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Abstract

Recent reviews suggest that, like much of the psychological literature, research studies using 

laboratory aggression paradigms tend to be underpowered to reliably locate commonly observed 

effect sizes (e.g., r = ~.10 to .20, Cohen’s d = ~.20 to .40). In an effort to counter this trend, we 

provide a “power primer” that laboratory aggression researchers can use as a resource when 

planning studies using this methodology. Using simulation-based power analyses and effect 

size estimates derived from recent literature reviews, we provide sample size recommendations 

based on type of research question (e.g., main effect vs. two-way vs. three-way interactions) 

and correlations among predictors. Results highlight the large number of participants that 

must be recruited to reach acceptable (~80%) power, especially for tests of interactions where 

the recommended sample sizes far exceed those typically employed in this literature. These 

discrepancies are so substantial that we urge laboratory aggression researchers to consider a 

moratorium on tests of three-way interactions. Although our results use estimates from the 

laboratory aggression literature, we believe they are generalizable to other lines of research using 

behavioral tasks, as well as psychological science more broadly. We close by offering a series of 

best practice recommendations and reiterating long-standing calls for attention to statistical power 

as a basic element of study planning.
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Aggression is a complex social phenomenon traditionally defined as intentional harm 

inflicted upon someone who is motivated to avoid this harm (Baron, 1977). This behavior 

can take many forms, including but not limited to physical aggression, verbal aggression, 

and relational aggression (i.e., damaging a person’s social status), all of which range 

from milder to more severe presentations. Consistent with this range of manifestations, 

Corresponding Author: Courtland S. Hyatt, University of Georgia, 125 Baldwin St., Athens, GA 30602, cshyatt@uga.edu. 

HHS Public Access
Author manuscript
Aggress Behav. Author manuscript; available in PMC 2023 May 01.

Published in final edited form as:
Aggress Behav. 2022 May ; 48(3): 279–289. doi:10.1002/ab.21996.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



researchers make use of a myriad of aggression operationalizations. One popular method 

for studying physical aggression is through laboratory paradigms (Warburton & Bushman, 

2019), which generally involve giving participants the opportunity to deliver noxious stimuli 

(e.g., electric shock, noise blast) to a bogus confederate, often under the guise of a 

competitive reaction time task.

Laboratory aggression methodology has been criticized on several grounds. For example, 

critics have raised specific concerns about external validity, such that aggression in the 

context of the laboratory ostensibly bears little relation to how aggression manifests in 

“real world” settings (McCarthy et al., 2018; Tedeschi et al., 1996). Additionally, there 

is a pervasive lack of standardization of analytic strategy in laboratory aggression studies 

(and psychology more broadly; Simmons et al., 2011) that can impact interpretation of 

results (Elson et al., 2014; Hyatt et al., 2019). When this latter concern is coupled with a 

general, field-wide reliance on arbitrary thresholds of statistical significance (i.e., p < .05) 

and a prejudice against null findings (Greenwald, 1975), the result is a publication process 

that often values exciting (and perhaps non-replicable) results over null findings or more 

incremental (but perhaps more replicable) contributions (Nosek, et al., 2012).

Statistical Power

Basic issues related to study design and implementation have also been identified as 

contributing factors to the “replication crisis” in psychology. For example, when designing 

a study to investigate a hypothesis, how large of a sample does a researcher need to collect 

to confidently identify an effect size of a certain magnitude? The conventional approach to 

answering this question in the social sciences has been to conduct a statistical power analysis 

(Cohen, 1969, 1992), where statistical power refers to the likelihood of correctly rejecting 

the null hypothesis when the population effect ≠ 0 (Abraham et al., 2008).

Despite the critical importance of statistical power for drawing reasonable inferences, 

numerous empirical reviews paint a sobering picture of the state of the psychological 

literature. Since Cohen’s (1962) prescient review, a meta-scientific literature has amassed 

(e.g., Richard et al., 2003; Rossi, 1990), which suggests that the majority of psychological 

research is underpowered to find the most typically observed effect sizes (i.e., r = .20 to .30), 

much less even smaller (r = .10) effects. In the most recent comprehensive reviews available 

of the psychological and psychiatric literatures (Dumas-Mallet et al., 2017; Szucs et al., 

2017), the mean power to detect effects of r = .10 and .30 was 17% and 49%, respectively.

The magnitude of concern that this trend raises for the interpretability of the psychological 

literature cannot be overstated. These results suggest that even when a true, medium-sized 

effect exists in the population, the average study is only sufficiently powered to find this 

effect around half of the time. The case is even more dire for small effects: the average 

psychology study is powered to find evidence for a small effect less than one quarter 

of the time even when the effect exists! To make matters worse, effect sizes associated 

with statistical significance in under-powered samples may be substantial over-estimates 

of the population effect size, as larger effect sizes are often required to achieve statistical 

significance with smaller samples (e.g., Fraley et al., 2014; Kühberger et al., 2014). This 
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also has the potential to create a harmful cycle, such that an overestimated effect size from 

one under-powered study may be cited as evidence in the calculation of a power analysis for 

subsequent studies. Moreover, the accretion of such studies can ultimately influence future 

research, prevention, and policy decisions.

The Case of Laboratory Aggression

Several recent reviews suggest that power is a substantial concern in the laboratory 

aggression literature, where the largest meta-analytic effect sizes (i.e., psychopathy and 

lab aggression) are in the realm of r = ~.20 (Hyatt et al., 2019). In a p-curve analysis 

(Simonsohn et al., 2014a) spanning the entirety of studies using the seminal Taylor 

Aggression Paradigm (TAP; Taylor, 1967)1, the mean effect size for hypothesized main 

effects (e.g., effect of an individual difference variable or experimental condition) across all 

studies was Cohen’s d = .37 (or r = .18) and d = .10 (or r = .05) for interaction effects (West 

et al., 2020). Of note, this average main effect size is consistent with the average effect size 

(r = .20) found in the recent replication effort by the Open Science Collaboration (2015) 

and can be characterized as small in traditional conventions (Cohen, 1969) or medium in 

magnitude based on more recent recommendations (Funder et al., 2019; Gignac et al., 2016). 

Assuming α = .05, this translates to mean power of 58% and 12% to identify main (mean N 
= 127) and interaction (mean N = 134) effects, respectively, in laboratory aggression work 

(West et al. 2020). Although this p-curve analysis found that statistical power to test a focal 

hypothesis for a main or interaction effect using lab aggression methodology has improved 

over the last decade (i.e., mean power 2000–2009 = 10% vs. 2010–2020 = 44%), it remains 

unacceptably low.

The Current Study

The laboratory aggression literature, like the rest of the psychological literature, is generally 

not well-powered to find main effects and severely underpowered to find interaction effects. 

The aim of the current effort was to provide a useful resource to help counter this trend. 

Using data simulations, we present an empirically based power primer that laboratory 

aggression researchers can use to guide their decisions regarding the number of subjects 

that they should plan to collect based on study design and relations among predictors. 

Although free statistical power calculators exist (e.g., G*Power; Faul et al., 2009; pwr in 

R; Champeley, 2020), we believe the current work has many advantages for laboratory 

aggression researchers for several reasons.

First, we use effect size estimates found to be most plausible in recent comprehensive 

reviews (Hyatt et al., 2019; West et al., 2020). In turn, we can make sample size 

recommendations based on the most up-to-date research on effect sizes in laboratory 

aggression research. Second, while free software packages appear intuitive and user-friendly, 

decisions about the type of statistical test and power analysis to run are not always as 

straightforward as they may seem. The effect sizes required for these programs (e.g., 

1Due to lack of requisite information, not every study that used the Taylor Aggression Paradigm could be included in this review. 
Please see West et al. (2020) for more information.
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Cohen’s f2) are not easily interpreted within the metrics most commonly observed in the 

literature (e.g., β regression coefficients). These programs also recommend arbitrary values 

for what constitute small, medium, or large effects (Correll et al., 2020). Additionally, 

measurement error is rarely taken into account, which becomes increasingly problematic 

when testing for interactions which necessarily contain more measurement error than main 

effects (e.g., reliability of an interaction term created from two continuous variables, each 

with an α = .70, has an α = .49). Thus, we provide guidelines for desired sample sizes based 

on the type of research question being asked (e.g., does trait X correlate with laboratory 

aggression? Are there differences in aggression by experimental condition? Does trait X 

interact with condition Y to engender particularly elevated levels of aggression?) and the 

nature of the variables of interest (e.g., continuous, dichotomous).

Based on the most commonly observed designs across the history of the laboratory 

aggression literature (e.g., West et al., 2020), we present power analyses for 1) main 

effects of a continuous predictor (e.g., personality trait), 2) main effects of experimental 

condition, 3) two-way interactions between predictors of various interrelations, and 4) 

three-way interactions between a continuous predictor and two dichotomous predictors (e.g., 

experimental condition, gender) of various interrelations. We present findings for both one- 

and two-tailed tests, given that both types of tests may be sensible given a researcher’s 

hypothesis, but present the results of the two-tailed tests as primary given that this type of 

test is predominant in the psychological literature.

Methods

Effect Size Estimates

Main effects.—The effect size estimates for the simulation analyses were derived from 

several reviews and meta-analyses in the interest of the selecting effects representative of 

those likely to be found in future studies. The effect size estimate for the main effect 

of a continuous predictor on lab aggression was taken from the meta-analysis by Hyatt 

and colleagues (2019) on personality traits and laboratory aggression. The largest effect 

identified was r = .23 between psychopathy – lab aggression, and effects of similar 

magnitudes were observed for narcissism (r = .20), Five Factor Model Agreeableness (r 
= −.20), and sadism (r = .19). The effect size estimate for the main effect of experimental 

condition was taken from the p-curve analysis by West and colleagues (2020), where the 

mean main effect of experimental manipulation was Cohen’s d = .27. Importantly, this does 

not represent the raw mean effect size observed across these studies, but rather the effect size 

that best fits the observed data after accounting for publication bias given the estimates of 

the p-curve (see Simonsohn et al., 2014b). Based on these observed effects, we elected to 

provide power estimates for main effects of r = .10 (d = .20), r = .15 (d = .30), r = .20 (d = 

.41), and r = .30 (d = .63) as reasonable estimates of the range of main effect sizes likely to 

be observed in this literature.

Interaction effects.—The simulation analyses for the two- and three-way interaction 

effects required effect size estimates for the interaction effects themselves, effect size 

estimates for the main effects of the predictors, as well as correlations among the two or 
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three predictors. The effect size estimates for the interactions were estimated using the 

publicly available coding scripts (https://osf.io/h9c85/) generated for the p-curve analysis by 

West and colleagues (2020); the mean effects for the two- and three-way interactions were r 
= .06 (d = .12) and r = .01 (d = .02), respectively. Thus, for two-way interactions, we elected 

to provide estimates for r = .05 (d = .10), r = .10 (d = .20), r = .20, (d = .41). In selecting 

these two-way interaction effect size estimates, we recognize that these larger values are 

over-estimations of the effects typically observed in this literature.

For three-way interactions, we provide estimates for r = .01 (d = .02), r = .05 (d = .10), and 

r = .10 (d = .20). In selecting these three-way interaction effect size estimates, we recognize 

that this lower bound is relatively unlikely to be applicable, given that researchers tend to be 

uninterested in such small effects, and the upper bound is not a reasonable a priori effect size 

estimate to anticipate given that three-way interaction effects of those magnitudes are very 

rarely observed.

For the main effect size estimates in the interaction analyses, r = .20 was used for the main 

effect of a continuous predictor based on the meta-analysis by Hyatt and colleagues (2019). 

Similarly, based on the results of the work by West and colleagues (2020), r = .10 was used 

for the main effect of condition as the best estimate of the effect of condition after correcting 

for publication bias. Finally, in a large, internal dataset (N = 1,790; Lasko et al., 2021), 

the gender difference in TAP scores was d = .23 (r = .11) such that males exhibited higher 

aggression scores than females. Thus, r = .10 appears a reasonable effect size estimate 

for both types of dichotomous predictors of interest, and results are generalizable to both 

continuous variable*condition and continuous variable*gender interactions.

We assumed random assignment to experimental condition and thus the relation between 

condition and other variables of interest (i.e., continuous predictor, gender) would be r = 0. 

Given that there is likely to be variation in the magnitude of effect size between the other 

predictors (i.e., two continuous predictors or continuous predictor – gender) depending on 

the variables of interest, several values were used ranging from r = 0 to .50, including r = 0, 

r = .10 (d = .20), r = .30 (d = .63), and r = .50 (d = 1.16). We believe this covers the range 

of correlations between predictors likely to be observed in this literature, ranging from no 

relation (r = 0) to a very large relation (r = .50) that may be observed between conceptually 

and empirically similar continuous predictors, like subcomponents of a multidimensional 

construct (e.g., antagonism and disinhibition components of psychopathy). Notably, this 

range of values captures those found for the largest gender differences in psychological 

variables identified to date (Hyde, 2014).

Simulation Analyses

Simulations were conducted using the R statistical analysis software (Version 4.0.2; R Core 

Team, 2020) in RStudio (RStudio Team, 2020). The nature of these analyses is such that 

there is no dataset to make available, but all code to reproduce our simulation analyses 

is available at the following link (https://osf.io/vcq3s/). Separate simulations were run for 

each effect of interest (i.e., main effects, two-way interactions, and three-way interactions 

at a range of effect sizes), and each simulation was broken into two parts. In part 1, a null 

effect was simulated to identify an effect cutoff consistent with the nominal Type 1 error 
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rate of 5%. Hypothetical predictor variables with known distributions and associations (rij) 

were generated with given sample sizes. Continuous variables were normally distributed 

(Y = 0, SD = 1) while dichotomous variables were generated with a 50% probability of 

generating either value of 0 or 1. Measurement error was then introduced to the predictor 

variables based on a given measurement reliability. For continuous variables, measurement 

reliability (α) was set to .85, consistent with the upper end of meta-analytic estimates for 

trait measures (e.g., Miller et al., 2018; Peterson, 1994). This is likely a generous estimate 

and thus provides a power estimate that assumes excellent measurement precision. Standard 

error of measurement (SD 1 − α) was calculated and used to generate error around the 

continuous variable. The dichotomous predictor variable was always simulated without 

measurement error as it was intended to represent assigned experimental condition.

A continuous, normally distributed outcome variable (Y) was then generated with a known 

association with the predictor variables (Y = β1X1 + … + βjXj) consistent with the null 

hypothesis. When evaluating power for interaction effects, only main effects were included 

at this stage (i.e., no interaction effects). The residual variance of the outcome 1 − R2  was 

calculated as a function of the β coefficients and the association between predictors (Cohen 

et al., 2002):

R2 = ∑ βi
2 + 2∑βiβjrij (1)

The standard deviation of the outcome variable was then identified using: SD = 1 − R2 . 

Measurement error was also added to the outcome using the same measurement reliability 

parameter (i.e., α = .85). For all simulations 2,000 of such datasets were generated and a 

regression based on the alternative hypothesis was run. Consistent with the selected Type 1 

error rate of .05, a statistically significant effect parameter was observed roughly 5% of the 

time for all simulations. From this, a cutoff representing the 97.5th percentile for two-tailed 

simulations (or the 95th percentile for one-tailed simulations) of the 2,000 β coefficients 

of interest was saved. This cutoff represents the value above which only 2.5% (or 5%) of 

the coefficients would fall given a true null effect. This cutoff was used in part 2 of the 

simulation to hold the Type 1 error rate constant at 5% while power was being evaluated.

In part 2 of the simulation, 2,000 new datasets were generated. All variables were generated 

in the same manner, with the key exception being that the tested effect of interest was added 

to the model when generating the outcome variable. The outcome was again regressed on 

the predictors in each of the generated datasets and power was determined by calculating the 

percentage of the 2,000 β coefficients of interest that fell above the 97.5% (or 95%) cutoff 

identified in the Type 1 error simulations.

Realistic parameters were chosen for all untested effects within the higher complexity (i.e., 

two-way and three-way interactions) simulations. In the two-way interaction simulations, 

the main effect coefficients were assigned as β = .1 for the dichotomous predictor variable 

and β = .2 for the continuous variable. All variables were standardized so these could be 

interpreted as partial correlation coefficients. The three-way interactions were generated 

with two dichotomous variables and one continuous variable, and again the dichotomous 
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variables had main effects of β = .1 while the continuous predictor was assigned a main 

effect of β = .2. The two-way interaction effects included as part of the three-way interaction 

simulations were given rationally identified magnitudes. The interaction between the 

dichotomous predictors was assigned as null while the interactions between the dichotomous 

predictors and the continuous predictors had magnitudes of β = .05 and β = .1.

Results

Main Effects

Results of the simulation-based power analyses for main effects can be found in Table 1. As 

expected, power estimates increase with sample size, and one-tailed directional tests have 

more power than two-tailed tests. An important pattern to note is the variability in power 

across the various effect size estimates. For example, if researchers wish to locate a main 

effect of a continuous variable (r = ~.20) of a similar magnitude to the largest effects found 

(i.e., psychopathy – lab aggression) in the meta-analysis by Hyatt and colleagues (2019) 

using a two-tailed test, they should plan to collect at least N = 200 to achieve ~80% power. 

Researchers interested in other constructs with less established links to aggression should 
not assume an effect size of this magnitude. Researchers who expect to locate a main effect 

of a continuous variable consistent with the smaller effect sizes (e.g., r = ~.10; impulsivity – 

lab aggression) found in the meta-analysis by Hyatt and colleagues (2019) using a two-tailed 

test should plan to collect at least N = 1,000 to achieve ~80% power.

Researchers who expect to locate a main effect of condition (d = ~.30) of similar magnitude 

found in the meta-analysis by West and colleagues (2020) using a two-tailed test should plan 

to recruit at least N = 400 to achieve ~80% power. Researchers hypothesizing a smaller, yet 

still empirically common effect size (d = ~.20; Gignac et al., 2016) should plan to collect at 

least N = 1,000 to achieve ~80% power.

Two-Way Interactions

Results of the simulation-based power analyses for two-way interaction effects can be found 

in Table 2. As before, power estimates increase with sample size and one-tailed tests yield 

more power than two-tailed tests. Additionally, a pattern was observed such that across 

effect size estimates and most sample sizes, statistical power decreases somewhat as the 

correlations between the predictor variables increased.

Researchers who expect to locate an interaction effect of a magnitude typically found in this 

literature (i.e., r = ~.05; West et al., 2020) with a two-tailed test should plan to collect at 

least N = 5,000 to achieve ~80% power across all tested predictor variable correlations. Even 

if researchers assume a two-way interaction effect size of a magnitude of double the size 

typically found, they should plan to collect at least N = 1,000 to achieve ~80% power across 

all tested predictor variable correlations.

Three-Way Interactions

Results of the simulation-based power analyses for three-way interaction effects can be 

found in Table 3. As before, power estimates increase with sample size and one-tailed 
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tests yield more power than two-tailed tests. Similarly, the same pattern of power across 

predictor variable correlations was observed such that across effect size estimates and most 

sample sizes, statistical power decreased somewhat as the correlations between the predictor 

variables increased. Researchers who expect to locate an interaction effect of a magnitude 

typically found in this literature (i.e., r = ~.01; West et al., 2020) using a two-tailed test 

should plan to collect at least N = 100,000 to achieve ~80% power across all tested predictor 

variable correlations. Even if researchers assume a three-way interaction effect size of a 

magnitude five times larger than the size typically observed, they should plan to collect at 

least N = 5,000 to achieve ~80% power.

Supplemental Materials

To present comprehensive and widely applicable tables, we ran additional simulations where 

we varied several of the key parameters to examine the impact on statistical power estimates. 

Specifically, we ran additional simulations for main effects, two-way interactions, and three 

way interactions using a p-value of .005 (see Benjamini et al., 2018; Supplemental Tables 

1–3), assuming a α =.65 (Supplemental Tables 4–6) and α =.45 (Supplemental Tables 7–9) 

for the continuous predictors, and assuming α =.65 (Supplemental Tables 10–12) and α 
= 1 for the dependent variable (Supplemental Tables 13–15). Results of these simulations 

suggest that as expected, using a more stringent p-value results in substantial reductions 

in power estimates, especially at lower sample sizes. Additionally, simulations using lower 

reliability estimates for the predictors and the dependent variable tended to reduce power in 

the range of 1%−8%.

Discussion

In this laboratory aggression power primer, we used simulation-based power analyses to 

provide sample size recommendations to guide study design for researchers to reliably 

locate main and interaction effects of various magnitudes. Importantly, this manuscript is 

designed to be a resource to assist in study design. It is not intended to be used such that 

researchers can justify their sample size post hoc based on the observed effect sizes, as 

this post hoc approach to power has fundamental flaws (see Gelman, 2018; Hoenig et al., 

2001). Researchers interested in reflecting on the effect that a study could detect when the 

sample size, desired power, and alpha are fixed may consider a sensitivity power analysis 

(see Lakens, 2021).

We are hopeful that aggression researchers will find this resource useful for a priori study 

planning, as there is a stark contrast between these findings and sample sizes observed in the 

laboratory aggression literature. For example, the current analyses demonstrate that a sample 

of N = 200 is needed to locate a main effect of a continuous variable with a two-tailed test of 

the magnitude (r = ~.20) found in the meta-analysis by Hyatt and colleagues (2019) at ~80% 

power. Only 6 of the 123 effect sizes (4.9%) reported in this meta-analysis were derived 

from samples of this size or larger. Similarly, the current results show that a sample of N = 

400 is needed to locate a main effect of condition with a one-tailed test at the magnitude (d = 

~.30) reported in the meta-analysis by West and colleagues (2020) at ~80% power, but only 
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1 of the 41 (2.4%) effect sizes located in this manuscript were derived from samples of this 

threshold.

The case is much worse for interaction effects. The current analyses demonstrate that a 

sample of N = 5,000 is needed to locate a two-way interaction effect with a two-tailed 

test of the magnitude (r = ~.05) reported in the meta-analysis by West and colleagues 

(2020) at >80% power. None of the 55 reviewed studies reported sample sizes that met 

this benchmark, which is not surprising given the time and resource intensive nature 

of laboratory aggression work. Similarly, if one expects a three-way interaction of the 

magnitude (r = .01) derived from the data and coding scripts provided by West and 

colleagues (2020), a sample of N = 100,000 is needed to achieve >80% power with a two-

tailed test, a benchmark that none of the reviewed studies approach. The practical upshot of 

this finding is that we urge lab aggression researchers to consider an indefinite moratorium 

on testing three-way interactions and only propose them in cases where a massive interactive 

effect can be expected. Based on the pattern of effect sizes observed in this literature to date, 

rationale for such an effect size must be unusually strong to justify such a data collection 

effort.

Ultimately, the current results underscore that the vast majority of lab aggression work is 

underpowered, and the case is especially dire for interaction effects (e.g., narcissism by ego 

threat condition in the prediction of aggression). This also suggests that many aggression 

studies were doomed to the file drawer from their outset, as they were too underpowered 

to detect their intended effect – representing a considerable waste of time and resources. 

Nonetheless, there are many significant interaction effects published in the literature, which 

suggests the presence of Type I errors. Beyond significance testing, these underpowered tests 

in the published literature are also problematic in that they may yield overestimates of the 

true effect found in subsequent, higher-powered samples (e.g., Ioannidis, 2008; Kühberger et 

al., 2014; Schönbrodt et al., 2013).

Implications for Lab Aggression Researchers

We hope the current work can guide decision-making around laboratory aggression research 

and offer several suggestions for moving forward. First, researchers should take seriously 

the issue of whether a given study should be run given scholarly potential and practical 

limitations to data collection. There are important costs to conducting underpowered 

analyses (Lilienfeld et al., 2020), including the risk of Type I/II errors that may hold 

implications for decisions made by preventionists and interventionists. There are also 

significant human costs to participants and researchers who devote time and energy to a 

data collection effort that may be, at best, not meaningfully informative, and at worst, 

consequentially harmful to applied efforts. Second, if the study is deemed worth running, it 

is worth considering if laboratory aggression approaches represent the best methodological 

option. There are many operationalizations of aggression available, including self-report 

measures of trait aggressiveness (Buss & Perry, 1992; Chester & West, 2020), self-report 

of behavioral instances of aggression (Straus, Hamby, Boney-McCoy, & Sugarman, 1996), 

ecological momentary assessment (Murray et al., 2020), informant report (Tackett & Ostrov, 

2010), hypothetical responding to vignettes (Crick & Dodge, 1996), behavioral observation 
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(Bandura, Ross, & Ross, 1961), and structured patient chart review (Brown, Goodwin, 

Ballenger, Goyer, & Major, 1979). By using multiple aggression methodologies, researchers 

may be able to study aggression in a manner that is ultimately more holistic, multi-

faceted, pragmatic, and replicable. Third, if researchers determine that laboratory aggression 

methodology is the best fit for the research question at hand due to its unique strengths (i.e., 

internal validity via control over confounds), we emphasize the importance of also following 

other forms of best practice, including pre-registration of analytic strategy (Elson et al., 

2014; Hyatt et al., 2019) and hypotheses, and use of validated experimental manipulations 

and standardized protocols (e.g., Chester et al., 2019a, 2019b). For scholars that want to 

leverage the unique benefits of lab aggression measures and test small main effects or 

interactions, it may be advisable to form multi-site, multi-investigator collaborations that 

reduce the experimenter burden and decrease the time it takes to collect a sufficiently 

powered sample (e.g., Many Labs; Klein et al., 2018). We also refer researchers to novel 

quantitative work on alternative measures of effect size in moderation analyses that may 

be useful in providing multiple perspectives on the amount of variance explained by an 

interaction term (Liu et al., 2020).

The current results also highlight the discrepancies in power between one- and two-tailed 

tests, such that one-tailed tests are associated with higher statistical power. The issue of 

which type of test is most appropriate is a long-standing controversy in psychological 

science (e.g., Eysenck, 1960) and we refrain from weighing in on these larger statistical 

and philosophical arguments here. Several sets of criteria for determining when a one-

tailed test is appropriate have been proposed (e.g., Kimmel, 1957; Ruxton et al., 2010); 

these are important to consider given the clear costs to one-tailed tests that may make 

them inadvisable (e.g., inability to draw inferences about effects in the non-hypothesized 

direction), especially in exploratory work. In many cases, however, researchers using 

laboratory aggression paradigms have clear, a priori hypotheses (e.g. alcohol ingestion 

will be related to greater aggression), and thus one-tailed tests may be appropriate. By pre-

registering directional hypotheses, analytic approaches, multiple comparison controls, etc., 

researchers can appropriately use one- rather than two-tailed tests, since pre-registrations 

give confidence to readers that such a decision was not biased post hoc by the observed 

results.

Lastly, we direct interested readers to a newly developed R package called InteractionPoweR 

(Baranger et al., 2021) and the associated shiny app (Finsaas et al., 2021). This excellent 

set of resources also uses simulation-based power analyses to provide power estimates for 

two-way interactions. While we attempted to be relatively exhaustive, we encourage use 

of these resources, especially if other combinations of parameters are better suited for a 

particular research question (e.g., extremely highly correlated predictors; skewed variable 

distributions). However, we strongly advise that researchers make use of the effect size 

estimates provided herein or to justify why a larger effect was anticipated, especially for 

tests of interaction where extremely small effects are typical.
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Broad Implications

Although we have discussed these results in the context of laboratory aggression research, 

there are clear implications of this work beyond this literature. Behavioral tasks are used 

(and prized) broadly in the social sciences, and we argue that relatively small main effects 

and very small interaction effects found in laboratory aggression meta-science work are 

likely the rule for this type of methodology, not the exception. Given that effect sizes of 

similar magnitudes are common across psychology (e.g., Aguinis et al., 2005; O’Boyle et 

al., 2019; Plonsky et al., 2014), psychological scientists across content areas could read 

this manuscript substituting in their topic of choice and the implications/recommendations 

would be unchanged. Moreover, underpowered work can contribute to harmful cycles that 

extend beyond the scientific domain: underpowered work gets included in reviews and 

meta-analyses, these meta-scientific compilations inform policy, policy informs prevention/

intervention efforts, and these efforts impact societal well-being (Banks et al., 2012).

In closing, we recognize that the sample size recommendations made herein may be a 

difficult pill to swallow for laboratory aggression researchers (and beyond), especially given 

the contrast between these recommendations and typical sample sizes employed. In the 

interest of transparency, we also note that members of our research group have tested 

interactions in samples that, in light of the current findings, were underpowered to locate 

such an effect reliably (e.g., Hyatt et al., 2017; Vize et al., 2021). Nonetheless, we reiterate 

long-standing (Cohen, 1962) calls for attention to this crucial element of study planning 

and hope that laboratory aggression researchers will lead the charge in terms of solidifying 

the credibility of our methods. Given the importance of aggression as a public health 

concern, we believe the benefits of reliable and well-powered research on the causes and 

consequences of this behavior far outweigh the costs (LeBel, Campbell, & Loving, 2017).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Power estimates for main effects of a continuous predictor and experimental condition

Continuous Predictor

Two-tailed p < .05 One-tailed p < .05

N r = .10 r = .15 r = .20 r = .30 r = .10 r = .15 r = .20 r = .30

50 9% 15% 26% 51% 18% 26% 39% 64%

100 17% 25% 46% 82% 24% 40% 60% 90%

150 20% 39% 63% 93% 30% 52% 74% 96%

200 25% 52% 79% 98% 37% 64% 86% 100%

250 33% 60% 86% 99% 43% 73% 92% 100%

300 39% 69% 91% 100% 50% 78% 95% 100%

350 38% 76% 93% 100% 53% 85% 97% 100%

400 47% 82% 96% 100% 61% 89% 98% 100%

450 52% 85% 98% 100% 64% 92% 99% 100%

500 57% 87% 99% 100% 68% 92% 99% 100%

750 72% 96% 100% 100% 81% 98% 100% 100%

1,000 83% 100% 100% 100% 90% 100% 100% 100%

2,500 100% 100% 100% 100% 100% 100% 100% 100%

Experimental Condition

Two-tailed p < .05 One-tailed p < .05

N d = .20 d = .30 d = .41 d = .63 d = .20 d = .30 d = .41 d = .63

50 10% 19% 24% 53% 16% 26% 39% 65%

100 16% 30% 46% 85% 25% 42% 59% 90%

150 23% 45% 63% 96% 32% 56% 77% 98%

200 25% 48% 75% 98% 36% 62% 84% 99%

250 30% 62% 87% 100% 41% 73% 92% 100%

300 33% 71% 89% 100% 50% 82% 95% 100%

350 45% 73% 95% 100% 57% 83% 98% 100%

400 46% 78% 96% 100% 56% 86% 98% 100%

450 51% 88% 98% 100% 63% 93% 99% 100%

500 55% 89% 99% 100% 66% 93% 100% 100%

750 74% 97% 100% 100% 81% 99% 100% 100%

1,000 83% 100% 100% 100% 90% 100% 100% 100%

2,500 100% 100% 100% 100% 100% 100% 100% 100%

Note: r and d represent the main effect size for continuous predictor and experimental condition, respectively; for the continuous predictor and the 
dependent variable, we assumed α = .85; for the experimental condition, we assumed α = 1.
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Table 2

Power estimates for two-way interaction effect between predictors of various interrelations

Two-tailed p < .05

N r = .05, d = .10 r = .10, d = .20 r = .20, d = .41

r ab 0 .10 .30 .50 0 .10 .30 .50 0 .10 .30 .50

50 6% 4% 5% 5% 9% 9% 8% 7% 20% 25% 24% 17%

100 5% 6% 6% 6% 16% 14% 14% 14% 45% 47% 48% 43%

150 8% 9% 7% 8% 21% 20% 22% 17% 60% 62% 63% 54%

200 10% 12% 10% 9% 30% 26% 24% 24% 79% 78% 76% 71%

250 11% 10% 10% 11% 33% 31% 31% 26% 87% 85% 84% 82%

300 12% 14% 14% 12% 40% 37% 35% 31% 92% 93% 91% 86%

350 14% 13% 12% 13% 41% 40% 38% 35% 94% 95% 94% 92%

400 16% 14% 16% 14% 49% 50% 46% 42% 97% 98% 96% 93%

450 17% 20% 17% 15% 49% 52% 55% 43% 98% 98% 98% 96%

500 19% 19% 21% 16% 56% 62% 54% 52% 99% 100% 99% 98%

750 24% 28% 24% 24% 73% 75% 69% 65% 100% 100% 100% 100%

1,000 30% 32% 31% 28% 86% 84% 86% 78% 100% 100% 100% 100%

2,500 69% 66% 65% 61% 100% 100% 100% 100% 100% 100% 100% 100%

5,000 92% 92% 92% 87% 100% 100% 100% 100% 100% 100% 100% 100%

7,500 98% 99% 98% 95% 100% 100% 100% 100% 100% 100% 100% 100%

10,000 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100%

One-tailed p < .05

N r = .05, d = .10 r = .10, d = .20 r = .20, d = .41

r ab 0 .10 .30 .50 0 .10 .30 .50 0 .10 .30 .50

50 10% 9% 9% 9% 16% 17% 14% 13% 31% 37% 35% 31%

100 13% 12% 11% 11% 25% 24% 22% 21% 58% 59% 61% 55%

150 15% 13% 16% 13% 31% 31% 30% 25% 71% 74% 73% 69%

200 18% 16% 16% 15% 39% 39% 35% 32% 86% 87% 86% 81%

250 20% 18% 17% 17% 46% 45% 41% 37% 92% 91% 92% 89%

300 19% 22% 20% 17% 49% 49% 47% 41% 96% 96% 95% 92%

350 24% 20% 21% 19% 53% 57% 54% 47% 97% 98% 96% 96%

400 25% 26% 24% 20% 61% 62% 56% 53% 98% 99% 99% 97%

450 25% 28% 26% 23% 60% 65% 66% 53% 99% 99% 99% 98%

500 28% 26% 28% 23% 67% 72% 64% 62% 100% 100% 100% 99%

750 35% 38% 34% 32% 84% 83% 80% 76% 100% 100% 100% 100%

1,000 40% 46% 42% 40% 92% 91% 91% 86% 100% 100% 100% 100%

2,500 78% 77% 74% 71% 100% 100% 100% 100% 100% 100% 100% 100%

5,000 96% 96% 95% 92% 100% 100% 100% 100% 100% 100% 100% 100%

7,500 99% 100% 99% 98% 100% 100% 100% 100% 100% 100% 100% 100%

Aggress Behav. Author manuscript; available in PMC 2023 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyatt et al. Page 17

10,000 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Note: r and d values represent the effect size of the interaction term and these can be interpreted as partial rs; rab represents the correlation between 
the two predictor variables; for the continuous predictors and the dependent variable, we assumed α = .85; in this table, we present power estimates 
for analyses with two continuous predictors (both α = .85), given that these results were very highly overlapping with analyses with one continuous 
predictor (α = .85) and one dichotomous predictor (α = 1).
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Table 3

Power estimates for three-way interaction effects between two dichotomous predictors and a continuous 

predictor of various interrelations

Two-tailed p < .05

N r = .01, d = .02 r = .05, d = .10 r = .10, d = .20

r ab 0 .10 .30 .50 0 .10 .30 .50 0 .10 .30 .50

50 3% 3% 3% 3% 5% 5% 5% 4% 9% 8% 7 7

100 3% 3% 3% 3% 6% 6% 6% 6% 13% 13% 14% 12%

150 3% 3% 3% 3% 8% 7% 8% 7% 21% 19% 19% 17%

200 3% 3% 3% 3% 9% 9% 9% 9% 27% 28% 22% 18%

250 3% 4% 4% 3% 12% 11% 11% 11% 34% 32% 28% 26%

300 4% 3% 4% 3% 11% 14% 12% 8% 39% 39% 31% 29%

350 3% 4% 4% 4% 14% 12% 16% 13% 44% 41% 42% 34%

400 4% 4% 4% 3% 16% 14% 14% 14% 52% 49% 50% 36%

450 4% 3% 4% 4% 17% 17% 15% 14% 55% 55% 52% 43%

500 4% 4% 4% 4% 21% 19% 17% 15% 57% 58% 56% 48%

750 4% 5% 4% 4% 28% 26% 21% 21% 76% 76% 72% 68%

1,000 5% 5% 5% 4% 35% 35% 27% 25% 86% 85% 86% 77%

2,500 6% 7% 7% 7% 68% 71% 64% 51% 100% 100% 100% 99%

5,000 11% 10% 9% 10% 92% 93% 92% 86% 100% 100% 100% 100%

7,500 16% 14% 11% 11% 99% 98% 99% 97% 100% 100% 100% 100%

10,000 13% 16% 16% 14% 100% 100% 100% 99% 100% 100% 100% 100%

100,000 88% 88% 83% 78% 100% 100% 100% 100% 100% 100% 100% 100%

One-tailed p < .05

N r = .01, d = .02 r = .05, d = .10 r = .10, d = .20

r ab 0 .10 .30 .50 0 .10 .30 .50 0 .10 .30 .50

50 6% 6% 6% 6% 9% 9% 9% 8% 15% 14% 11% 12%

100 6% 6% 6% 6% 12% 14% 12% 10% 23% 22% 23% 20%

150 6% 6% 6% 6% 14% 14% 14% 12% 29% 30% 29% 26%

200 7% 7% 7% 6% 18% 16% 17% 15% 39% 38% 36% 31%

250 7% 7% 7% 7% 18% 20% 17% 17% 46% 45% 39% 38%

300 7% 7% 6% 6% 20% 20% 18% 15% 48% 50% 47% 42%

350 7% 7% 7% 7% 22% 20% 22% 19% 56% 54% 53% 48%

400 7% 7% 8% 7% 25% 23% 22% 21% 63% 59% 59% 52%

450 7% 7% 7% 7% 25% 26% 22% 23% 67% 67% 63% 56%

500 7% 8% 7% 8% 30% 29% 29% 22% 70% 70% 67% 63%

750 9% 8% 9% 8% 36% 36% 34% 29% 86% 84% 80% 77%

1,000 9% 9% 9% 8% 46% 48% 40% 34% 93% 91% 91% 85%

2,500 12% 12% 11% 11% 76% 78% 74% 67% 100% 100% 100% 100%

5,000 17% 18% 17% 16% 97% 97% 96% 92% 100% 100% 100% 100%

Aggress Behav. Author manuscript; available in PMC 2023 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hyatt et al. Page 19

7,500 24% 22% 19% 17% 100% 99% 99% 98% 100% 100% 100% 100%

10,000 24% 23% 22% 22% 100% 100% 100% 100% 100% 100% 100% 100%

100,000 93% 94% 90% 86% 100% 100% 100% 100% 100% 100% 100% 100%

Note: r and d values represent the effect size of the interaction term; rab represents the correlation between the continuous predictor and one of 

the dichotomous variables; we only provide estimates for a series of rab values given that rac and rbc would be = 0 since three-way interactions 
will likely include experimental conditions which are likely unrelated to the continuous predictor or gender; for the continuous predictors and the 
dependent variable, we assumed α = .85.
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