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Abstract
Background and Aim: Dairy ration formulations should consider the synchronization of the rumen degradable protein 
(RDP) to rumen undegradable protein (RUP) ratio (RDPR) with non-fiber carbohydrate (NFC) to achieve optimum microbial 
protein synthesis (MPS), reduce feed costs, and reduce N excretion to the environment. This study aimed to investigate the 
effect of RDPR and NFC synchronization on in vitro digestibility, fermentability, and MPS.

Materials and Methods: The experiment used a 3×3 factorial randomized block design with four replications. The first 
factor was RDPR (RDPR1=50:50; RDPR2=55:45; RDPR3=60:40) and the second factor was NFC levels (NFC1=30%, 
NFC2=35%, NFC3=40%). The experimental diets were evaluated using a two-stage in vitro method. The examined 
parameters included rumen pH, NH3 concentration, total volatile fatty acid (VFA) concentration, the molar proportion of 
VFAs, rumen microbes (protozoa and total bacteria population), and MPS. Data were analyzed using ANOVA, followed by 
the Duncan test.

Results: The results show that neither RDPR nor NFC affected rumen pH, NH3, total VFA, and the rumen microbe 
population. The interaction between RDPR and NFC affected the molar proportion of acetate, iso-butyrate, and n-valerate. 
The combination of RDPR1 and NFC1 produced a lower molar proportion of acetate (49.73%) than the other treatment 
combinations (>54%). The acetate to propionate ratio was influenced by the NFC levels, in which NFC2 and NFC3 produced 
the highest ratio (p<0.05). MPS was affected by RDPR and NFC, but not by their interaction. Treatments NFC2 and RDPR3 
produced the highest MPS. NFC affected the dry matter and organic matter digestibility (DMD and OMD), with treatment 
NFC3 resulting in the highest DMD and OMD.

Conclusion: The combination of a 60:40 RDPR with 35% NFC resulted in the best synchronization of protein and energy 
available for MPS and digestion activity in the rumen.

Keywords: dairy ration digestibility, microbial protein synthesis, rumen degradable protein, rumen undegradable protein, 
synchronization.

Introduction

Ruminant protein requirements can be divided 
into rumen degradable protein (RDP) and rumen 
undegradable protein (RUP). RDP is required for 
microbial protein synthesis (MPS) as a source of 
nitrogen (N) which plays a role in supplying protein 
to dairy cattle [1]. In addition to protein and nutrient 
sufficiency, dairy ration formulations should con-
sider the RDP to RUP ratio (RDPR) for optimal MPS. 
Rumen microbes need the RDPR as a source of N 
and energy as a source of carbon (C); both N and C 
should be available in the right proportion to improve 
MPS efficiency [2,3]. Therefore, degradable protein 

and fermentable carbohydrates should be provided. 
Non-fiber carbohydrate (NFC) provides readily avail-
able carbohydrate (fermentable) that contains sug-
ars, starch, fructans, pectin substance, galactans, and 
β-glucans [4]. NFC is calculated using the following 
formula: NFC=100– neutral detergent fiber – crude 
protein – ether extract – ash. The difference between 
NFC and non-structural carbohydrate is the neutral 
detergent soluble fiber (pectin, galactans, and β-glu-
cans), which is included in NFC [4,5]. NFC can be 
provided in rations at 30-45% of dry matter (DM) [6].

The synchronization between RDPR and NFC 
is closely related to ruminal fermentation, which 
requires an optimum level. The optimum RDPR and 
energy levels are beneficial to milk protein produc-
tion due to the increase of MPS [7]. The previous 
studies have reported that the NFC source and RDP 
synchronization affect rumen fermentation, microbial 
growth, lactation performance, and blood parameters 
in dairy cows [6,8]. High NFC diets synchronized 
with RDP reduce N losses [9]. On the other hand, 
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unsynchronized RDPR and NFC lead to feed ineffi-
ciency, high feed costs, and high excess N pollution to 
the environment [10]. The National Research Council 
(NRC) [11] recommends that the optimal RDPR for 
dairy cows is 60:40. A  previous study reported that 
feeding dairy cows with RDPR of 65:35 led to better 
milk production than RDPR of 60:40 [12].

Conversely, dairy rations with RDPR below the 
NRC recommendation [11] decrease milk yield, milk 
fat, and milk protein due to insufficient RDP avail-
able for rumen microbial growth [13]. Low RDPR 
depresses DM intake and milk production [14]. 
Moreover, RDPR of 63:37 is also more efficient in 
early lactating dairy cows, providing optimal protein 
for milk production and minimum urinary N excre-
tion [15]. Dairy rations containing high NFC increase 
ammonia N utilization and MPS [16]. In addition, sup-
plying energy as high NFC improves protein metab-
olism in the body, impacting milk production and 
quality, especially milk protein [17]. Feed efficiency 
and N conversion are also improved with a high NFC 
diet [18].

Information concerning the RDPR and NFC in 
dairy feedstuffs has mainly been investigated in devel-
oped countries, which use different feedstuffs than the 
tropical dairy ration [19-21]. Moreover, synchroni-
zation index assessments conducted in a temperate 
region may not be suitable for application to tropical 
conditions. Thus, the objective of this study was to 
evaluate the effects of tropical dairy rations based on 
RDPR and NFC synchronization on digestibility, fer-
mentability, and MPS using an in vitro method.

Materials and Methods
Ethical approval

The cannulation surgery of animal was carried 
out by a licensed veterinarian and followed the proto-
col handling and care of animal according to the IPB 
University Animal Ethics Committee.
Study period and location

This study was conducted from January to April 
2021 at the Laboratory of Dairy Nutrition, Faculty of 
Animal Science, IPB University.
Experimental diet

The experiment used a 3×3 factorial ran-
domized block design; the first factor was RDPR 
(RDPR1=50:50; RDPR2=55:45; RDPR3=60:40) 
and the second factor was NFC levels (NFC1=30%; 
NFC2=35%; NFC3=40%). The rations contained 
40% forage and 60% concentrate (DM basis). The 
experimental dairy rations were formulated based on 
the requirements and energy-protein balances from 
the NRC [11]. The RDPR of the ration was calcu-
lated using a local database generated from a previ-
ous study in our laboratory, whereas NFC was calcu-
lated according to the methodology of Mertens [5]. 
The feed ingredients and chemical composition of the 
rations are shown in Table-1 [22].
In vitro procedure and sample measurement

This study used the two-stage method procedure 
of Tilley and Terry [23]. Rumen liquor, as an inoc-
ulant source, was collected from ruminal fistulated 
Frisian Holstein (BW±510 kg) before morning feed-
ing. The rumen liquor was filtered using two layers 

Table-1: The feed ingredients and chemical composition of dairy rations1.

Items NFC1 NFC2 NFC3

RDPR1 RDPR2 RDPR3 RDPR1 RDPR2 RDPR3 RDPR1 RDPR2 RDPR3

Ingredients, % of diet DM
Napier grass 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
Corn 11.55 10.50 10.10 10.00 10.00 10.00 11.85 11.90 11.40
Rice bran 6.80 9.00 8.00 4.39 4.20 3.50 0.00 0.00 0.00
Pollard 6.65 6.20 7.25 1.50 1.10 1.50 0.00 0.00 1.00
Cassava meal 11.50 11.50 11.95 22.00 22.00 22.25 32.60 31.60 31.40
Soybean meal 1.00 5.40 10.60 2.36 8.75 13.25 1.00 8.00 12.20
Corn gluten meal 10.00 5.00 0.20 9.80 4.00 0.20 12.00 6.00 2.00
Copra meal 3.00 6.00 7.70 4.00 4.00 4.30 0.00 0.50 0.00
Coffee husk 7.50 4.40 2.20 3.95 3.95 3.00 0.55 0.00 0.00
Calcium carbonate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dicalcium phosphate 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
NaCl 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Chemical composition
DM, % 92.43 92.70 92.47 92.19 91.85 90.63 90.04 90.18 90.37
Ash, % DM 9.08 9.84 9.87 8.86 9.43 9.80 7.38 7.65 8.08
EE, % DM 1.66 1.72 2.18 1.88 1.65 1.64 0.88 0.80 0.87
CP, % DM 15.83 16.10 15.40 16.43 15.98 15.97 16.42 15.89 15.48
CF, % DM 17.43 16.59 15.96 15.80 15.90 15.74 13.72 14.71 13.50
NFE, % DM 56.00 55.74 56.58 57.03 57.03 56.84 61.60 60.95 62.07
TDN2, % 64.42 64.88 65.73 66.83 65.88 65.73 69.39 67.81 68.71

1Experimental dairy rations: NFC1=NFC 30%; NFC2=NFC 35%; NFC3=NFC 40%; RDPR1=50:50 RDP: RUP ratio; 
RDPR2=55:45 RDP: RUP ratio; RDPR3=60:40 RDP: RUP ratio. DM=Dry matter, EE=Ether extract; CP=Crude protein, 
CF=Crude fiber, NFE=Nitrogen free extract, TDN=Total digestible nutrient. 2TDN=2.79+(1.17×%CP)+(1.74×%EE)‑(0.29
5×%CF)+(0.81×%NFE) [22] 
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of cheesecloth. A 0.5 g sample was placed in a fer-
menter tube, to which 40 mL pre-warmed McDougall 
buffer solution and 10 mL rumen liquor was added. 
The tube was aerated with CO2 to generate anaerobic 
conditions, capped with a ventilated rubber stopper, 
and placed in a shaker water bath at 39℃ for 48 h.

After 4 h of incubation, 0.5 mL and 1 mL of fer-
mentation liquid were separated for total bacterial and 
protozoa counts, respectively. Two drops of HgCl2 
were added to the tube to halt fermentation activity. 
The tube was centrifuged at 1409 x g for 15 min. The 
supernatant was collected and frozen, which was later 
used to determine NH3 concentration, total volatile 
fatty acid (VFA) concentration, and the molar propor-
tion of VFAs.

For digestibility measurements, a similar incu-
bation procedure was conducted. After 48 h of in vitro 
rumen incubation, two drops of HgCl2 solution were 
added to halt the microbial activity. Then, the sam-
ple residue obtained after centrifugation was com-
bined with 50 mL of 0.2% pepsin-HCl solution and 
incubated at 39℃ for 48 h. After 48 h of pepsin-HCl 
incubation, the samples were filtered using a pre-de-
termined weight of Whatman filter paper No. 41 using 
a vacuum pump. Afterward, the paper was dried to 
determine the DM residue and incinerated to deter-
mine the ash residue.

Rumen pH was measured using a pH meter 
(Hanna Instruments, HI98191, Romania). The super-
natant was thawed at room temperature (25℃) before 
analyzing NH3, total VFAs, and MPS. The NH3 con-
centration was determined using the Conway micro-
diffusion method, whereas the total VFA concen-
tration was determined using the steam distillation 
method; both methods were similar to those used 
by Riestanti et al. [24]. Individual VFA (molar pro-
portion) was analyzed using gas chromatography, 
using a procedure described by Yulistiani et al. [25]. 
Methane production was estimated from the indi-
vidual VFA using the formula: CH4=0.45×acetate–
0.275×propionate+0.40×butyrate [26]. After coloring 

using Trypan blue formal saline, rumen protozoa 
were counted using a microscope (XSZ-107BN bin-
ocular biological microscope, BW Optics, China) 
with 4×10 magnification. Total rumen bacteria were 
counted using serial dilution and cultured for 24 h in 
BHI media (HiMedia, India). The counting followed 
the Ogimoto and Imai methods as described byHu 
et al. [27] and Wahyudi et al. [28].
Statistical analysis

Data were analyzed by one-way analysis of vari-
ance using the statistical analysis system program 
OnDemand for Academic (SAS Inc., NC, USA). 
Statistical significance was set at p<0.05. Differences 
between means were compared using Duncan’s multi-
ple range test.
Results
Fermentation characteristics

The observed fermentation characteristics 
(rumen pH, NH3 concentration, and total VFA con-
centration) are shown in Table-2. There was no inter-
action between the two factors (RDPR and NFC) and 
no significant effects of the main factors on rumen 
pH, NH3, and total VFA concentration (p>0.05). The 
rumen pH values in this study ranged from 6.92 to 
6.97, which was within the normal range (6.0-7.0) 
according to Poulsen et al. [29]. The NH3 and VFA 
concentrations also fell within the normal ranges, with 
values ranging from 7.60 to 8.11 mM and 100.96 to 
121.20 mM, respectively [30,31].

Individual VFAs consisted of short-chain fatty 
acids (acetate, propionate, and n-butyrate), branched-
chain fatty acids (iso-butyrate and iso-valerate), and 
n-valerate.  The interaction between RDPR and NFC 
affected the molar proportion of acetate (p=0.018), 
but did not affect the molar proportion of propionate 
(p=0.668). The NFC2 and NFC3 combinations (35% 
NFC and 40% NFC, respectively) with RDPR treat-
ment resulted in a high molar proportion of acetate. 
High NFC levels decreased the molar proportion 
of n-butyrate (p=0.040). There was an interaction 

Table-2: pH, NH3, and total VFA concentration of the experimental diet.

Parameters RDP NFC Average±SD

NFC1 NFC2 NFC3

pH RDPR1 6.98 6.95 6.92 6.95±0.04
RDPR2 6.93 6.93 6.88 6.91±0.05
RDRP3 6.93 6.97 6.92 6.94±0.04
Average±SD 6.95±0.04 6.95±0.05 6.91±0.04

NH3 (mM) RDPR1 7.86 7.60 7.59 7.68±2.64
RDPR2 7.79 7.81 8.11 7.90±1.91
RDRP3 8.09 7.56 8.09 7.92±2.02
Average±SD 7.91±2.70 7.66±2.02 7.93±1.81

VFA total (mM) RDPR1 100.96 121.20 110.71 110.96±20.81
RDPR2 130.40 114.67 109.02 118.03±22.70
RDRP3 114.75 121.02 109.23 115.00±19.27
Average±SD 115±23.28 118±15.67 109.65±22.62

NFC=Non‑fiber carbohydrate. RDPR=RDP: RUP ratio. NFC1=NFC 30%; NFC2=NFC 35%; NFC3=NFC 40%; RDPR1=50:50 
RDP: RUP ratio; RDPR2=55:45 RDP: RUP ratio; RDPR3=60:40 RDP: RUP ratio. VFA=Volatile fatty acids
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between the two factors, both for the molar proportion 
of iso-butyrate (p=0.017) and n-valerate (p=0.031), 
but no significant difference in the molar proportion 
of iso-valerate (p=0.210). The acetate to propionate 
ratio increased with increasing NFC levels (p=0.020). 
Meanwhile, methane production was affected by 
both the RDPR and NFC treatments (p=0.010 and 
p=0.002). The molar proportion of VFA (mol/100 
mol), acetate to propionate ratios, and methane pro-
duction is detailed in Table-3.
Rumen microbes and MPS

The rumen microbe population indicates how 
nutrient degradation occurs in the rumen. The pro-
tozoa, total bacteria population, and MPS results 
are presented in Table-4. Both main factors and 
their interaction did not significantly affect the 
protozoa nor the total bacteria population (p>0.05). 
MPS was significantly affected by both the NFC 
and RDPR treatments (p=0.049), but these two fac-
tors did not interact. NFC2  (35% NFC) produced 
higher MPS than NFC1 and NFC3. In contrast, 
RDPR3 (RDPR of 60:40) had higher MPS than 
RDPR1 and RDPR2.

Dry matter and organic matter digestibility (DMD 
and OMD)

DMD and OMD are presented in Table-5, nei-
ther of which were affected by the interaction between 
RDPR and NFC. RDPR did not significantly influ-
ence DMD (p=0.314) and OMD (p=0.359), but NFC 
levels (p=0.000 and p=0.001 for DMD and OMD 
respectively). NFC3 produced the highest DMD and 
OMD, but NFC1 and NFC2 showed similar results. 
The mean DMD and OMD ranged from 61.46 to 
76.22% and 60.09 to 75.12%, respectively.
Discussion
Fermentation characteristics

Rumen pH describes the rumen condition; it 
is one of the factors that determine the fermentation 
process. Suitable pH conditions will support rumen 
microbial life, such that fermentation can proceed. 
This study showed that the rumen pH value was not 
affected by increases in RDPR and NFC; similar 
results were also reported by Pilachai et al. [32] and 
Wei et al. [18]. This insignificant effect of RDPR and 
NFC is due to the rumen microbes’ utilization of N 
and VFAs for synthesis, which does not acidify the 

Table-3: Molar proportion of VFA, acetate to propionate ratios, and methane production of experimental diet.

Parameters RDPR NFC Average ± SD

NFC1 NFC2 NFC3

Acetate (%) RDPR1 49.73b 57.34a 59.12a 53.94 ± 4.17
RDPR2 54.21ab 56.57a 58.61a 57.88 ± 3.42
RDRP3 57.87a 59.72a 57.99a 58.58 ± 1.85
Average ± SD 55.40 ± 5.62 56.47 ± 2.39 58.53 ± 1.81

Propionate (%) RDPR1 20.25 18.03 18.50 18.93 ± 1.99
RDPR2 18.71 18.09 18.39 18.40 ± 1.81
RDRP3 18.43 17.87 18.20 18.17 ± 1.79
Average ± SD 19.13 ± 1.79 18.00 ± 2.06 18.36 ± 1.62

n‑butyrate (%) RDPR1 13.29 11.74 11.59 12.20 ± 1.34
RDPR2 12.62 12.54 12.11 12.42 ± 0.74
RDRP3 12.02 11.45 11.59 11.69 ± 0.79
Average ± SD 12.64 ± 1.05a 11.91 ± 0.98b 11.76 ± 0.86b

Iso‑butyrate (%) RDPR1 5.45ab 5.10ab 4.20ab 5.35 ± 1.41
RDPR2 5.90a 5.89a 2.91b 4.85 ± 1.53
RDRP3 4.70ab 3.56ab 4.71ab 3.94 ± 1.48
Average ± SD 4.92 ± 1.35 4.90 ± 1.97 4.32 ± 1.30

Iso‑valerate (%) RDPR1 5.69 4.79 4.56 5.01 ± 1.10
RDPR2 5.17 4.95 5.44 5.19 ± 0.53
RDRP3 4.31 5.10 5.18 4.87 ± 0.94
Average ± SD 5.05 ± 0.99 4.95 ± 1.01 5.06 ± 0.67

n‑valerate (%) RDPR1 5.59a 3.00b 2.03b 3.54 ± 1.95
RDPR2 3.40ab 1.96b 2.54b 2.63 ± 1.05
RDRP3 2.66b 2.29b 2.32b 2.42 ± 0.54
Average ± SD 3.88 ± 1.57 2.42 ± 1.23 2.29 ± 0.54

Acetate to 
propionate ratios

RDPR1 2.47 3.24 3.24 2.98 ± 0.61
RDPR2 2.94 3.17 3.20 3.10 ± 0.38
RDRP3 3.16 3.38 3.21 3.25 ± 0.37
Average ± SD 2.86 ± 0.46b 3.26 ± 0.50a 3.22 ± 0.34a

CH4 (mM) RDPR1 7.73 5.41 6.54 6.56 ± 1.37b

RDPR2 7.27 6.02 7.10 6.80 ± 1.25b

RDRP3 9.18 6.96 7.92 8.02 ± 1.44a

Average ± SD 8.06 ± 1.16a 6.13 ± 1.40b 7.19 ± 1.22a

Means in the same row and column with different superscripts significantly different (p < 0.05). NFC = Non‑fiber 
carbohydrate. RDPR = RDP: RUP ratio. NFC1 = NFC 30%; NFC2 = NFC 35%; NFC3 = NFC 40%; RDPR1 = 50:50 RDP: 
RUP ratio; RDPR2 = 55:45 RDP: RUP ratio; RDPR3 = 60:40 RDP: RUP ratio
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rumen. The rumen pH values noted in this study were 
in the range of 6.92-6.97, indicating that there was no 
acidosis in the rumen, even at the highest RDPR and 
NFC levels. A pH of 6.0-7.0 is the ideal rumen pH to 
support the growth of rumen microbes and their activ-
ity in producing fermentation products such as NH3 
and VFAs; under these conditions, the activity and 
composition of rumen microbes are not affected [29]. 
This pH range is also ideal for cellulolytic microbial 
activity [33,34].

Ammonia (NH3) is the main N source for MPS, 
and the NH3 concentration describes the amount of 
N used by microbes [35]. According to McDonald 
et al. [30], the optimal NH3 concentration ranges 
from 85 to 300 mg/l, or equivalent to 4.9 to 17.6 mM. 
The minimum ammonia concentration for microbial 
protein production is 3.6 mM [36]. In this study, the 
NH3 concentrations ranged from 7.60 to 8.11 mM, 
indicating that the protein ration was degraded to 
form sufficient NH3 for microbial growth. Part of 
the NH3 produced is absorbed, reused (N recycling), 
and plays an important role in the metabolic process 
of ruminants [37]. Our results demonstrated that the 
NH3 concentration was not affected by the RDPR and 
NFC treatments. A similar result was also reported by 
Savari et al. [12]; however, these results differ from 

those of the previous studies, which showed that 
the NH3 concentration tended to increase as RDPR 
increases [6,32].  The insignificant effect of RDPR on 
NH3 concentration may be caused by the C chain bal-
ance released from NFC fermentation used for micro-
bial synthesis. The insignificant difference in NH3 
concentration may also result from the small RDPR 
levels used in this study [12].

VFAs are the primary energy source for rumi-
nants. The total VFA concentration was not differ-
ent between the treatments. This result was similar 
to those of Savari et al. [12] and Hall et al. [6], who 
found that total VFA concentration was not affected 
by RDPR nor NFC levels. The total VFA concentra-
tion in this study ranged from 100.96 to 121.20 mM, 
which is within the normal range for concentrate-for-
age-based rations [31]. Several factors can affect total 
VFA concentration, including the rate of rumen fer-
mentation, the amount of soluble substrate, the rate of 
feed consumption, VFA absorption, and liquid or solid 
passage [38]. Nonetheless, in this study, the amount of 
fermented NFC and RDP did not significantly affect 
the total VFA concentration; this was due to the fer-
mentation products of NFC and RDP being released in 
a balanced proportion and used by microbes for protein 
synthesis. In the rumen, VFAs are absorbed by rumen 

Table-4: Total bacteria and protozoa population, microbial protein synthesis of experimental diet.

Parameters RDPR NFC Average±SD

NFC1 NFC2 NFC3

Total bacteria 
population
(log CFU/ml)

RDPR1 8.17 8.20 7.99 8.12±0.34
RDPR2 7.97 8.34 8.12 8.14±0.25
RDRP3 8.22 8.16 7.80 8.06±0.37
Average±SD 8.12±0.30 8.23±0.24 7.97±0.37

Protozoa population 
(log cell/ml)

RDPR1 6.51 6.62 6.57 6.57±0.11
RDPR2 6.59 6.59 6.64 6.60±0.10
RDRP3 6.55 6.57 6.65 6.59±0.12
Average±SD 6.55±0.10 6.60±0.09 6.62±0.13

MPS (mg/10 ml) RDPR1 7.17 7.07 6.80 7.01±0.83ab

RDPR2 6.46 7.40 6.96 6.94±0.90b

RDRP3 7.23 8.21 7.09 7.51±1.12a

Average±SD 6.95±0.96b 7.56±1.12a 6.95±0.70b

Means in the same row or column with different superscripts are significantly different (p<0.05). NFC=Non‑fiber 
carbohydrate. RDPR=RDP: RUP ratio. NFC1=NFC 30%; NFC2=NFC 35%; NFC3=NFC 40%; RDPR1=50:50 RDP: RUP ratio; 
RDPR2=55:45 RDP: RUP ratio; RDPR3=60:40 RDP: RUP ratio. CFU=Colony forming unit; MPS=Microbial protein synthesis

Table-5: Dry matter and organic matter digestibility of the experimental diet.

Parameters RDPR NFC Average±SD

NFC1 NFC2 NFC3

DMD (%) RDPR1 61.46 68.00 71.73 67.07±8.36
RDPR2 65.44 67.06 71.29 67.93±7.29
RDRP3 65.21 68.21 76.22 69.88±8.45
Average±SD 64.04±8.00b 67.76±6.87b 73.08±6.53a

OMD
(%)

RDPR1 60.09 67.04 70.18 65.77±8.63
RDPR2 64.25 65.63 69.59 66.49±7.58
RDRP3 63.59 66.96 75.12 68.56±8.88
Average±SD 62.64±8.41b 66.54±7.26b 71.63±6.91a

Means in the same row with different superscripts significantly different (p<0.05). NFC=Non‑fiber carbohydrate. 
RDPR=RDP: RUP ratio. NFC1=NFC 30%; NFC2=NFC 35%; NFC3=NFC 40%; RDPR1=50:50 RDP: RUP ratio; RDPR2=55:45 
RDP: RUP ratio; RDPR3=60:40 RDP: RUP ratio. DMD=Dry matter digestibility, OMD=Organic matter digestibility
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epithelial cells. Ruminal VFA absorption is influenced 
by the VFA production and absorption balance in the 
rumen, epithelial permeability to VFAs, and the blood 
transport of VFAs from epithelial cells [39].

Molar proportions of VFAs are affected by sub-
strate composition, substrate availability, rate of depo-
lymerization, and availability of rumen microbial spe-
cies [40]. The interaction between NFC (35% NFC 
and 40% NFC) with all levels of RDPR produced the 
highest molar proportion of acetate. Treatments NFC2 
and NFC3 contained cassava meal at 20-30% DM. 
Cassava meal is rich in carbohydrates, especially pec-
tin, producing a high proportion of acetate [41]. This 
finding aligns with previous studies, which reported 
a high molar proportion of acetate in pectin-rich 
rations [42,43].

Propionate is a substrate for gluconeogenesis, as 
the primary source of glucose in dairy cattle, whereas 
acetate and n-butyrate are sources of long-chain fatty 
acid synthesis [44]. In this study, the molar proportion 
of propionate was not affected by NFC nor RDPR. An 
insignificant effect of RDPR on the molar proportion 
of propionate has also been reported in several previ-
ous studies [35,45]. Conversely, Ma et al. [46] noted 
that the molar proportion of propionate increases as 
NFC increases; this different result is likely due to the 
use of different types of NFC. Nonetheless, other stud-
ies demonstrated that differences in the NFC content 
in rations play a small role in influencing rumen fer-
mentation, especially propionate [47-49]. In addition, 
the molar proportion of n-butyrate decreased as the 
NFC level increased. A high level of NFC, rich in pec-
tin content, is more fermentable than NFC rich in other 
forms of carbohydrates; this condition leads to higher 
acetate formation and lower formation of butyrate and 
lactate [50]. High molar proportions of butyrate are 
found in diets rich in saccharides, glucose, and disac-
charides (fructose and sucrose) [6,20,51]. Butyrate 
plays a role in stimulating rumen papillae growth and 
proliferation [52].

Branched-chain VFAs (iso-butyrate, 2-methyl 
butyrate, and iso-valerate) are produced from oxida-
tive deamination and decarboxylation of branched 
amino acids, such as valine, isoleucine, and leucine. 
Meanwhile, n-valerate is produced from carbohy-
drates and the carboxylic acid of proline, arginine, 
lysine, and methionine [53]. Iso-butyrate, iso-valerate, 
and n-valerate supply a C skeleton for the biosynthe-
sis of branched-chain amino acids (valine, isoleucine, 
leucine, and proline) by cellulolytic bacteria [54]. This 
study found that the interaction between RDPR and 
NFC had a significant effect on the molar proportions 
of iso-butyrate and n-valerate; however, they did not 
affect iso-valerate. This result differed from a previ
ous study, which reported no effect of the interaction 
between NFC and RDPR on iso-butyrate, n-valer
ate, and iso-valerate [46]. Moreover, Pormalekshahi 
et al. [45] reported that the molar proportion of 
iso-valerate and n-valerate were not affected by 

different levels of RDPR. Nonetheless, replacing the 
RDP source from true protein with NPN (non-protein 
N) decreases iso-butyrate [55].

The interaction between NFC and RDPR on the 
molar proportion of iso-butyrate and n-valerate may 
be because the combination of these two factors can 
supply the amino acids required for the formation of 
iso-butyrate and n-valerate. Iso-butyrate and n-valer-
ate are the main components required for the growth 
of cellulolytic bacteria, especially Bacteroides suc-
cinogenes. Meanwhile, Ruminococcus flavefaciens 
requires iso-butyrate and iso-valerate, and R. albus 
requires iso-butyrate and 2-methyl butyrate [56]. The 
proportion of n-valerate was low in rations with high 
NFC levels (NFC2 and NFC3) for all RDPR levels; 
this may be caused by the treatment combinations’ 
high pectin and low sugar contents. According to Li 
et al. [57], high molar n-valerate is produced from 
rations containing high concentrates and sugar.

The acetate to propionate ratio increases with 
increasing NFC levels. The high availability of read-
ily fermentable carbohydrates increases the amount 
of cellulolytic bacteria, DM digestibility, and the ace-
tate to propionate ratio [2]. Pectin is a component of 
the neutral detergent soluble fiber, and its fermenta-
tion results in a high acetate to propionate ratio and 
lower lactate levels, although it does not lower rumen 
pH [4]. A  high availability of branched-chain VFAs 
(iso-butyrate, iso-valerate, and n-valerate) is required 
to grow cellulolytic bacteria [56]. Increasing cel-
lulolytic bacteria activity increases acetate produc-
tion, leading to increases of the acetate to propionate 
ratio [58,59]. The acetate propionate ratio is positively 
correlated with methane emissions (CH4) from the fer-
mentation process in the rumen and is used as an indi-
cator of CH4 production [60]. The synthesis of acetate 
and butyrate produces hydrogen, whereas propionate 
synthesis uses hydrogen. Increasing the acetate and 
butyrate rumen concentration increases the hydro-
gen available for methanogenic bacteria to synthesize 
CH4 [61]. Estimations of CH4 based on VFA molar 
proportions influence the RDPR and NFC treatments, 
leading to high CH4 estimates in the NFC2, NFC3, 
and RDPR3 treatments.
Rumen microbes and MPS

The rumen microbes consist of bacteria, protozoa, 
and fungi. The rumen microbial population is influ-
enced by the rumen pH, temperature, buffer capacity, 
osmotic pressure, DM content, and oxidation-reduc-
tion potential [62]. Neither RDPR nor NFC affected 
the total bacteria and protozoa populations. The total 
bacteria population was 7.97-8.22 log CFU/mL, lower 
than that recommended by McDonald et al. [30] for a 
normal rumen bacteria population in ruminants (9-10 
log CFU/mL). The lower total bacteria population in 
this study is likely due to the rations’ low crude fiber 
content, required to achieve the high NFC levels in the 
ration formulation. Low bacteria populations (8.78-8.41 
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log CFU/mL) associated with high NFC treatments 
consisting of corn and DDGS concentrate have also 
been previously reported [63]. The mean protozoa 
population in this study was 6.55-6.62 log cells/mL, 
within the normal range (5-6 log cells/mL) according 
to McDonald et al. [30]. An insignificant effect of car-
bohydrate type on the rumen protozoa population has 
also been previously reported [64]. In contrast, Vakili et 
al. [65] reported that NFC supplementation decreases 
the methanogenic bacteria and protozoa populations. 
Furthermore, they reported that the type of starch can 
reduce methanogenesis in the rumen.

Protozoa and rumen bacteria have different 
feeding behaviors with respect to protein digestion. 
Rumen bacteria are essential in degrading soluble 
protein, whereas protozoa degrade insoluble protein. 
In addition, as a predator, protozoa digest bacteria and 
fungi, and have a limited ability to assimilate peptides 
and amino acids [65]. Protozoa release more amino 
acids and peptides than bacteria in the rumen, but they 
cannot synthesize amino acids from ammonia [11]. 
According to Ferrand-Theix [66], protozoa defauna-
tion increases N utilization by increasing the supply 
of amino acids to the small intestine and decreasing 
urinary N excretion into the environment. Factors 
that affect rumen protozoa include feed composition, 
rumen pH, and feeding frequency [67].

Microbial protein is the primary protein source 
for ruminants. Approximately 80-90% of amino acid 
requirements are supplied by microbial protein with 
80% digestibility [11,68]. MPS is influenced by the 
availability of energy from fermented carbohydrates 
in the rumen and N in the form of NH3 [11]. Both 
RDPR and NFC significantly affected MPS, but there 
was no interaction between the two factors. Treatment 
RDPR3 (RDPR of 60:40) produced higher MPS than 
RDPR1 and RDPR2, whereas treatment NFC2 (35% 
NFC) produced higher MPS in comparison to NFC1 
and NFC3. A previous study reported that an increase 
in RDP and rumen degradable starch increased recy-
cled N, thereby increasing the supply of MPS to the 
small intestine and improving microbial protein effi-
ciency [69]. High NFC in the rations may increase 
MPS since it provides quickly fermentable carbohy-
drates and energy [7].

In this study, MPS was 6.94-7.56 mg/10 mL; this 
was lower than the range reported by Putri et al. [70], 
who reported a MPS of 10 mg/10 mL produced from 
a legume-based ration with 16% protein content and 
different RDPR levels (55:45, 60:40, and 65:35). This 
difference in MPS is due to the difference in feed ingre-
dients (leguminous vs. concentrate) and types of NFC 
used in the rations. Although the amino acids and NPN 
in the rations were not analyzed, we suggest that both 
components have a role in improving MPS. Changing 
RDP from true protein to NPN reduces MPS in lac-
tating dairy cows [55], and in in vitro studies, feeding 
RDP as free amino acids and peptides promote micro-
bial growth and efficiency [71]. The type of NFC also 

affects MPS. The high pectin and sugar types of NFC 
depressed MPS more than the starch type of NFC. The 
N efficiency for MPS varies, influenced by fermented 
carbohydrates’ energy efficiency [72]. An average of 
20 g of bacterial protein is synthesized per 100 g of 
organic matter fermented in the rumen [10]. The pri-
mary nutrients needed for MPS are carbohydrates and 
proteins. The balance of energy and N supply in MPS 
can be calculated by a synchronization index, which is 
calculated based on the organic matter and N degraded 
per hour [73]. A high synchronization index increases 
MPS [74]. In contrast, the low availability of essential 
micro minerals and vitamins become limiting factors 
for MPS production [2]. Therefore, supplementation 
of sulfur increases MPS efficiency [75].
DMD and OMD

The DMD and OMD values ranged from 61.46 
to 76.22% and 60.09 to 75.12%, respectively, indicat-
ing that the rations were moderately digestible. NFC 
provides easily digestible carbohydrates, including 
starch, simple sugars, beta-glucan, galactan, and pec-
tin. Easily digestible carbohydrates provide energy 
and increase N utilization to synthesize microbial pro-
tein [76]. Rations with a higher energy supply produce 
higher DMD and OMD [7]. In this study, the highest 
DMD and OMD were noted with the NFC3 treatment 
(40% NFC), which used 30% of cassava in the ration 
as a source of NFC. The cassava cell wall is domi-
nated by pectin substances, such as arabinans and 
xylogalacturonans [42]. According to Zhao et al. [8], 
DMD and OMD are higher under pectin treatments 
than starch and disaccharide-diet carbohydrates due to 
the rate of passage in the digestive tract [20]. In this 
study, the RDPR treatment did not affect DMD and 
OMD. The different degradability in the rumen was 
compensated by different post-ruminal digestibility, 
which resulted in similar total DMD and OMD. One 
previous study reported that an increasing RDPR level 
improves DMD and OMD [70]; this is true for rations 
high in fiber that rely mainly on rumen fiber degrada-
tion, but this was not the case in the current study.
Conclusion

Tropical dairy rations formulated using a combi-
nation RDPR of 60:40 with 35% NFC resulted in the 
best synchronization of available protein and energy 
for MPS and digestion activity in the rumen. Increasing 
NFC levels up to 40% resulted in higher DMD and 
OMD, but lower MPS. High NFC levels increased the 
acetate to propionate ratio suitable for milk fat synthe-
sis. Further in vivo studies are needed to determine the 
effect of 60:40 RDPR and 35% NFC on milk produc-
tion and quality and the use of different NFC types in 
dairy rations, such as sugar, starch, and pectin.
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