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Abstract
Obesity is an increasing global health concern and is associated with a broad range 
of morbidities. The gut microbiota are increasingly recognized as important con-
tributors to obesity and cardiometabolic health. This study aimed to characterize 
oral and gut microbial communities, and evaluate host: microbiota interactions 
between clinical obesity classifications. We performed 16S rRNA sequencing on 
fecal and salivary samples, global metabolomics profiling on plasma and stool 
samples, and dietary profiling in 135 healthy individuals. We grouped individu-
als by obesity status, based on body mass index (BMI), including lean (BMI 18–
124.9), overweight (BMI 25–29.9), or obese (BMI ≥30). We analyzed differences 
in microbiome composition, community inter-relationships, and predicted mi-
crobial function by obesity status. We found that salivary bacterial communities 
of lean and obese individuals were compositionally and phylogenetically distinct. 
An increase in obesity status was positively associated with strong correlations 
between bacterial taxa, particularly with bacterial groups implicated in metabolic 
disorders including Fretibacterium, and Tannerella. Consumption of sweeteners, 
especially xylitol, significantly influenced compositional and phylogenetic di-
versities of salivary and fecal bacterial communities. In addition, obesity groups 
exhibited differences in predicted bacterial metabolic activity, which was cor-
related with host’s metabolite concentrations. Overall, obesity was associated 
with distinct changes in bacterial community dynamics, particularly in saliva. 
Consideration of microbiome community structure and inclusion of salivary 
samples may improve our ability to understand pathways linking microbiota to 
obesity and cardiometabolic disease.

www.wileyonlinelibrary.com/journal/phy2
mailto:﻿
mailto:﻿
https://orcid.org/0000-0001-6896-1025
http://creativecommons.org/licenses/by/4.0/
mailto:abombin93@gmail.com
mailto:jane.f.ferguson@vumc.org


2 of 17  |      BOMBIN et al.

1   |   INTRODUCTION

Obesity is a growing worldwide epidemic and is linked 
to a range of health issues including hypertension, type 2 
diabetes, asthma, coronary heart disease, Alzheimer’s dis-
ease, and cancer (Alford et al., 2018; Avgerinos et al., 2019; 
Seganfredo et al., 2017; Thompson et al., 2007; Wahba & 
Mak, 2007). Known risk factors include imbalances be-
tween calorie intake and expenditure, genetics, stress, 
and disruptions in the endocrine system (Han & Lean, 
2016; Seganfredo et al., 2017); however much remains 
unknown. Better characterization of mechanisms predis-
posing to obesity could enable novel prevention and treat-
ment strategies.

The composition of an individual’s microbiota is in-
creasingly being recognized as a contributor to obesity risk 
(Benahmed et al., 2021; Crovesy et al., 2020; Stanislawski 
et al., 2019). Microbiota can influence the host’s metabolic 
phenotype both by directly affecting energy and nutrient 
availability (Jumbo-Lucioni et al., 2010; Kaoutari et al., 
2013; LeBlanc et al., 2013; Shortt et al., 2018; Turnbaugh 
et al., 2006), and through modulation of signaling path-
ways (Bindels et al., 2013; Davison et al., 2017; Fellows 
et al., 2018; Kimura et al., 2013; Mohammadkhah et al., 
2018; Overby & Ferguson, 2021; Tilg & Moschen, 2016; 
Ye et al., 2017). Previous studies suggested that the fecal 
symbiotic bacterial community of obese individuals is less 
diverse than that of lean individuals (Stanislawski et al., 
2019; Tilg et al., 2009). In addition, the abundance of 
several bacterial taxa including Lactobacillus, Pervotella, 
Alistipes, Akkermansia, and others vary with obesity sta-
tus (Benahmed et al., 2021; Crovesy et al., 2020). Salivary 
microbiota of lean and obese individuals also differ in di-
versity and composition (Araujo et al., 2020; Benahmed 
et al., 2021; Andrade et al., 2020; Raju et al., 2019; Si et al., 
2017). The abundance of several salivary bacterial taxa 
including Campylobacter, Aggregatibacter, and Veillonella 
was reported to be positively associated with obesity 
(Balakrishnan et al., 2021; Schacher et al., 2007; Szafrański 
et al., 2015). Higher abundances of Bacteroidetes, 
Spirochaetes, and Firmicutes were observed in lean indi-
viduals (Benahmed et al., 2021; Janem et al., 2017; Sohail 
et al., 2019). However, data are contradictory, even for 
rather abundant bacteria taxa. For example, the abun-
dance of intestinal Lactobacillus was reported to be both 
positively and negatively associated with obesity (Azad 
et al., 2018; Crovesy et al., 2020; Khalili et al., 2019; Million 
et al., 2012). While some variability might be explained by 
differences in diet, geographical location, or analytical 
methods, these discrepancies may be due in part to com-
plex interactions between microbial community mem-
bers, where the metabolic activity of individual bacterial 
taxa can vary based on the activity of other microbes in the 

community (Estrela et al., 2016; Morris, 2015; Thommes 
et al., 2019; Zomorrodi & Segrè, 2017). Consideration of 
interactions between members of microbiota might be es-
sential to improve the identification of bacterial mecha-
nisms underlying obesity.

We hypothesized that the presence of obesity, in the 
absence of known disease, would associate with differ-
ences in microbiome composition and function. We fur-
ther hypothesized that community structure and bacterial 
inter-relationships would differ by obesity status. We eval-
uated the differences in compositional and phylogenetic 
diversity of salivary and fecal microbiota between obesity 
groups in a well-characterized sample of healthy individ-
uals. We examined interactions between bacterial taxa 
based on the obesity status of the host, and showed that 
predicted bacterial metabolic activity varies between obe-
sity groups and is correlated with intestinal and circulat-
ing metabolite concentrations.

2   |   MATERIALS AND METHODS

2.1  |  Study population

We analyzed data from the ABO Glycoproteomics in 
Platelets and Endothelial Cells (ABO) Study (n = 135) as 
described previously (Bagheri et al., 2021; Ferguson et al., 
2018; Tang et al., 2019). Demographic information is pro-
vided in Supplement Table 0. Briefly, healthy non-pregnant 
and non-lactating women and men were recruited to a 
cross-sectional study. Individuals were non-smokers, with 
no medication or supplement use (apart from oral contra-
ceptives), and no clinical disease. Participants completed 
dietary profiling (validated 3-day food records, and DHQ II 
food frequency questionnaires [FFQ]), and provided stool, 
saliva, and blood samples. Height and weight were meas-
ured at the study visit. Individuals were classified based on 
body mass index (BMI, weight (kg)/height (m)-squared), 
including lean (BMI 18–24.9; fecal samples n = 76, saliva 
samples n  =  49), overweight (BMI 25–29.9; fecal sam-
ples n = 34, saliva samples n = 19), or obese (BMI ≥30, 
fecal samples n = 25, saliva samples n = 16), to explore 
differences in composition and function of microbiota by 
obesity. All participants provided written informed con-
sent. The study was approved by the Institutional Review 
Boards of the University of Pennsylvania and Vanderbilt 
University.

2.2  |  Sample profiling

As we have previously described, 16S rDNA sequenc-
ing of the bacterial V4 fragment was performed on 
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Illumina MiSeq platform using 135 fecal and 85 saliva 
samples to identify bacterial community composition 
(Tang et al., 2019). Global metabolomics profiling of 
fecal and plasma samples, from a subset of individuals 
(n = 75) was performed at Metabolon (Metabolon Inc., 
Morrisville, NC, United States), as previously described 
(Tang et al., 2019).

2.3  |  Pre-analysis processing

2.3.1  |  Sequences 
alignment and normalization

Pre-analysis processing of 16SrRNA reads was performed 
with R v4.0.2 (Team R. Core, 2019). Demultiplexed se-
quences were filtered, forward and reverse reads were 
merged, and resulted sequences were assigned to am-
plicon sequence variants (ASVs), with the default set-
tings of DADA2 pipeline v1.18.0 (Callahan et al., 2016). 
Chimeric sequences were also removed with the dada2 
package v1.18.0 (Callahan et al., 2016). Sequence vari-
ants were assigned taxonomy with dada2 and SILVA 
v138.1 database (Callahan et al., 2016; Quast et al., 
2012). ASVs counts were normalized with cumula-
tive sum scaling method implemented in the metage-
nomeSeq v1.32.0 package (Paulson et al., 2013). In the 
salivary samples, we identified 1932 ASVs that belonged 
to 12 phyla, 19 classes, 44 orders, 70 families, 134 gen-
era, and 229 bacterial species. In our fecal samples, 
we identified 5000 ASVs that belonged to 16 phyla, 26 
classes, 55 orders, 86 families, 270 genera, and 338 bac-
terial species.

2.3.2  |  Alpha diversity

Normalized ASVs counts were used to calculate species 
richness, Shannon, and Gini–Simpson alpha diversity 
indices with the vegan v2.5.7 package (Oksanen et al., 
2009).

2.3.3  |  Beta diversity

Bray-Curtis distances were calculated with vegan v2.5.7 
(Oksanen et al., 2009). An unrooted neighbor-joining 
tree was computed with the ape package v5.5 (Paradis 
et al., 2004). The tree was optimized based on a general-
ized time-reversible model implemented in the phangorn 
v2.5.5 package (Schliep 2019; Schliep, 2011). Lastly, 
weighted and unweighted Unifrac distances between each 

sample were calculated with the phyloseq v1.30.0 package 
(McMurdie & Holmes, 2013).

2.3.4  |  Functional potential

Functional potential of the bacterial communities was 
predicted with PICRUSt2 according to the default pipeline 
(Douglas et al., 2020). Predictions were made for Enzyme 
Commission numbers (EC), Kyoto Encyclopedia of Genes 
and Genomes orthologs (KO), and MetaCyc pathways 
(Bairoch, 2000; Douglas et al., 2020; Kanehisa, 2000; Karp 
et al., 2002). In accordance with PICRUSt2 authors’ rec-
ommendations, the resulting data were transformed with 
the centered-log ratio transformation implemented in the 
ALDEx2 v1.24.0 package (Gloor, 2015).

2.4  |  Statistical analysis

Statistical analysis and data visualization was done with 
R v3.6.1 (Team R. Core, 2019). Beta diversity distances be-
tween obesity groups were compared with pairwise per-
mutational multivariate analysis of variance, based on the 
vegan package v2.5.7 (Oksanen et al., 2009). The differ-
ence in alpha diversity measurements was evaluated with 
Wilcoxon signed-rank test, implemented in the rstatix 
v0.7.0 package (Kassambara, 2021). In order to evaluate 
if the obesity groups can be classified based on differen-
tial abundance (taxonomic units with the differential 
abundance of less than 20 amplicons in the whole data 
set, were filtered out, in order to avoid constant variables 
across the groups) of bacterial taxa and inferred functional 
abundances (based on EC, KO, and MetaCyc classifica-
tion), we used linear discriminant analysis, implemented 
in the MASS package v7.3-51.4 (Venables & Ripley, 2002). 
In addition, we repeated a linear discriminant analysis 
using only the 15 most abundant bacterial taxa, in order 
to evaluate if the dominant bacterial taxa were sufficient 
for discrimination of the communities, with the obesity 
status. The results were visualized by plotting the first and 
second linear discriminants, with the ggplot2 v3.2.1 and 
the ggpubr v0.4.0 packages (Kassambara & Kassambara, 
2020; Wickham, 2016). The difference in differential 
abundances of bacterial taxa and predicted ECs, KOs, and 
MetaCyc pathways, between obesity groups was evaluated 
with a pairwise t-test function, implemented in R v3.6.1 
(Team R. Core, 2019). The correlations between differ-
ential abundances of bacterial taxa were calculated with 
Spearman’s rank correlation test, included in the Hmisc 
v4.5.0 package (Harrell & Harrell, 2019). Resulted cor-
relation matrices were used to construct network plots, 
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using the corrr v0.4.3 package (Kuhn & Jackson, 2020). 
In addition, the absolute values of correlation coefficients 
were compared between obesity groups with a pairwise 
Wilcoxon signed-rank test, implemented in the rstatix 
v.7.0 package (Kassambara, 2021). The influence of 133 
recently consumed (from 3-day food records) and 185 ha-
bitually consumed (from FFQ) nutrients on beta diversity 
distances was evaluated with permutational multivariate 
analysis of variance using a quadratic model (Oksanen 
et al., 2009). The quadratic model was used as most liv-
ing organisms, including bacteria have an optimal range 
of environmental conditions rather than a linear relation-
ship (Bombin & Reed, 2016; Kindt & Coe, 2005; Leboffe 
& Pierce,). The difference in nutritional profiles between 
obesity groups was evaluated with the adonis function on 
Euclidean, Bray-Curtis, and non-binary Jaccard distances 
(Oksanen et al., 2009).

For enrichment analysis, we calculated the mean abun-
dance of each KEGG ortholog for obesity groups and used 
them as input for MicrobiomeAnalyst (2021-07-01) shot-
gun data profiling tool, with the default settings (Dhariwal 
et al., 2017). False discovery rate (FDR) p-values were 
adjusted using the Benjamini–Hochberg correction, im-
plemented in rstatix v0.7.0 package (Kassambara, 2021). 
We note that usage of any particular FDR threshold is 
ambiguous and often varies between microbiome studies; 
weaker correlations that fail to hold up to p adjustment 
methods often have biological relevance. Premature re-
jection of associations falling below conservative p-value 
thresholds may lead to loss of biologically meaning-
ful data. (Althouse & Soman, 2017; Bombin et al., 2020; 
Bruce-Keller et al., 2015; Jehrke et al., 2018; Pawitan et al., 
2005; Wu et al., 2015). For this reason, statistical results 
below 0.05 p-value threshold were considered to be sig-
nificant. However, taking into account the difference in 

opinions and for the readers’ convenience, we report both 
unadjusted and FDR-adjusted p-values in supplementary 
data.

3   |   RESULTS

3.1  |  Lean, overweight, and obese 
individuals can be separated into distinct 
groups based on their oral and intestinal 
microbiota

Evaluating beta diversity distances, we observed that 
salivary microbiota communities of obese and lean in-
dividuals were significantly different as measured with 
Bray-Curtis and Weighted Unifrac distances (Supplement 
Table 1). Based on linear discriminant analysis (non-
overlapping confidence ellipses), obesity classes were 
separated by the differential abundances of bacterial ASVs 
(Figure 1a). Obesity groups were also clearly characterized 
based on the differential abundance of microbial species, 
genera, families, and orders but weaker based on classes 
and phyla (Supplement Figure 1).

In fecal samples, we did not observe a significant dif-
ference in beta diversity distances between any of the 
obesity groups (Supplement Table 1). However, based on 
a linear discriminant analysis, obesity groups could be 
classified based on the differential abundance of bacterial 
ASVs (Figure 1b). Obesity groups were also clearly char-
acterized based on the differential abundance of bacterial 
species, genera, families, and orders but weaker at class 
and phylum ranks (Supplemental Figure 2). We did not 
observe any significant differences in alpha diversity indi-
ces between obesity groups in saliva or feces (Supplement 
Table 2).

F I G U R E  1   Obesity groups can be discriminated by the abundance of salivary or fecal microbiota. Linear discriminant analysis of (a) 
ASVs identified in salivary samples (b) ASVs identified in fecal samples. ASVs with abundance of less than 20 sequences were filtered out. 
Obesity groups are represented by color, lean group by red, overweight group by green, and obese group by blue. Confidence ellipses are 
shaded. Normal data ellipses are unfilled and leveled to include 50% of the samples
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3.2  |  Obesity status influences the 
differential abundance of individual 
bacterial taxa

3.2.1  |  In saliva

In saliva, we observed that abundances of 
Campylobacterota, Firmicutes, and Spirochaetota were 
significantly different between obesity groups at the 
phylum rank. Obesity groups were significantly differ-
ent in the differential abundances of 5 bacterial classes, 
10 orders, 17 families, 33  genera, 52  species, and 409 
individual ASVs (Supplement Table 3A). Across all 
taxonomic ranks, obese and lean individuals had the 
highest number of taxa that were significantly differ-
ent in their differential abundances (Supplement Table 
3A). We evaluated which of the 15 most abundant bac-
terial taxa were the most influential for defining each 
of the obesity groups with a linear discriminant anal-
ysis. At the genera taxonomic rank, Campylobacter, 
Veillonella, Aggregatibacter, and Prevotella defined the 
obese group (Figure 2). Although lean and overweight 
groups were not distinct from each other, Actinomyces 
and Haemophilus were characteristic for the overweight 
group (Figure 2). Overall, we note that across all taxo-
nomic ranks the 15 most abundant bacteria taxa contrib-
ute only modestly to discrimination of obesity groups 
(Supplemental Figure 3).

3.2.2  |  In feces

In feces, at the phylum rank, only differential abun-
dance of Fusobacteriota was significantly differ-
ent between overweight and lean groups. Obesity 
groups were significantly different in the differential 
abundances of 2 bacterial classes, 8 orders, 10 fami-
lies, 35  genera, 45  species, and 690 individual ASVs 
(Supplement Table 3B). The highest number of sig-
nificant differences between groups varied with taxo-
nomic rank but was always between lean and one of 
the overweight/obese groups. Linear discriminant 
analysis indicated that at the genus taxonomic rank 
Agathobacter and Parabacteroides were influential 
in discriminating obese from lean groups (Figure 2). 
Although lean and overweight groups were not clearly 
separated, lean group was primarily characterized by 
Blautia and Ruminococcus (Figure 2). Similar to what 
we observed in salivary samples, the most abundant 
fecal bacteria taxa were not the most influential vari-
ables for discriminating samples based on obesity sta-
tus (Supplement Table 4).

3.3  |  The number of strong correlations 
between bacterial taxa varies by 
obesity status

We hypothesized that microbial community inter-
relationships, as evidenced by correlations between 
taxa, would differ by obesity status. We assessed the 
number of strong correlations (> =  |0.7|) between dif-
ferential abundances of microbial taxa in saliva and 
stool samples by obesity group and found evidence for 
increasing inter-dependence in the setting of obesity 
(Figure 3). Among microbiota genera in saliva, there 
were 67 strong correlations in the obese group, 32 in the 
overweight, and only five strong correlations in the lean 
group. The absolute means of correlation coefficients 
were significantly different between all groups, and this 
observed pattern remained across all taxonomic ranks 
(Supplement Table 4). We observed a similar pattern in 
fecal samples, with 52 strong correlations between mi-
crobiota genera in the obese group, 20 in the overweight 
group, and only 8 in the lean group. The absolute val-
ues of the correlation coefficients, for differential abun-
dances of the bacterial taxa were significantly different 
between all obesity groups. Obese individuals had more 
strong correlations between bacterial taxa than lean in-
dividuals across all phylogenetic ranks except phylum, 
at which no group had strong inter-bacterial correla-
tions. (Supplement Table 4).

3.4  |  Nutritional factors influencing 
bacterial communities

We examined recent (3-day food records) and habitual 
(food frequency questionnaire) dietary consumption by 
obesity status, and found that overall nutritional pro-
files were not significantly different between the obesity 
groups. We then examined the relationships between 
dietary variables and the overall bacterial community in 
all individuals, to identify influential nutrients from re-
cent and habitual consumption. We applied Bray-Curtis, 
weighted Unifrac, and unweighted Unifrac distances, 
and assessed both linear and quadratic relationships. 
For recently-consumed nutrient, xylitol and pectins had 
significant linear relationships across all three methods, 
while inositol, glucose and omega-3 polyunsaturated 
fatty acids approached significance for quadratic relation-
ships across all three methods (Supplement Table 5). For 
habitually-consumed nutrients, no nutrients displayed 
consistent linear relationships across all methods, while 
for quadratic relationships, sorbitol and pinitol, as well 
as dairy cheese and yogurt were consistently associated 
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(Supplement Table 6). In the fecal bacterial community, 
recently-consumed pectins, folate, and fiber had consist-
ent significant linear relationships, while oxalic acid, for-
mononetin, biochanin A, and the ratio of polyunsaturated 
to saturated fat had consistent quadratic relationships 
(Supplement Table 5). For habitually-consumed foods, 
there were consistent linear relationships with cheese 
and vegetables, in addition to vegetable-derived nutrients 
(beta carotene, oxalic acid, Vitamin K). Significant quad-
ratic relationships were observed for grains and processed 
meats, in addition to xylitol, caffeine, sodium, and potas-
sium (Supplement Table 6).

3.5  |  Analysis of inferred metabolic 
pathways reveals enrichment in 
2-oxocarboxylic acid metabolism 
in lean individuals in oral and 
intestinal microbiota

We hypothesized that the functional activity of microbiota, 
as predicted using PICRUSt2, would differ by obesity sta-
tus. We assessed differences in inferred function between 
obesity groups, and found that obesity served as a good 
classifier for enzyme counts (ECs), KEGG orthologs (KOs), 
and MetaCyc pathways abundances in saliva (Figure 4). 
There were 969 significant differences in ECs, 3915 in 
KOs and 177 significant differences in the abundance of 
MetaCyc pathways across all groups (Supplement Table 
7). In all cases, lean and obese individuals had the highest 
number of differences. 2-oxocarboxylic acid metabolism, 
terpenoid-quinone biosynthesis, and D-glutamine and D-
glutamate metabolism KEGG pathways were enriched in 
lean individuals but not in the obese group (Supplement 

Table 8). The obese group was uniquely enriched in 
fluorobenzoate, sulfur, and several amino acid metabolic 
pathways.

Similarly, obesity groups could be characterized based 
on the abundance of MetaCyc pathways, KOs, and ECs in 
fecal samples (Figure 4). We observed 128 significant dif-
ferences between the obesity groups in ECs, 391 in KOs, 
and 19 in MetaCyc pathways (Supplement Table 7), spread 
across lean, overweight, and obese groups. The lean group 
was uniquely enriched in 2-oxocarboxylic acid metab-
olism, D-glutamine and D-glutamate metabolism, and 
pentose and glucuronate interconversions, when com-
pared with obese group. The obese group was enriched 
in C5-branched dibasic acid, lipoic acid, and one-carbon 
KEGG metabolic pathways (Supplement Table 8).

3.6  |  Abundance of inferred 
bacterial metabolic enzymes/pathways 
influences the host’s metabolites’ 
concentrations

We were interested in whether predicted functional ac-
tivity would associate with measured metabolic activ-
ity, as assessed by metabolomic profiling of plasma and 
stool. We observed high numbers of correlations with pre-
dicted saliva microbial activity across all three databases 
(EC: 78,635 with plasma, 82,722 with stool; KO: 249,473 
plasma, 263,616 stool; MetaCyc: 15,633 plasma, 17,915 
stool). The highest number of correlations was observed 
with valerate and isoeugenol sulfate in plasma samples 
and with inosine in stool samples (Supplement Table 9). 
We similarly observed high numbers of correlations be-
tween predicted stool microbial activity and metabolites 

F I G U R E  2   Obese and lean groups can be characterized by the abundance of dominant bacteria genera. Linear discriminant analysis 
of the 15 most abundant bacterial genera identified in (a) Salivary samples (b) Fecal Samples. Obesity groups are represented by color, 
lean group by red, overweight group by green, and obese group by blue. The higher abundance of bacterial genera in the obesity groups is 
indicated by the direction of the vector rays. The intensity of vector rays’ color corresponds to the strength of the impact. Confidence ellipses 
are shaded. Normal data ellipses are unfilled and leveled to include 50% of the samples
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(EC: 92,852 with plasma, 109,830 with stool; KO: 299,557 
plasma, 332,789 stool; MetaCyc: 18,179 plasma, 17,728 
stool). The highest number of correlations was observed 
with 1-palmitoyl-GPE and CMPF in plasma samples and 
steviol in stool samples (Supplement Table 9).

4   |   DISCUSSION

Obesity has been linked to alterations in microbiota, how-
ever, the relative importance of gut and oral microbiota 
is unclear. We aimed to identify microbial signatures of 
obesity using both stool and salivary samples in healthy 
individuals classified as normal weight, overweight or 
obese based on their BMI. We observed that obesity status 
was associated with differences in bacterial community 
composition and shifts in inter-microbial relations that 
were especially evident in the salivary bacterial commu-
nity. Although salivary and fecal microbiota were largely 
impacted by different nutrients, dietary sweeteners were 
associated with both composition and phylogenetic 

diversity of both the oral and gut bacterial communities. 
In addition, samples from obese and lean individuals were 
enriched in several unique metabolic pathways, inferred 
activity of which was correlated with plasma and stool 
metabolite concentrations.

4.1  |  Obesity influences microbial 
community composition, especially 
in saliva

In agreement with published research, we observed that 
oral bacterial community composition was distinct be-
tween lean and obese individuals (Araujo et al., 2020; 
Andrade et al., 2020; Raju et al., 2019; Si et al., 2017). 
In our work, we also observed that the difference in 
salivary bacterial composition between obese and lean 
individuals extends to phylogenetic diversity measure-
ments. Consistent with previous research, we also ob-
served some differences in gut bacterial communities 
between obese and lean groups, however in our work, 

F I G U R E  3   Number of strong connections between bacterial genera increases with the obesity status. Spearman’s rank correlation 
network between (a) Salivary bacterial genera of lean individuals; (b) Salivary bacterial genera of overweight individuals; (c) Salivary 
bacterial genera of obese individuals; (d) Fecal bacterial genera of lean individuals; (e) Fecal bacterial genera of overweight individuals; 
(f) Fecal bacterial genera of obese individuals. For (a–c) included genera had a minimum abundance of 30 sequences and for (d–f) minimum 
abundance of 20 sequences
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the differences were not supported by Bray-Curtis or 
weighted Unifrac distances (Del Chierico et al., 2018; 
Palmas et al., 2021). There were no significant differ-
ences in overall dietary consumption, as assessed using 
both 3-day food records and food frequency question-
naires, suggesting that differences in microbiota were 
not attributable to differences in diet between lean, over-
weight or obese individuals. Our results suggest that at 
the level of the whole community, salivary microbiota 
composition better reflects the difference in obesity sta-
tus than fecal microbiota.

With the analysis restricted to the dominant bacterial 
taxa, we observed a strong influence of Campylobacter, 
Aggregatibacter, Veillonella, and Prevotella on character-
izing the obese group in salivary samples. Interestingly, 
all of these bacterial genera have been shown to be cor-
related not only with obesity but also with oral diseases, 
especially periodontitis (Balakrishnan et al., 2021; Durbán 
et al., 2013; Maciel et al., 2016; Mashima et al.,; Schacher 
et al., 2007; Szafrański et al., 2015). Considering the whole 
bacterial community (abundance >20 reads), we observed 
that some of the bacteria taxa with lower differential 
abundance had a stronger effect on the differentiation 
of the obese group than dominant bacteria, including 
Shuttleworthia at the genus rank and Mycoplasmataceae 
at the family rank that were also significantly more abun-
dant in the obese group. Previous studies identified a cor-
relation between Mycoplasmataceae and obesity (Huang 
et al., 2015; Kim et al., 2021). Although to the best of our 

knowledge, no previous works associated Shuttleworthia 
with obesity in humans, it was associated with obesity 
and elevated weight in model organisms (Henning et al., 
2018; Lee et al., 2017; Xie et al., 2016). In addition, simi-
lar to what we observed with the dominant bacteria taxa, 
Shuttleworthia and Mycoplasmataceae are associated with 
periodontitis (Krishnan et al., 2017; Toyama et al., 2021).

In the fecal samples, the dominant bacterial genera 
that characterized the obese group were Agathobacter 
and Parabacteroides. Agathobacter and Parabacteroides 
were shown to be associated with metabolic disorders in 
humans and a murine model (Del Chierico et al., 2017; 
Liu et al., 2016; Salah et al., 2019; Schroeder et al., 2020). 
Similar to what we observed in the saliva samples, sev-
eral less abundant bacterial taxa that were previously 
associated with obesity, including Mitsuokella and 
Neisseria, at the genus rank and Fusobacteriaceae and 
Gemellaceae, at the family rank, produced more impact 
on the separation of obese and lean categories than dom-
inant bacterial taxa (Moreno-Indias et al., 2016; Palmas 
et al., 2021; Peters et al., 2018; Uberos et al., 2010; Zhang 
et al., 2021). Proportionally to all identified taxa, more 
organisms were significantly different in abundance be-
tween lean and obese groups in saliva samples, when 
compared with fecal samples, which might suggest that 
sampling oral microbiota may be more informative in 
identifying microbial biomarkers of obesity. Given the 
relative ease of collection of saliva as compared with 
stool, this could facilitate increased accessibility for 

F I G U R E  4   Obesity groups can be discriminated by metabolic potential predicted by PICRUSt2. Linear discriminant analysis of relative 
abundances of (a) ECs inferred from saliva samples (b) KOs inferred from saliva samples, (c) MetaCyc pathways inferred from saliva 
samples, (d) ECs inferred from fecal samples, (e) KOs inferred from fecal samples, (f) MetaCyc pathways inferred from fecal samples. 
Obesity groups are represented by color, lean group by red, overweight group by green, and obese group by blue. Confidence ellipses are 
shaded. Normal data ellipses are unfilled and leveled to include 50% of the samples
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research into the microbial contributors to obesity and 
cardiometabolic disease; however, this remains to be 
confirmed in independent studies.

4.2  |  Number of strong correlations 
between bacterial taxa increases with the 
obesity status

In saliva samples, bacterial taxa exhibited the highest 
inter-microbial connectivity (strong correlations ≥0.7) 
in obese individuals. In the obese group, the highest 
connectivity was observed for Fretibacterium (8 connec-
tions), F0058 (7 connections), Mycoplasma (7 connec-
tions), and Tannerella (7 connections). Several of these 
genera, including Fretibacterium, F0058, and Tannerella 
were shown to be correlated with metabolic disorders 
(Belstrøm, 2020; Haffajee & Socransky, 2009; Janem et al., 
2017; Silva-Boghossian et al., 2018; Thomas et al., 2021). 
In addition, all of the most connected bacterial taxa were 
associated with periodontitis (Krishnan et al., 2017; Kwek 
et al., 1990; Nóvoa et al., 2020; Silva-Boghossian et al., 
2018). In the lean group, the most connected bacteria ex-
hibited less strong connections than in the obese group 
and were Atopobium (3 connections), Megasphaera (2 
connections), and Prevotella 7 (2 connections). The abun-
dance of Atopobium was shown to be reduced in obese 
individuals (Nardelli et al., 2020). Previous research indi-
cated that the abundance of Megasphaera might increase 
after anti-obesity treatments (Federico et al., 2016; Kang 
et al., 2019). Prevotella was shown to be associated with 
plant rich diet and increase in abundance after antidia-
betic treatment, however, the genus is very diverse (Ding 
et al., 2019; Jang et al., 2017; Precup & Vodnar, 2019).

In the fecal samples, the most connected bacterial gen-
era identified in the obese group were Christensenellaceae 
R7  group (8 connections) and Ruminococcaceae 
UCG-005 (5 connections). Christensenellaceae R7 and 
Ruminococcaceae UCG-005 were shown to be associated 
with plasma lipoproteins and triglycerides (Vojinovic 
et al., 2019). Ruminococcaceae UCG-005 was also shown 
to be positively correlated with body weight and weight 
gain in a swine model (Gaukroger et al., 2020; Tang et al., 
2020). In addition, several bacterial taxa previously im-
plicated in metabolic disorders, including Actinomyces, 
Ruminiclostridium, and Lachnospiraceae exhibited strong 
inter-bacterial correlations in the obese but not in the 
lean group (Del Chierico et al., 2018; Lee et al., 2019; Liu 
et al., 2019; Zeng et al., 2016). The most connected genus 
in lean individuals was Ruminococcaceae NK4A214 (three 
connections). Previous research identified a negative cor-
relation between Ruminococcaceae NK4A214 and high fat 
diet and hypertension (Calderón-Pérez et al., 2020; Yang 

et al., 2020). However, Christensenellaceae R-7 group and 
Ruminococcaceae UCG-005 were also among a few genera 
(total three) that had more than one strong correlation in 
lean individuals.

The impact of the higher degree of microbial inter-
connectivity observed in obese individuals is unclear but 
may represent a shift from the relative independence of 
bacterial taxa to a state more reliant on mutualistic rela-
tionships. Obesity is often associated with several phys-
iological and environmental conditions that have the 
potential to act as stressors for the microbial community, 
including micronutrient deficiency, increased levels of re-
active oxygen species, and an increase in c-reactive protein 
concentrations and inflammatory response in the host (Du 
Clos, 2000; McMurray et al., 2016; Via, 2012.; Yanoff et al., 
2007). In accordance with the stress gradient hypothesis, 
several studies demonstrated that the presence of envi-
ronmental stressors often increases positive facilitation 
between microbial taxa in the community (Hammarlund 
& Harcombe, 2019; Hernandez et al., 2021; Li et al., 2013; 
Lu et al., 2020). In addition, it was demonstrated that nu-
tritional stress could increase the number of connections, 
in a co-occurrence network of the microbiota members 
(Ghosh et al., 2014). In agreement with these observa-
tions, we found that in the obese individuals, almost all of 
the strong inter-microbial correlations were positive.

4.3  |  Sweeteners and other nutrients 
influence compositional and phylogenetic 
diversity of salivary and fecal bacterial 
communities

We observed that recently and habitually consumed 
nutrients influenced bacterial communities across all 
individuals. For salivary samples, recently consumed 
nutrients influenced the bacterial community more 
than habitually consumed nutrients, for both composi-
tional and phylogenetic beta diversity distances. Sugars 
and sugar alcohols, especially xylitol, mannitol, sorbitol, 
and pectin were especially influential factors impacting 
the bacterial community, based on compositional and 
phylogenetic diversity measurements. Interestingly, 
all of the listed compounds with the exception of pec-
tin are used as sweeteners (Chattopadhyay et al., 2014; 
Pasha et al., 2002). Although the effect of sweeteners 
on gut microbiota was extensively shown in humans 
and animal models, the studies on oral bacteria com-
munity are limited (Gultekin et al., 2020; Söderling & 
Pienihäkkinen, 2020). Previous work has highlighted 
changes in the oral microbiota in response to consump-
tion of dietary sweeteners (Štšepetova et al., 2019). To 
the best of our knowledge, this work is the first report 
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specifically on the correlation between dietary sweeten-
ers and phylogenetic diversity of the human’s salivary 
bacterial community.

Fecal microbiota community was consistently more 
influenced by habitual nutrient consumption than re-
cently consumed nutrients, which might suggest a more 
stable microbial community. Similar to the saliva sam-
ples, consumption of xylitol and pectin influenced com-
positional and phylogenetic diversity of fecal microbiota. 
Consumption of sweeteners, including xylitol was re-
ported to influence intestinal bacterial community com-
position (Gultekin et al., 2020). Pectin consumption was 
also shown to be correlated with compositional changes 
in the intestinal microbiota (Jiang et al., 2016; Larsen 
et al., 2019). In our study, compositional and phylogenetic 
measurements of the fecal microbiota were also consis-
tently influenced by the consumption of vegetables and 
plant-derived compounds including fiber, oxalic acid, 
formononetin, and daidzein. Consumption of fiber, for-
mononetin, and daidzein were shown to have microbiota-
mediated beneficial effects on host’s metabolic health 
(Carrera-Quintanar et al., 2018; Makki et al., 2018).

4.4  |  Bacterial communities of obesity 
groups are associated with enrichment 
in predicted metabolic pathways, 
which are correlated with host’s 
metabolite concentrations

In both saliva and fecal samples, the microbiota of the lean 
individuals were enriched in 2-oxocarboxylic acid me-
tabolism and D-glutamine and D-glutamate metabolism, 
based on functional prediction. 2-Oxocarboxylic acid me-
tabolism is involved in ornithine and lysine biosynthesis, 
supplementation of which were shown to have a potential 
for improving metabolic health (Kalogeropoulou et al., 
2009; Kanehisa, 2019; Park et al., 2012). D-Glutamine 
concentrations were shown to be decreased in obese in-
dividuals and glutamine supplementation may alleviate 
obesity symptoms (Abboud et al., 2019; Ren et al., 2019). 
Metabolic pathways enriched in the microbiota of obese 
individuals included one-carbon metabolism, which was 
previously shown to contribute to the development of 
obesity (Arnoriaga-Rodríguez et al., 2021). In addition, 
steatosis was shown to be associated with one carbon 
metabolism’s gene expression (Christensen et al., 2010). 
Enrichment in other pathways such as lipoic acid metab-
olism and degradation of valine, leucine, and isoleucine 
might be a response to increase in oxidative stress and 
branched-chain amino acids concentrations, often asso-
ciated with obesity (Allam-Ndoul et al., 2015; Furukawa 
et al., 2017; Rochette et al., 2013).

Multiple host’s metabolites were significantly cor-
related with the abundance of KOs involved in enriched 
pathways. For example, the abundance of KOs, predicted 
in salivary samples and involved in 2-oxocarboxylic acid 
metabolism influenced the concentration of 435 plasma 
and 326 stool metabolites. Alpha-ketobutyrate was shown 
to be a biomarker of insulin resistance and glucose intoler-
ance and in our study exhibited a negative correlation with 
more than half of the 2-oxocarboxylic acid metabolism 
pathway’s KOs, predicted from saliva samples (Gall et al., 
2010; Syed Ikmal et al., 2013). In addition, KOs involved in 
2-oxocarboxylic acid metabolism were correlated with ad-
enosine and steviol in stool samples, both of which were 
shown to be beneficial for patients with metabolic disor-
ders (Panagiotou et al., 2018; Pardo et al., 2017).

Our study had considerable strengths, including the 
availability of salivary and fecal microbial profiling, 
in addition to metabolic phenotyping. There were also 
some limitations inherent in all microbiome projects 
that are based on 16S rRNA sequencing. PCR reaction 
with degenerate primers is often used for sequence 
amplification (Kumar et al., 2011). For the taxonomic 
identification of bacterial samples and their phyloge-
netic analysis, primers for nine hypervariable 16S rRNA 
regions V1-V9 are broadly used (Kumar et al., 2011). 
However, different 16S regions are differentially con-
served between bacterial groups and therefore might 
better suit the identification of particular bacterial taxa, 
which may lead to discrepancies between taxa identi-
fications and diversity estimations (Chakravorty et al., 
2007; Poretsky et al., 2014). In addition, due to the lim-
ited amplicon size, 16S microbiome analysis might have 
a lower confidence in determining deep taxonomic lev-
els such as genus and species (Chakravorty et al., 2007; 
Poretsky et al., 2014). In addition, different sequence 
filtering methods, reference database for taxonomic 
identification, and even normalization methods are all 
known to cause a degree of bias between studies. Within 
our work we took several precautions to minimize the 
limitations described above. In order to identify se-
quences that belong to different bacterial taxa, instead 
of using 97% sequence similarity operational taxonomic 
units identification (OTUs), we used amplicon sequence 
variants (ASVs), also known as exact sequence variants 
(ESVs) that are based on exact sequence matches. This 
methodology allows for more accurate taxonomic iden-
tifications even with short sequences (Callahan et al., 
2017; Glassman & Martiny, 2018; Prodan et al., 2020). 
Furthermore, knowing of the limitations in taxonomic 
identification resolution of 16S rRNA sequencing, we 
have not limited ourselves to analyzing the differences 
in microbiota communities at any given taxonomic rank. 
Most of the analyses were repeated at all taxonomic 
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ranks and main conclusions are based on the patterns 
that are observed at multiple taxonomic ranks includ-
ing family and higher. In addition, understanding that 
different 16S rRNA regions might be more suitable for 
identification of particular bacterial taxa, we refrained 
from the direct comparison of fecal and salivary sam-
ples, restricting ourselves to the comparisons of changes 
in bacterial communities based on the obesity status of 
the host, separately for oral and fecal microbiota.

In addition, results presented in this study are largely 
based on differential abundances of the identified micro-
bial taxa and therefore might not be interpreted as caus-
ative. Therefore, future studies would be necessary to 
demonstrate the directions of interactions between the 
host and its oral and intestinal microbiota.

5   |   CONCLUSIONS

In this study, we identified differences in salivary and 
fecal symbiotic bacterial communities based on obesity 
status, in a population of otherwise healthy individu-
als. Our results suggest that inter-correlations between 
bacterial taxa are altered in the setting of obesity and 
suggest distinct differences in community dynamics at 
increasing levels of obesity. Consideration of microbial 
community correlation structure might be more in-
formative than measurement of relative abundances of 
bacteria taxa or diversity measurements alone. In addi-
tion, across multiple comparisons, salivary microbiota 
provided a more distinct pattern of differentiation be-
tween obese and lean individuals, than fecal microbiota. 
Previous studies have primarily focused on the analysis 
of gut microbiota in obesity, however, our data suggest 
that sampling oral microbiota might provide further in-
sights and patterns that are easier to detect across di-
verse groups.
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