing an image of a scene 

without physically focusing the incoming light with a lens. It has been widely used in 

the past for X-ray and gamma ray imaging for astronomy [8], [9], but its use for visible 

spectrum applications has only recently been studied. In a lensless imaging system, the 

scene is captured either directly on the sensor [10] or after being modulated by a mask 

element. Types of masks that have been used include phase gratings [11], random diffusers 

[4], designed phasemasks [2], amplitude masks [1], [12], compressive samplers [13], [14] 

and spatial light modulators [15], [16]. Replacing lens with the above masks result in 

multiplexed sensor capture that lacks any resemblance to the scene imaged. A recognizable 

image is then recovered using a computational reconstruction algorithm. In this paper, we 
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develop a deep learning based reconstruction algorithm for both separable and non-separable 

mask based lensless cameras.

1.1.2 Image reconstruction—Image reconstruction is a core aspect of most 

computational imaging problems [1], [2], [4], [17], [18]. In general, image reconstruction 

for computational imaging is ill-posed and requires regularization. Traditional methods 

for image reconstruction involve solving regularized least squares problems. Numerous 

regularizers based on heuristics have been developed in the past. These include the sparsity 

in gradient domain [2], [4], [19], wavelet/frequency domain sparsity [20], etc. However, 

these methods suffer from the fact that often the resulting cost function doesn’t have a 

closed-form minima and an iterative approach has to be taken to solve it. Moreover, the 

regularizers are based on heuristics and may not be ideal for the specific task at hand.

Deep neural network have also been designed to solve image reconstruction problems in 

computational imaging systems. A class of deep learning based solution involves learning 

of regularizers or proximal mapping stage and then iteratively solving a MAP problem. 

Methods like [21], [22], [23] fall under this category. Another class of algorithm is designed 

as a feed-forward deep neural network that has either been trained in a supervised or 

self-supervised manner. Works on compressive image recovery [24], [25], [26], Fourier 

Ptychography [27], lensless recovery [28] fall under this category. Among these feed-

forward networks, [26], [28] are inspired by the physics of the imaging model and are 

unrolled versions of traditional optimization frameworks. Although these methods provide 

interpretability, the drawbacks they offer include increased computation and higher memory 

consumption due to large number of unrolled iterations. The proposed method and its 

preliminary version [7] fall under the category of physics inspired deep neural network as 

well. However, they don’t involve any unrolling thereby avoiding large computational and 

memory cost.

2 MASK BASED LENSLESS IMAGING

Mask based lensless imagers, unlike their lens-based counterparts, measure a global linear 

multiplexed version of the scene. This multiplexing is a function of the mask placed in front 

of the sensor. Mathematically, this is given as:

y = Φx + n, (1)

where x and y are the vectorized representations of the scene and measurement respectively, 

Φ represents the generalized linear transformation, and n is the additive noise. In general, Φ 
has a large memory footprint, and hence, storing and computing with Φ is computationally 

intractable. Reconstructing a scene with O(N2) pixels from a sensor measurement of O(N2) 

pixels requires Φ with O(N4) elements. For example, a 1-megapixel scene and a 1-megapixel 

sensor requires Φ with ~ 1012 elements. However, by careful design of masks and using a 

forward model derived from physics, the computational complexity can be greatly reduced.

The modulation performed by the mask characterizes the linear matrix Φ. By using a 

low-rank separable mask pattern, the huge Φ can be broken down into smaller matrices [1], 

[29]. Specifically, in [1], the single-separable lensless forward model reduces to:
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Y = ΦLXΦR
T + N, (2)

where, ΦL and ΦR are the separable breakdown of Φ, X is the 2D scene irradiance, Y is the 

2D recorded measurement, and N models additive noise.

By adding a small enough aperture over a non-separable mask and thereby ensuring that the 

off-axis shifted PSF stays within the sensor, [2] showed that the lensless forward model can 

be written as a convolutional model:

Y = P * X + N, (3)

where P is PSF of the system. PSF of a lensless camera is the pattern projected by the mask 

on the sensor when illuminated by a single point source [2]. The PSF shifts when the point 

source moves laterally, and for a general scene, the sensor measurement is the weighted sum 

of various shifted PSFs, leading to a convolutional model.

If the sensor isn’t large enough compared to the PSF, the PSF can shift out of the sensor for 

an oblique angled scene point. In such a case, [4] uses a cropped convolution model:

Y = C(P * X) + N, (4)

where C is the sensor cropping operation. Such a system described by Equation 4 is no 

longer circulant. For a separable mask, the cropping is already incorporated in the model 

matrices ΦL and ΦR.

In this work, we will be primarily focusing on two prototypes of lensless cameras, (a) 

FlatCam [1] that has a separable mask and, (b) PhlatCam [2] that has a non-separable 

mask. We explore a data-driven approach that incorporates the lensless imaging models to 

produce photorealistic reconstructions from the above cameras. We also explore an alternate 

approach to sensor cropping for PhlatCam by preprocessing the sensor measurement [30].

3 FLATNET

To address the challenges involved in lensless image reconstruction, we take a data-driven 

approach for scene recovery. We model our reconstruction framework into a two stage fully 

trainable deep network. This two stage network is then jointly trained in an adversarial 

setup.

Trainable camera inversion.

The first stage of FlatNet is a learnable intermediate mapping called the Trainable Camera 
Inversion stage that learns to invert the lensless forward model obtaining intermediate 

reconstructions from globally multiplexed lensless measurements. We implement separate 

formulations of this trainable inversion stage for separable and non-separable lensless 

models exploiting the properties of the forward model for each type of these lensless 

systems.
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Perceptual enhancement.

The second stage of FlatNet, called the Perceptual Enhancement stage, is a fully 

convolutional network that enhances the intermediate reconstruction obtained from the 

trainable inversion stage giving it more photorealistic appearance.

3.1 Trainable camera inversion—In the first stage of our network, we learn to invert 

the forward operation of the lensless camera model. This allows us to obtain an intermediate 

representation with local structures intact. To implement this, we follow a separate approach 

for separable and non-separable lensless camera models. Owing to the computational 

simplicity of a separable model, we will first describe the implementation of the inversion 

stage for the separable model.

3.1.1 Separable model: Given the lensless model described in Equation 2, we learn two 

layers of left and right trainable matrices that act directly on 2-D measurements. This can be 

mathematically represented as,

Xinterm = f W 1Y W 2 , (5)

where Xinterm is the output of this stage, f is a pointwise nonlinearity (which in our case is 

a leaky ReLU), Y is the input measurement, and W1 and W2 are the corresponding weight 

matrices for this stage. The dimension of the weight matrices depends on the dimension of 

the measurement and the scene dimension we want to recover i.e. the dimension of W1 is 

the same as the dimension of the transpose of ΦL while the dimension of W2 is the same 

as the dimension of ΦR. Eventually, these matrices learn to invert the forward matrices ΦL 

and ΦR. We refer to this version of FlatNet for separable lensless model as FlatNet-sep. It is 

important to initialize the weight matrices of this stage properly, so that the network does not 

get stuck in local minima. This can be done in two ways.

Calibrated initialization.

For this approach, we initialize our weight matrix W1 with the transpose of ΦL and W2 

with ΦR, akin to back-projection. These calibration matrices (ΦL and ΦR) in (2) are 

physically obtained by the method described in [1]. This mode of initialization leads to 

faster convergence while training.

Uncalibrated initialization.

Calibration of FlatCam require careful alignment with display monitor [1], which can be 

a time consuming and inconvenient process especially for large volumes of FlatCams. 

Even a small error in calibration can lead to severe degradation in the performance of the 

reconstruction algorithm. To overcome the problems involved in calibration, we also propose 

a calibration-free approach by initializing the weight matrices with carefully designed 

pseudo-random matrices.

Initializing with any pseudo-random matrices of appropriate size does not yield successful 

reconstruction. To carefully design the random initialization, we make the following two 

observations regarding the FlatCam forward model: the calibration matrices have a ‘toeplitz-
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like’ structure and the slope of constant entries in the ‘toeplitz-like’ structure can be 

approximately determined using the FlatCam geometry, in particular the distance between 

the mask and the sensor and the pixel pitch. As the FlatCam’s geometry is known apriori, 

we can construct the pseudo-random ‘toeplitz-like’ matrices with appropriate slope, and 

size, thereby making our approach calibration free. We discuss the generation of these 

pseudo-random matrices in more detail in the supplementary. The weight matrix W1 is 

initialized with the adjoint of the random matrix constructed corresponding to ΦL, while 

the matrix W2 is initialized with the random matrix constructed corresponding to ΦR. We 

observed that the training time increased slightly for this initialization in comparison to 

transpose initialization.

3.1.2 Non-separable model—Unlike in the separable model, it is infeasible to 

implement the trainable inversion stage in the non-separable model as a matrix 

multiplication layer owing to the extremely large dimension of Φ. However, one can still 

implement it in the Fourier domain. In order to implement the inversion stage efficiently, 

we analyze the forward model given in Equations 1 and 3. Following the observation that 

the forward model is purely convolutional for an appropriate sensor dimension i.e. the 

forward operation is described by Equation 3, we model our trainable inversion stage for 

the non-separable case in the form of a learned inverse implemented as Hadamard product 

in Fourier domain. This stems from the fact that the inverse of a circulant system given by 

Equation 3 is also circulant and can be diagonalized by Fourier transform.

Mathematically, this operation is given as,

Xinterm = ℱ−1(ℱ(W ) ⊙ ℱ(Y )), (6)

where Xinterm is the output of this stage and Y is the measurement, ℱ( . ) and ℱ−1( . ) are 

the DFT and the Inverse DFT operations, W is the filter that is learned (akin to W1 and 

W2 in the separable model) and ⊙ refers to Hadamard product. For a N×M dimensional 

measurement, the dimension of W is N × M. We found that using nonlinearity such as ReLU 

has no noticeable effect on the final output and as a result we did not include it in the 

non-separable model. The convolutional model of Equation 3 would require a large sensor as 

the PSF’s in lensless systems have large spatial dimension and in some scenarios it would be 

infeasible to use such a large sensor. Such a case would require the lensless model to follow 

Equation 4. Of course, we cannot accurately represent the inverse of the system described 

by Equation 4 through a convolutional filter as the system is no longer circulant. As a 

result, one could ask if the proposed trainable inversion stage will still be valid if a smaller 

sensor was used? To answer this question, we show in Section 4.4.2, that with a small 

modification to the trainable inversion stage described in Equation 6, we can handle these 

cropped-convolutional or non-circulant cases without significant drop in the performance. 

We refer to this version of FlatNet for non-separable lensless model as FlatNet-Gen.

Calibrated initialization.

Like the separable model, initialization of W is important for convergence of the training 

process. Assuming we have a calibrated PSF and H is the Fourier transform of this PSF, in 
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our experiments, we initialize W using ℱ−1( H ∗
K + |H|2

), i.e the regularized pseudo-inverse of 

the PSF or the well-known Wiener filter. In this expression, K is a regularization parameter.

Uncalibrated initialization.

We also propose an initialization scheme that doesn’t require explicit PSF calibration. Given 

the mask pattern and the camera geometry, one can simulate the PSF of the lensless systems. 

Specifically, for PhlatCam, given the height profile of the mask, we use Fresnel propagation 

to simulate the PSF as described in [2]. This initialization scheme is particularly useful for 

cases where the PSF exceeds the sensor size (see Section 4.4.2). It should be noted here that 

this mode of initialization can be used for cases where we have access to height profile, for 

example in [2]. For cases where getting a rough estimate of the height profile is not possible, 

for example when random diffusers are used, calibrated mode of initialization should be 

preferred.

3.2 Perceptual enhancement—Once we obtain the output of the trainable inversion 

stage, which is of same dimension as that of the natural image we want to recover, we use 

a fully convolutional network to map it to the perceptually enhanced image. Owing to its 

large scale success in image-to-image translation problems and its multi-resolution structure, 

we choose a U-Net [31] to map the intermediate reconstruction to the final perceptually 

enhanced image. We keep the kernel size fixed at 3×3 while the number of filters is 

gradually increased from 128 to 1024 in the encoder and then reduced back to 128 in the 

decoder. In the end, we map the signal back to 3 RGB channels.

For the non-seperable case, we deal with slightly larger dimensional scenes. Similar to [35], 

we find it useful to employ Pixel-Shuffle [36] to downsample intermediate image before 

U-Net. By allowing U-Net to operate on a smaller spatial resolution (as a result bigger 

contextual area), we recover finer details for the increased image dimensions. Moreover, 

downsampling by Pixel-Shuffle doesn’t throw away pixels and hence can be inverted exactly 

unlike other downsampling methods.

3.3 Discriminator architecture—We train FlatNet-sep and FlatNet-gen in an 

adversarial setup. We use a discriminator framework to classify FlatNet’s output as real 

or fake. We find that using a discriminator network improves the perceptual quality of our 

reconstruction. We use 4 layers of 2-strided convolution followed by batch normalization 

and the swish activation function [37] in our discriminator. Same discriminator architecture 

was used for both FlatNet-sep and FlatNet-gen.

3.4 Loss function—An appropriate loss function is required to optimize our system 

to provide the desired output. Pixelwise losses like mean absolute error (MAE) or mean 

squared error (MSE) have been successfully used to capture signal distortion. However, they 

fail to capture the perceptual quality of images. As our objective is to obtain high quality 

photorealistic reconstructions from lensless measurements, perceptual quality matters. Thus, 

we use a weighted combination of signal distortion and perceptual losses. The losses used 

for our model are given below:
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Mean squared error:  We use MSE to measure the distortion between the ground truth and 

the estimated output. Given the ground truth image Itrue and the estimated image Iest, this is 

given as:

ℒMSE = Itrue − Iest 2
2 . (7)

Perceptual loss:  To measure the semantic difference between the estimated output and 

the ground truth, we use the perceptual loss introduced in [32]. We use a pretrained 

VGG-16 [33] model for our perceptual loss. We extract feature maps between the second 

convolution (after activation) and second max pool layers, and between the third convolution 

(after activation) and the fourth max pool layers. We call these activations ϕ22 and ϕ43, 

respectively. This loss is given as,

ℒpercept = ϕ22 Itrue − ϕ22 Iest 2
2 +

ϕ43 Itrue − ϕ43 Iest 2
2 (8)

Adversarial loss:  Adversarial loss [34], [38] was added to further bring the distribution 

of the reconstructed output close to those of the real images. Given the discriminator D 

described in Section 3.3, this loss is given as,

ℒadv = − log D Iest . (9)

Our discriminator, consisting of 4 layers of 2-strided convolution followed by batch 

normalization and ReLU activation function, classifies the generator output as real or fake.

Total generator loss:  Our total loss for the FlatNet while training is a weighted 

combination of the three losses and is given as,

ℒ = λ1ℒMSE + λ2ℒpercept + λ3ℒadv . (10)

where, λ1, λ2 and λ3 are weights assigned to each loss.

Discriminator loss:  Given Iest, Itrue and discriminator D, the discriminator was trained 

using the following loss,

ℒdisc = − log D Itrue − log 1 − D Iest . (11)

Contextual Loss:  For finetuning FlatNet-gen on unaligned PhlatCam and webcam pairs 

(described in Section 4.5), we use only contextual loss as proposed in [39]. Denoting 

output image features (ϕ44(Iest)) as {pi}i = 1
N , target image features (ϕ44(Itrue)) as {qj}j = 1

N

and number of pixels in each of these feature maps as N, contextual loss finds the nearest 

neighbour feature match q = argminqD p, qj j = 1
N  for each p. We then minimize the summed 
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distance of all such feature pairs. The distance metric we adopt here is cosine-distance, 

although it could also be L1, L2, etc. This loss term is given by:

ℒcontextual = 1
N ∑

i = 1

N
minj ∈ [N]D pi, qj (12)

We found ϕ44 to be a suitable feature extractor based on the computational cost and 

sharpness of reconstruction.

4 EXPERIMENTS AND RESULTS

In this section, we describe all our experiments. We perform all our experiments on 

real data. We will refer to the FlatNet for separable model as FlatNet-sep and for the 

non-separable model as FlatNet-gen. They will further be suffixed by -C and -UC to 

indicate calibrated or uncalibrated method of initialization respectively. Unless specifically 

mentioned, simply using FlatNet-gen or FlatNet-sep would indicate FlatNet-gen-C or 

FlatNet-sep-C i.e. FlatNets initialized with the calibrated method of initialization.

4.1 Dataset

Supervised training of deep neural networks require large scale labelled dataset. However, 

collecting a large scale dataset for lensless images is a challenging task. One could use 

the known lensless model to simulate measurements from the available natural image 

datasets. This, however, will sometimes fail to mimic the true imaging model due to several 

non-idealities. To overcome this challenge, we collect a large dataset by projecting images 

on monitors and capturing this projection using lensless cameras. This not only takes care 

of the true imaging model for lensless camera, it also helps us collect a labelled dataset 

for lensless images. We follow the same dataset collection procedure for both FlatCam 

[1] and PhlatCam [2]. For our work, we use a subset of ILSVRC 2012 [40]. Specifically, 

we used 10 random images from each class as our ground truth. Of the 1000 classes, we 

kept 990 classes for training and the rest for testing. So in total, we used 9900 images 

for training and 100 images for testing. Before capturing the dataset, we resize the images 

displayed on monitor so as to cover the entire field of view (FoV) of camera. We call this 

dataset the Display Captured Dataset. For this dataset, the ground truth images are the ones 

that were projected on the monitor screen. The monitor was kept beyond the hyperfocal 

distance of the cameras to avoid the variation of the PSF with depth. The hyperfocal distance 

for the FlatCam prototype is around a foot and for the PhlatCam prototype is around 16 

inches. To test the FlatNet on real scenes, we also capture measurements of objects placed 

directly in front of the camera. Using FlatCam we collect 15 such measurements while 

using PhlatCam we collect 20 such measurements. We call this dataset Direct Captured 

Dataset. This dataset doesn’t have corresponding ground truths for the measurements. To 

demonstrate the effectiveness of FlatNet-gen on unconstrained indoor scenarios, we collect 

a dataset of unaligned PhlatCam and webcam captures using the setup described in Figure 

13. This dataset consists of 475 training samples and 25 test samples. We call this dataset the 

Unconstrained Indoor Dataset. Samples from our datasets can be seen in Figure 3. We will 

release this dataset upon acceptance of this manuscript
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4.2 Implementation details

The FlatCam prototype uses a Point Grey Flea3 camera with 1.3MP e2v EV76C560 CMOS 

sensor and a pixel size of 5.3 μm. All the ground truth images were resized to 256 × 

256 as the FlatCam is calibrated to produce 256 × 256 output images. This ensures that 

there is no misalignment among the input and ground truth pairs. We directly used the 

Bayer measurements, split into 4 channels (R,Gr,Gb,B), as our input to the network and 

convert them into 3 channel RGB within the network. FlatCam measurements of dimension 

512×640×4 in batches of 4 were used as inputs for training. A smaller batch size was used 

due to memory constraints. We set λ1 as 1, λ2 to be 1.2 and λ3 to be 0.6. For transpose 

initialization, we trained our model for 45K iterations while for random initialization, we 

trained it for 60K iterations. The Adam [41] optimizer was used for all models. We started 

with a learning rate of 10−4 and gradually reduced it by half every 5000 iterations. The 

PhlatCam prototype used is a Basler Ace4024–29uc with 12.2MP Sony IMX226 sensor with 

a pixel size of 1.85μm. All the ground truth images were resized to 384 × 384 which is equal 

to the FoV of the prototype. We directly used the Bayer measurements, split into 4 channels 

(R,Gr,Gb,B), as our input to the network and convert them into 3 channel RGB within the 

network. We used the same set of λi’s as that for FlatNet-sep. The full measurements used 

were of dimension 1280 × 1408 × 4. For the small sensor experiments of Section 4.4.2, we 

use measurements of dimension 608 × 864 × 4.

4.3 Comparison with other approaches

4.3.1 Separable lensless model—In this subsection, we show results for the 

amplitude mask FlatCam that follows a separable model.

We compare FlatNet-sep with the closed form Tikhonov reconstruction described in [1] and 

a total variation based reconstruction implemented using TVAL3 [19].

Qualitative discussion.: In Figure 4, we compare our methods, FlatNet-sep-UC with 

uncalibrated initialization and FlatNet-sep-C with calibrated initialization, with traditional 

methods, Tikhonov and TVAL3. As can be observed from the reconstructions, the Tikhonov 

regularized reconstructions are prone to severe vignetting effects which is somewhat reduced 

in the TVAL3 results. Inset images in Figure 4 show the preservation of finer details in 

our approach. Figure 5 shows the performance of the various methods for direct captured 

measurements. Tikhonov regularization has a tendency to suppress low signal values and as 

a result has difficulty restoring the poorly illuminated background for most of the scenes in 

Figure 5. The performance of TVAL3 [19] is also similar. FlatNet-sep, on the other hand, 

produces higher quality photorealistic reconstruction. Note that our uncalibrated model 

FlatNet-sep-UC gives similar performance to that of the calibrated model FlatNet-sep-C. 

Thus, our method does not require explicit calibration unlike the rest of the approaches.

Quantitative discussion.: We present the quantitative performance of FlatNet for separable 

mask FlatCam in Table 1. For evaluation, we use PSNR, SSIM and the recently proposed 

LPIPS [42]. Higher PSNR and SSIM score indicate better performance while lower 

LPIPS indicates better perceptual quality. It can be clearly seen that our approach using 

transpose initialization (FlatNet-sep-C) outperforms all the other reconstruction techniques 
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for FlatCam. The next best approach is the FlatNet-sep using random initialization (FlatNet-

sep-UC), which unlike other methods, is a calibration-free technique. We also compare the 

inference time for various approaches in the same table. The Tikhonov and TVAL3 [19] 

regularized reconstructions are computed on Intel Core i7 CPU with 16 GB RAM while the 

rest of the approaches are evaluated on Nvidia GTX 1080 Ti GPU.

4.3.2 Non-separable lensless model—For experiments on the non-separable model, 

we compare FlatNet-gen with traditional and learning based approaches. We describe these 

approaches below.

Traditional approaches.: In traditional method, we compare FlatNet-gen with traditional 

Tikhonov regularized reconstruction implemented in Fourier domain (as Wiener restoration 

filter) and total variation regularized reconstruction implemented using ADMM [4]

Learning based approaches.: For learning based approach, we use the unrolled deep 

network described in [28]. However, for fairness, we use the five stage unrolled ADMM 

followed by our perceptual enhancement stage.

Qualitative discussion.: Figure 6 shows the display captured reconstruction for PhlatCam. 

We can clearly see higher quality reconstruction for FlatNet-gen in comparison to traditional 

Tikhonov regularized reconstruction or Wiener deconvolution and ADMM based method. 

It also results in better quality reconstruction than the Le-ADMM model. This trend in 

performance is also observed in the direct captured reconstructions in Figure 7. It should 

also be noted that Le-ADMM, despite having fewer parameters, is extremely memory and 

computation intensive due to the large number of intermediates/primal and dual variables 

calculated at each stage of the unrolled ADMM. It is due to this significant increment in 

memory consumption, that it becomes infeasible to implement this model on the captured 

PhlatCam measurements without downsampling. In our comparison, we downsample the 

measurements by a factor of 4 (similar to [28]) before passing them through the Le-ADMM 

network. Unless explicitly mentioned, we will refer to this downsampled Le-ADMM 

model as Le-ADMM. Downsampling operation leads to compromise in the reconstruction 

resolution resulting in the lack of sharpness observed in the final reconstruction. On the 

other hand, the FlatNet-gen has significantly lower memory requirement that doesn’t require 

any downsampling pre-processing thereby preventing any loss of sharpness or resolution. 

We also provide comparison for FlatNet-gen initialized with uncalibrated PSF in the 

supplementary material. We call this model FlatNet-gen-UC.

Quantitative discussion.: The quantitative results are provided in Table 2. Along with the 

uncalibrated FlatNet-gen model, we also provide the performance of uncalibrated version 

of Le-ADMM in this table. It is referred to as Le-ADMM-UC. The consistency with visual 

results is maintained in the quantitative metrics. It can be clearly seen that FlatNet-gen 

outperforms all other methods quantitatively. FlatNet-gen-UC performs almost at par with 

FlatNet-gen-C and outperforms Le-ADMM-UC. It should be noted that the difference 

between FlatNet-gen-C and FlatNet-gen-UC is smaller as compared to Le-ADMM-C and 

Le-ADMM-UC. This is primarily due to the stronger dependence of Le-ADMM on the 

true PSF while FlatNet-gen requires the knowledge of PSF only for better initialization and 
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learns to converge to a better inverse after training. We also provide the runtime for the 

methods compared. For Wiener and TV-based ADMM, we report the speed on CPU while 

for others we report the speed for a forward pass in GPU.

Assuming the true measurement is of dimension 1280 × 1408, we additionally compare 

FlatNet-gen’s trainable inversion stage with the unrolled ADMM block of Le-ADMM 

(without the U-Net) in terms of memory and computation in Table 3. We provide the 

memory consumption (in Megabytes, computed on Nvidia GTX 1080 Ti GPU) and 

computations (in FLOPs, computed theoretically) required to process one image using the 

two methods. We unroll the ADMM for 5 iterations. In the table, Le-ADMM-Full refers 

to the unrolled ADMM without any downsampling while Le-ADMM-Downsampled refers 

to the case where the PSF and the scene were downsampled by a factor of 4. It can be 

observed that a full resolution Le-ADMM requires significant amount of memory which 

would have negative implications if deployment is considered. Moreover, appended with 

dense CNNs like U-Net, Le-ADMM-Full is difficult to implement on a conventional GPU, 

thereby necessitating the downsampling of the measurements which in turn leads to the 

degradation of the reconstruction quality. One should also note the amount of computations 

performed in the unrolled ADMM block for the particular dimensions of PSF and scene. 

Due to a series of intermediate estimates that depend on Fourier and Inverse Fourier 

transforms, this computation blows up for Le-ADMM-Full. FlatNet-gen provides a better 

trade-off for resolution, and memory and computational requirements which is essential for 

lensless systems which, by design, suffer from poor reconstruction resolution.

4.4 Further analysis

4.4.1 Effect of learning the inversion stage—In this section, we highlight the 

importance of the end-to-end learning strategy of FlatNet. We compare FlatNet with a 

network with just the perceptual enhancement block. We train this network with Tikhonov 

regularized reconstructions. For training this network, we use the same loss as defined 

in Equation 10. We call this method Tikh+U-Net. We implement this approach for 

both separable and non-separable lensless models. Top row of Figure 8 compares the 

reconstruction quality of FlatNet-sep with Tikh+U-Net. We can easily observe the improved 

quality of reconstruction obtained from FlatNet-sep compared to Tikh+U-Net. Tikh+U-

Net suffers from blurrier reconstructions with amplified artifacts. We also compare the 

performance of FlatNet-gen with its corresponding Tikh+U-Net in the bottom row of Figure 

8. FlatNet-gen provides sharper reconstructions over Tikh+U-Net.

Table 4 provides a quantitative flavor to the above analysis. We can see that FlatNet 

outperforms Tikh+U-Net for both separable and non-separable models in terms of PSNR 

and LPIPS.

One may notice that the difference between FlatNet-gen and Tikh+U-Net is not as 

significant as between FlatNet-sep and its corresponding Tikh+U-Net. This is due to the 

higher quality of Tikhonov reconstruction in the case of PhlatCam compared to FlatCam [2]. 

However, one should note that Tikh+U-Net is strictly based on convolutional assumption for 

the forward model, and performs poorly when this assumption is violated as will be verified 

in Section 4.4.2.
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4.4.2 Performance on cropped measurements—As we have already seen in 

Section 2, the forward operation in a mask-based lensless camera is no longer convolutional 

if the size of the sensor is small compared to the true measurement size i.e. the forward 

model is given by Equation 4. This coupled with large PSFs, makes lensless reconstruction 

challenging for traditional reconstruction approaches which rely on the circulant or 

convolutional assumptions (e.g. Wiener deconvolution). This naturally leads to a question: 

Will the proposed trainable inversion layer of FlatNet-gen, which is based on learned Fourier 

domain inversion, be robust against cases where the deviation from the circulant assumption 

is significant? In other words, will FlatNet-gen be able to deal with measurements from 

which a significant amount of pixels have been thrown away due to the finite sensor size and 

fully open aperture? In this section, we show that we can deal with the small sensor size case 

without losing much in terms of reconstruction quality and perform better than Le-ADMM 

which explicitly tries to deal with the cropped out pixels. For our experiments, we take a 

central crop of size 608 × 864 from our 7MP full sensor measurement. Effectively, this can 

be thought as using a 2MP sensor instead of the 7MP sensor.

2

Following the observation in [30], we replicate pad our cropped measurements as a pre-

processing step. To smooth the discontinuities due to padding, we multiply this padded 

measurement with a gaussian filtered box. The effectiveness of our method of padding can 

be observed in Figure 9. Mathematically, the trainable inversion stage changes to,

Xinterm = ℱ−1(ℱ(W ) ⊙ ℱ(pad(Y ))) . (13)

This is a modification to Equation 6 to account for the cropped measurement. pad(.) refers 

to the padding and smoothing operation described above. The same padding and smoothing 

procedure is also followed for Tikh+U-Net applied on the cropped measurements. Figure 10 

shows the reconstruction quality for the display captured cropped measurement compared 

with full measurement for Tikh+U-Net, Le-ADMM and FlatNet. Even after padding the 

measurements, there are artifacts in the Wiener restored images that cannot be effectively 

removed using Tikh+U-Net. Le-ADMM performs slightly better than Tikh+U-Net due to its 

intermediate stage that approximately estimates the uncropped measurement. However, it is 

not as robust to crop as FlatNet-gen is. Similarly, in Figure 11, we show the reconstructions 

for direct captured cropped measurement. It can be clearly seen that Tikh+U-Net and 

Le-ADMM suffer from significant color artifacts. These artifacts are however not significant 

in the FlatNet-gen reconstructions. Table 5 gives the comparison of average scores for each 

model on the display captured dataset.

It should be noted that for the model used to obtain Figures 10 and 11 and Table 5, 

the PSF size (608 × 870) exceeds the assumed sensor size (606 × 864). In such a case, 

estimation of the true PSF is a tedious process and one can use the uncalibrated FlatNet-gen-

UC. From Table 5, we can see that FlatNet-gen outperforms all other learned methods. 

FlatNet-gen-UC has a comparable performance to FlatNet-gen, while Tikh+U-Net-UC and 

Le-ADMM-UC breakdown: indicating that accurate PSF calibration is required for these 
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methods. The visual results for FlatNet-gen-UC for cropped measurements are provided in 

the supplementary material.

Apart from the crop size mentioned above, we also show the performance of the learning 

based approaches for various different crop sizes in Figure 12. Here, we normalize the size 

of the cropped measurements with respect to the full measurements. It can be seen that 

FlatNet-gen consistently outperforms Le-ADMM and Tikh+U-Net for all crop sizes.

It should also be noted that FlatNet-sep is, by design, robust to non-circulant scenarios as it 

involves learned inversion in the spatial domain.

4.5 Performance on unconstrained indoor scenes

In the previous sections, we performed all our experiments using FlatNets trained on 

display captured dataset. However, real measurements captured in the wild differs from 

the dispay captured measurements for the following reasons: a) real world captures have 

significantly higher amount of noise compared to display captured measurements, b) in an 

unconstrained setup, bright scene points beyond the FoV described by the Chief Ray Angle 

(CRA) can also influence the captured measurement which is not the case with display 

captured measurements captured with monitors filling the whole of CRA defined FoV. To 

take these differences into account and make our FlatNet robust to real world scenarios, we 

finetune FlatNet using a real world dataset we captured called the Unconstrained Indoor 

Dataset. This dataset consists of unaligned webcam and PhlatCam captures collected using 

the setup described in Figure 13. We collected 500 pairs of such data, keeping 475 pairs 

for training and 25 for testing. We finetune the entire network with a small learning rate 

(10−12 for the trainable inversion stage and 10−6 for the perceptual enhancement stage). To 

account for misalignment between PhlatCam and webcam captures, we only use Contextual 

Loss [39] which was previously proposed for unaligned data. Figure 13 shows some of 

our reconstruction results with and without finetuning along with webcam captures for 

reference. It can be observed that finetuning results in more photorealistic reconstructions. 

In the supplementary material, we show reconstructions from cropped unconstrained indoor 

measurements.

5 DISCUSSION AND CONCLUSION

In this paper, we propose an end-to-end trainable deep network called FlatNet for 

photorealistic scene reconstruction from lensless measurements. Despite the numerous 

promises that lensless imaging provides, it is somewhat restricted by the quality of the 

reconstructed image. In this paper, we have attempted to bridge this gap between the 

promise of lensless imaging and its performance. FlatNet leverages the physics of the 

forward model (through the trainable camera inversion) and the success of data-driven 

approaches to learn a photorealistic mapping from the highly multiplexed lensless captures 

to the estimated scene. Unlike unrolling based networks [28], it has the advantage of 

low memory and computational requirements which are desirable criteria for stand-alone 

devices. We also show that by finetuning FlatNet trained on display captured measurements, 

using unaligned Webcam-PhlatCam indoor scenes, we can recover photorealistic images in 

the wild using these ultra-thin sensors.
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It should also be noted that like most GAN based approaches, FlatNet reconstructions suffer 

from hallucination artifacts that favor photorealism over high-fidelity. Therefore, FlatNet 

should be used with caution when the task at hand is critical to these hallucination artifacts 

(for example medical imaging). Nevertheless, in such critical systems, one can still use the 

trainable camera inversion of FlatNet and make modifications to the perceptual enhancement 

and the losses appropriately.

In future, it would be interesting to look into the co-design of mask or PSF and 

reconstruction algorithm for mask-based lensless cameras.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Lensless imaging.
Lensless cameras require computation to recover the true scene from measurements. In 

this work we propose a deep learning based lensless reconstruction algorithm for both 

separable [1] and non-separable mask [2] based lensless cameras that produce photorealistic 

reconstructions for real and challenging scenarios.
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Fig. 2. Overall architecture of the FlatNet.
The lensless camera measurement is first mapped into an intermediate image space using 

a trainable camera inversion layer. This stage is implemented separately for the separable 

and the non-separable case. A U-Net [31] then enhances the perceptual quality of the 

intermediate reconstruction. We use a weighted combination of three losses in training our 

network: a perceptual loss [32] using a VGG16 network [33], mean-square error (MSE), and 

adversarial loss using a discriminator neural network [34].
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Fig. 3. Samples from our collected datasets.
All our experiments are conducted on real data captured using lensless prototypes. We 

collect Display Captured Dataset using both separable and non-separable prototypes to 

train FlatNet-sep and FlatNet-gen, respectively. We also collect Direct Captured Dataset by 

placing objects in front of the lensless cameras under controlled illumination. Finally, to 

improve the robustness of FlatNet, we collect a dataset of Unconstrained Indoor Scenes 

using PhlatCam and Webcam pairs.
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Fig. 4. Display Captured Reconstructions for FlatCam.
Ground truth images are shown in a). Finer details like the text in the first image and 

spots on the insect in the second image are lost in b) Tikhonov regularized and c) TVAL3 

reconstruction. Finer details are better preserved in FlatNet-sep for both d) uncalibrated and 

e) calibrated initializations.
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Fig. 5. Direct Captured Reconstructions for FlatCam:
a) Details in the border and darker regions are lost in the Tikhonov regularized 

reconstructions. b) TVAL3 reconstructs the border but is unable to restore the sharpness. 

The proposed end-to-end models for both c) random and d) transpose initializations produce 

the best reconstructions. These methods are robust to noise and does not contain any 

regularization parameters.
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Fig. 6. Display Captured Reconstructions for PhlatCam.
While the learning based methods clearly outperform traditional methods like Tikhonov and 

TV-based ADMM, FlatNet-gen has superior performance in terms of reconstructing finer 

details.
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Fig. 7. Direct Captured Reconstructions for PhlatCam.
FlatNet-gen has fewer artifacts while Le-ADMM suffers from blurry reconstructions and 

hallucinated artifacts.
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Fig. 8. Comparison of FlatNet with Tikh+U-Net.
Top row shows the comparison of FlatNet-sep with Tikh+U-Net while the bottom row 

shows the comparison of FlatNet-gen with Tikh+U-Net. FlatNet provides sharper and 

more photorealistic reconstructions compared to Tikh+U-Net for both separable and non-

separable models.
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Fig. 9. Effect of padding on Wiener deconvolution for cropped measurement.
Top row shows the measurement while the bottom row shows the corresponding Wiener 

reconstruction. (a) Full measurement. Red box indicates the cropped out region. (b) 

Zero padded measurement and the corresponding reconstruction. (c) Replicate padded 

measurement and the corresponding reconstruction. (d) Smoothened replicate padded 

measurement along with the corresponding reconstruction. Line artifacts are significantly 

reduced in (d) which is used in this work.
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Fig. 10. Display Captured Reconstructions for cropped PhlatCam measurements.
The difference observed in the performance of FlatNet for cropped and full measurements is 

small. This difference is, however, large for both Le-ADMM and Tikh+U-Net.
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Fig. 11. Direct Captured Reconstructions for cropped PhlatCam measurements.
We can see FlatNet-gen performs reasonably well while both Le-ADMM and Tikh+U-Net 

breakdown. This can be observed through the colour of the letters and hazy appearance 

especially around the borders in Tikh+U-Net and Le-ADMM.
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Fig. 12. Performance of learning based techniques for various amount of crops.
We plot the PSNR and LPIPS of FlatNet-gen, LeADMM and Tikh+U-Net under various 

measurement sizes normalized with respect to full measurement size. We can see FlatNet-

gen consistently outperforms other learning based methods for all crop sizes.
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Fig. 13. Photorealistic reconstruction for unconstrained indoor scenes.
(a) The PhlatCam-Webcam setup to capture the dataset for finetuning FlatNet-gen. (b) 

Tikhonov reconstruction. (c) Reconstructions from FlatNet-gen trained just on display 

captured data. (d) Reconstructions using FlatNet-gen finetuned on unconstrained indoor 

captures. (e) Webcam image for reference. Finetuning makes the reconstructions more 

realistic.
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TABLE 1
Average Metrics on Display Captured FlatCam measurements.

FlatNet-sep with transpose initialization (FlatNet-sep-C) gives the best result. Comparable performance of 

FlatNet-sep-UC indicates that our approach can be used for situations where careful calibration isn’t possible.

Method PSNR (in dB) SSIM LPIPS Inference Time (in sec)

Tikhonov 10.95 0.33 0.795 0.03

TVAL3 11.81 0.36 0.752 45.28

FlatNet-sep-UC 19.06 0.62 0.274 0.006

FlatNet-sep-C 19.62 0.64 0.256 0.006
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TABLE 2
Average Metrics on Display Captured PhlatCam measurements.

FlatNet-gen produces higher quality results without compromising on the inference time for both the real PSF 

case (FlatNet-gen-C) and the simulated PSF case (FlatNet-gen-UC). Le-ADMM shows larger difference in 

quality between the real and simulated PSF cases owing to its stronger dependence on the PSF.

Method PSNR (in dB) SSIM LPIPS Inference Time (in sec)

Tikhonov 12.67 0.25 0.758 0.03

TV-ADMM 13.51 0.26 0.755 180

Le-ADMM-UC 18.35 0.49 0.407 0.08

Le-ADMM-C 20.29 0.51 0.333 0.08

FlatNet-gen-UC 20.53 0.54 0.318 0.03

FlatNet-gen-C 20.94 0.55 0.296 0.03
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TABLE 3
Memory and FLOP comparison.

Comparison of memory consumption and FLOPs for five unrolled iterations of the ADMM block in Le-

ADMM (full and 4X downsampled versions) and the trainable inversion stage of our proposed FlatNet-gen.

Method Memory (in MB) Computation (in MFLOP)

Le-ADMM-Full 6300 1290

Le-ADMM-Downsampled 1000 65

FlatNet-gen 990 53
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TABLE 4
Comparison of FlatNet with Tikh+U-Net.

The top half compares FlatNet-sep with Tikh+U-Net for separable lensless model while the bottom half 

compares FlatNet-gen with the corresponding Tikh+U-Net. FlatNet outperforms Tikh+U-Net for both 

separable and non-separable models because it learns an end-to-end mapping.

Methods PSNR (in dB) LPIPS

Separable Model

Tikh+U-Net 18.90 0.322

FlatNet 19.62 0.256

Non-separable Model

Tikh+U-Net 20.60 0.298

FlatNet 20.94 0.296
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TABLE 5
Average Metrics on cropped Display Captured PhlatCam measurements.

FlatNet-gen performs consistently better than other learned approaches for both real (FlatNet-gen-C) and 

simulated PSF case(FlatNet-gen-UC). It should be noted that FlatNet-gen-UC performs as good as Le-ADMM 

based on real PSF.

Method PSNR(in dB) SSIM LPIPS

Tikh+U-Net-UC 17.53 0.45 0.438

Tikh+U-Net-C 18.34 0.48 0.376

Le-ADMM-UC 17.94 0.45 0.410

Le-ADMM-C 18.72 0.48 0.371

FlatNet-gen-UC 18.72 0.48 0.375

FlatNet-gen-C 19.29 0.50 0.365
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