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Artificial intelligence (AI) applications for health care 
have come a long way. Despite the remarkable prog-

ress, there are several examples of unfulfilled promises and 
outright failures. We still struggle to translate successful re-
search into successful real-world applications (1).

Although machine learning (ML) products are essen-
tially software products, they diverge from traditional soft-
ware products in a fundamental way: Their main compo-
nent is not a specific piece of code written for a specific 
purpose but a generic piece of code, a model, customized 
by a training process driven by hyperparameters and datas-
ets (2). Choosing hyperparameters is still an empirical pro-
cess because the datasets are usually large, and the result-
ing model is opaque. Product developers cannot directly 
inspect the resulting high-dimensional models as we can 
inspect the code of traditional software products.

Thus, the problem addressed by this report is that tradi-
tional software engineering methods, like white box testing 
and code reviews, can only go so far with ML products 
(3). To build ML products correctly and use them judi-
ciously, we need processes and tools that peer into their 
critical components: datasets and models. With that in 
place, we can understand and communicate their strengths 
and, even more importantly, their weaknesses. When we 
understand their strengths and weaknesses, developers 
build better products. Furthermore, when we communi-
cate their strengths and weaknesses, consumers use these 
products more effectively.

This report describes recent advancements that promote 
“auditing,” supported by “transparency,” as a mechanism 
to detect potential failures introduced in ML products 
for health care applications. In particular, it concentrates 
on practices that apply to the early stages of the ML life-
cycle, when datasets and models are created. These stages 
are unique to ML products and not present in traditional 
software development.

As a practical illustration of auditing methods that fo-
cus on the early stages of the ML lifecycle, we apply two 
of them—datasheets for datasets (4) and model cards 
(5)—to a well-known medical imaging analysis dataset 
called ChestX-ray8 (6) and a well-known model based on 
it called CheXNet (7), respectively. By applying these tech-
niques, we illustrate how datasheets for datasets and model 
cards increase the transparency of datasets and models, 
making them more valuable to the scientific community. 
They also help prevent misplaced claims that decrease the 
public’s confidence in ML products.

The ML Product Lifecycle
The typical lifecycle of an ML product consists of six 
main stages:

1. Define the problem to be solved: Identify the needs 
the product will address, its target users, and in which 
scope it can and cannot be used.

2. Procure a dataset: Create or acquire a representative 
dataset to train the model. This includes preprocessing of 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Artificial intelligence applications for health care have come a long way. Despite the remarkable progress, there are several examples of 
unfulfilled promises and outright failures. There is still a struggle to translate successful research into successful real-world applications. 
Machine learning (ML) products diverge from traditional software products in fundamental ways. Particularly, the main component 
of an ML solution is not a specific piece of code that is written for a specific purpose; rather, it is a generic piece of code, a model, cus-
tomized by a training process driven by hyperparameters and a dataset. Datasets are usually large, and models are opaque. Therefore, 
datasets and models cannot be inspected in the same, direct way as traditional software products. Other methods are needed to detect 
failures in ML products. This report investigates recent advancements that promote auditing, supported by transparency, as a mecha-
nism to detect potential failures in ML products for health care applications. It reviews practices that apply to the early stages of the 
ML lifecycle, when datasets and models are created; these stages are unique to ML products. Concretely, this report demonstrates how 
two recently proposed checklists, datasheets for datasets and model cards, can be adopted to increase the transparency of crucial stages 
of the ML lifecycle, using ChestX-ray8 and CheXNet as examples. The adoption of checklists to document the strengths, limitations, 
and applications of datasets and models in a structured format leads to increased transparency, allowing early detection of potential 
problems and opportunities for improvement.

Supplemental material is available for this article.

© RSNA, 2022

Assessing Methods and Tools to Improve Reporting, 
Increase Transparency, and Reduce Failures in Machine 
Learning Applications in Health Care
Christian Garbin, MS • Oge Marques, PhD

From the College of Engineering & Computer Science, Florida Atlantic University, 777 Glades Rd, EE441, Boca Raton, FL 33431-0991. Received May 18, 2021; revision 
requested July 2; revision received December 17; accepted January 5, 2022. Address correspondence to O.M. (e-mail: omarques@fau.edu).

Authors declared no funding for this work.

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2022; 4(2):e210127 • https://doi.org/10.1148/ryai.210127 • Content code: 

mailto:reprints%40rsna.org?subject=
mailto:omarques@fau.edu


2 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 4: Number 2—2022

Assessing Methods and Tools to Improve Machine Learning Applications in Health Care

Auditing and Transparency in the Early Stages
While each stage in the ML product lifecycle can introduce 
failures, those introduced in the early stages are particularly 
critical. Failures introduced in the later stages, such as the 
release stage (eg, incorrect text in the operations manual), 
may be corrected without fundamental changes to the criti-
cal pieces of the product. However, failures introduced in 
the dataset procurement (eg, incorrect labels in datasets) 
and model training stages (eg, data leakage) are potentially 
fatal for the product. No remedial action in a later stage can 
compensate for a model that makes wrong predictions in 
the field.

To complicate matters further, failures in these stages are 
obscure. They are difficult to find with traditional test meth-
ods. For example, wrong labels in the training set, unrepre-
sentative datasets, single-source bias, data leakage, and many 
other errors cannot be easily found by testing a trained model. 
In introducing the term data cascades (“compounding events 
causing negative, downstream effects from data issues”), Sam-
basivan et al (8) note that “…[they] were typically triggered in 
the upstream and appeared unexpectedly in the downstream of 
deployment.” Even when they are found in those later stages, 
they will be costly to fix.

Other issues are complex and interrelated. For example, there 
are different types of bias, introduced in multiple stages: historical 
bias (secular trends, eg, general dietary improvements, that add 
confounding factors), representation bias (the target population 
is underrepresented, eg, instead of adults in general, sampling 
only adults who sought medical care), measurement bias (using 
proxies for actual data, such as confusing “low health care expen-
diture” with “good health”), evaluation bias (evaluating models 
with data that do not represent actual usage, such as evaluating 
radiography disease detection models with preprocessed datasets 
instead of clinical images), aggregation bias (extrapolating find-
ings from one subgroup to other, unrelated subgroups, eg, not 
accounting for the different baseline of skin cancer in different 
ethnicities), and deployment bias, which is the only type of bias 
visible to external inspection (9).

In health care applications, issues introduced in the early 
stages are especially consequential. They affect the product’s 
fundamental goal to make predictions about an individual’s 
clinical management and treatment. Some of these issues are 
insidious, not manifesting themselves at the point of occur-
rence, but much later, where the causal relationship between 
the issues in the product and its consequences may have been 
obscured by the passage of time. Some of these failures are 
even self-reinforcing, like the product that assigns less health 
care in the future to people who received less health care in 
the past (10).

In this report, we posit that the human intervention needed 
to prevent issues in the early, crucial stages of the product life-
cycle should come in the form of auditing, which “[e]nable[s] 
interested third parties to probe, understand, and review the be-
havior of the algorithm through disclosure of information that 
enables monitoring, checking, or criticism…” (11), supported 
by transparency, or the “visibility or accessibility of information 
especially concerning business practices” (12).

raw data, feature engineering, and partition of training and 
testing subsets.

3. Train the model: Train and test the model using the train-
ing and testing dataset.

4. Test the product: Test the product internally and ex-
ternally to validate the model with data beyond the original 
dataset.

5. Release the product: Make the product available to the 
target users.

6. Monitor the behavior of the product: Collect and analyze 
metrics to detect deviations from the expected behavior (eg, 
distribution or domain drift).

Notably, stages two and three of this lifecycle are specific to 
ML products (Fig 1), as described below.

Regarding stage two (procure a dataset), a large amount 
of data is needed to train a model. Data is usually not con-
sumed in the form it was collected. The procedure to pro-
cure raw data and prepare a dataset (clean it up, add labels, 
remove wrong instances, and other steps needed to make it 
consumable to the training process) is a fundamental part 
of creating the product. This procedure needs to go through 
the same rigorous inspection and test process that goes into 
the product’s code. The tools that preprocess raw data are 
part of the product, and data itself needs to be tested before 
it is used.

As to stage three (train the model), instead of writing code, 
we derive a high-dimensional model from a preprocessed da-
taset and adjust the model’s parameters and hyperparameters 
along the way. The resulting model is much too complex to be 
directly inspected by humans.

Abbreviations
AI = artificial intelligence, CLAIM = Checklist for AI in Medical 
Imaging, CONSORT = Consolidated Standards of Reporting Tri-
als, SMACTR = scoping, mapping, artifact collection, testing, and 
reflection
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determine where issues were introduced, 
limiting the search for their root causes. 
Moreover, external audits cannot inspect 
the raw data collection and preprocessing, 
the resulting dataset, the training param-
eters, and other fundamental steps in the 
creation of ML products. This limitation 
hinders the ability of an external audit to 
find more subtle issues related to fairness 
and ethics (13).

Internal audits, on the other hand, are 
designed to review all steps and to have ac-
cess to all artifacts used to create the product.

To be effective, internal audits need to 
be approached methodically. The scoping, 
mapping, artifact collection, testing, and 
reflection (SMACTR) audit framework 
(13) (Fig 2) divides the audit process in 
five stages:

1. Scoping: Describe the use cases and 
similar applications to highlight areas of 
concern, specifying areas of potential harm 
and social impact that will require attention 
in the later audit stages.

2. Mapping: Identify internal stakehold-
ers, key personnel involved in creating the 
system and their roles. Failure modes and 
effect analysis starts in this stage, resulting 
in a prioritized risk list.

3. Artifact collection: Collect docu-
ments created during the product develop-

ment from all organizations involved in the process.
4. Testing: Perform tests to verify the product’s compliance 

with the organization’s stated ethical values.
5. Reflection: Compare the audit’s results with the expected 

results, producing the final risk analysis and mitigations.
Audits need transparency to be effective. A simple yet effec-

tive way to increase transparency is to use checklists.

Checklists as Tools to Increase Transparency
Checklists are key tools for the artifact collection stage of an 
internal audit (Fig 2) (13) and contribute to audit trails (14).

There are two types of audits (13):
External audits: Auditors inspect a product without 

access to the details of the processes, methods, and tools. 
They can inspect the results of the organization’s work, the 
product, but not the steps that lead to it. In the ML prod-
uct lifecycle, the earliest it can happen is in the test stage.

Internal audits: Auditors inspect the internal processes 
and tools used to create the product. They can act in any 
stage of the ML product lifecycle.

While helpful to verify the functionality of an ML product, 
external audits have serious limitations when applied to ML 
products. They can only inspect the final model and cannot 

Figure 1: Traditional versus machine learning (ML) software products. Two stages in ML software products are fundamentally different: procure a dataset 
and train the model. 

Figure 2: Overview of the internal audit framework SMACTR. Gray indicates a process, and the colored 
sections represent documents. Documents in yellow are produced by the auditors, blue documents are pro-
duced by the engineering and product teams, and green documents are jointly developed. ADHF = algorithmic 
design history file, FMEA = failure models and effect analysis, SMACTR = scoping, mapping, artifact collection, 
testing, and reflection. (Adapted, under an open access license, from reference 13.)
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The motivation behind the proposal was the electronics in-
dustry, where every component has a datasheet that describes 
its operating characteristics and recommended uses. In ML, 
data are the input for model training. Using an unreliable da-
taset, using a dataset outside of its original intent, or even not 
fully understanding the limitations of a dataset, has dire conse-
quences for the model. However, “[d]espite the importance of 
data to [ML], there is no standardized process for documenting 
[ML] datasets. To address this gap, we propose datasheets for 
datasets” (4).

The dataset datasheet is divided into the following sections: 
(a) motivation: the reasons for creating the dataset and funding 
interests, if any; (b) composition: number of instances, content 
of each instance, how to split the dataset in training and test sets, 
possible sources of errors, and privacy considerations; (c) collec-
tion process: how data was acquired, including types of equip-
ment and consent from participants; (d) preprocessing/cleaning/
labeling: what tools and processes were used to transform the 
raw data into the published dataset; (e) uses: for what tasks the 
dataset is and is not suitable; (f ) distribution: how to access the 
dataset and terms of use; and (g) maintenance: how the dataset 
will be kept up to date.

The authors acknowledge that “the process of creating a data-
sheet will always take time, and organizational infrastructure, 
incentives, and workflows will need to be modified to accom-
modate this investment” (4). However, for high-stakes industries 
such as health care, understanding the uses and limitations of 
a dataset is essential for the model development stage. In those 
applications, having the dataset information collected upfront, 
in the structured format of a datasheet, recoups the time in later 
activities, such as functional and regulatory conformance tests.

The datasheet is not a passive, after-the-fact document. Da-
taset creators are expected to read the questions in the motiva-
tion, composition, and collection process sections before they 
start collecting data for the dataset. The questions in these sec-
tions have considerations that cannot be easily rectified later if 
not taken into account before data are gathered. Similarly, the 
dataset creators are expected to read the questions in the pre-
processsing/cleaning/labeling section before they preprocess the 
raw data.

Model Cards for Model Reporting
The model cards for model reporting (5) checklist was pro-
posed at the 2019 Conference on Fairness, Accountability, and 
Transparency.

Model cards are “short documents accompanying trained 
[ML] models that provide benchmarked evaluation in a variety 
of conditions, such as across different cultural, demographic, 
or phenotypic groups … and intersectional groups … that are 
relevant to the intended application domains. Model cards also 
disclose the context in which models are intended to be used, 
details of the performance evaluation procedures, and other rel-
evant information” (5).

Model cards were motivated by systematic bias in commer-
cial applications that were discovered only after the models were 
released. To counter that, the authors prescribe collecting model 

In the past few years, several checklists to promote fairness, 
accountability, transparency, and ethics in AI-based scientific 
papers and products have been proposed. Appendix E1 (supple-
ment), “Checklists to promote fairness, accountability, transpar-
ency, and ethics,” describes some of the checklists that cover the 
lifecycle of AI-based products, including checklists specific to 
health care applications.

Checklists can be applicable to different  stages of the ML 
lifecycle (Table 1) and support the different roles that partici-
pate in the lifecycle (Table 2). These tables are not meant to 
imply that all checklists are needed for these stages and roles. 
Some of the checklists overlap and could be substituted for 
another.

Checklists for Datasets and Models
Two checklists have been recently proposed to make datasets 
and models more transparent: datasheets for datasets (4) and 
model cards for model reporting (5).

The SMACTR audit framework has adopted these two 
checklists because they make “algorithmic development and the 
algorithms themselves more auditable, with the aim of antici-
pating risks and harms with using artificial intelligence systems” 
(13). They are part of the artifact collection phase, created by the 
engineering team as input for the audit (Fig 2).

Of the checklists reviewed in Appendix E1 (supplement), we 
selected these two because they are self-contained. Each checklist 
documents one specific deliverable of the ML lifecycle, the data-
set or the model. Being self-contained and focusing on one stage 
of the ML lifecycle has the following advantages over broader 
checklists: 

They can be created early in the ML lifecycle.
They can be created by data scientists and ML engineers with 

support from domain experts.
They can be taught as a general practice for any ML scientific 

research or product development.
They can be used as sources for the other checklists. Most 

checklists used in scientific publications and the industry 
(rightly) cover a broader range of the ML lifecycle. These broader 
checklists ask for details of the dataset and the model. For ex-
ample, the methods section of the Checklist for AI in Medical 
Imaging (CLAIM) (15), the analysis-specific questions section 
of AI–transparent, replicable, ethical, and effective research (or, 
AI-TREE), and all the information in the model facts section 
(16) can be derived from the dataset datasheet and model card.

They contribute to quality assurance activities and quality 
improvement processes by documenting verifiable statements 
about the dataset and the model.

They can support other processes and regulations. For exam-
ple, they can act as “deliverables” for IEC 62304 (17) and help 
with “design controls” for the Food and Drug Administration 
title 21 (18).

Datasheets for Datasets
The datasheets for datasets (4) checklist was proposed in March 
2018 by a team from Microsoft Research, Google, Georgia In-
stitute of Technology, and Cornell University.
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Radiology: Artificial Intelligence Volume 4: Number 2—2022 n radiology-ai.rsna.org 5

Garbin and Marques

ChestX-ray8 Dataset Datasheet
ChestX-ray8 is a dataset with more than 100 000 chest radio-
graphs and their labels (6). It was created and made publicly 
available by the National Institutes of Health Clinical Cen-
ter (20). Its paper is approaching 800 citations, according to 
Google Scholar. (It originally had images for eight diseases, en-
hanced later to cover 14 diseases, resulting in the other name 
by which this dataset is known, ChestX-ray14. The paper de-
scribing the dataset still refers to it as ChestX-ray8; therefore, 
this report will use that name.)

In this section, we convert the description of the ChestX-ray8 
dataset from the prose of its original paper into the structured 
format of a dataset datasheet (4).

We create a datasheet for the ChestX-ray8 dataset by extract-
ing information from the latest version of the paper, version 5. In 
doing so, we demonstrate how the structured description of the 
dataset makes it straightforward to identify the dataset strengths, 
applications, and limitations. Information for the datasheet was 
compiled from various sources that described and/or analyzed 
the contents in detail (6, 20–24).

Figure 3 lists the following important question within the 
uses section: “Is there anything about the composition of the 
dataset or the way it was collected and preprocessed/cleaned/la-
beled that might impact future uses?” This prompts reflection 
on how the process to create the dataset affects its use. Guided 
by this information, dataset users can better understand suitable 
applications and potential limitations of the dataset.

The complete version of the ChestX-ray8 dataset datasheet 
is available on the GitHub repository at https://github.com/
fau-masters-collected-works-cgarbin/chestx-ray8-datasheet.

CheXNet Model Card
In late 2017, a team from Stanford announced CheXNet, a 
deep learning algorithm used to detect pneumonia from chest 
radiographs (7). It was developed based on the ChestX-ray8 
dataset (6), with an important enhancement: A team of four 
radiologists labeled the test set (as opposed to relying on the 
natural language processing–extracted labels from ChestX-
ray8). It quickly became popular and was soon cited in more 
than 600 papers, according to Google Scholar.

In this section, we convert the description of the CheXNet 
model from the prose of its original paper into the structured 
format of a model card (5). Similar to what was done to create 
the dataset datasheet, we extract information from the paper into 
the structured description of a model card. Information for the 
model card was compiled from a study by Rajpurkar et al (7 ) 
and an in-depth review by Oakden-Rayner (25).

Figure 4 shows the caveats and recommendations section of 
the model card. The structured format of the model card helps 
organize information that would otherwise be spread in different 
places. Placing all the information in one place helps both model 
users and producers describe and analyze the different aspects of 
the model.

The complete version of the model card is avail-
able on the GitHub repository at https://github.com/
fau-masters-collected-works-cgarbin/chexnet-model-card.

metrics partitioned by cultural, demographic, or phenotypic 
groups, in conditions that match the model’s use cases, and ana-
lyzing combinations of two or more of these groups and condi-
tions. The emphasis on ethical aspects of the measurements is 
a distinguishing feature of model cards, compared with other 
proposals to document models (5).

The model card is divided into the following sections: (a) 
model details: model version, date, type, license, and other basic 
details about the model; (b) intended use: primary intended use 
cases, intended users, and out-of-scope uses; (c) factors: how the 
model performance varies across groups (eg, age, sex, Fitzpatrick 
skin type), instruments (eg, portable vs fixed radiography equip-
ment), environment (eg, hospital vs mobile clinic), and other 
factors that may affect the model, including combinations of 
these factors; (d) metrics: how the model performance is being 
reported and why these specific metrics were chosen; it should 
include performance with decision thresholds, variability of the 
measurements, and other details; (e) evaluation data: what datas-
ets were chosen to evaluate the model and why they were chosen; 
(f ) training data: description of the training data, respecting pri-
vacy and confidentiality terms, with enough detail to help iden-
tify what kind of biases the model may encode; (g) quantitative 
analyses: disaggregated (broken down by groups) quantitative 
analysis of the model performance; (h) ethical considerations: 
ethical challenges faced when developing the model and how 
they were solved or mitigated; and (i) caveats and recommenda-
tions: any other relevant item not covered in the other sections, 
such as the need for further investigations for certain use cases.

Implementation of intersectional analysis compels the 
model creators to document performance not only in the 
larger, more obvious groups, such as male versus female, but 
also in combinations of those groups. For example, model cre-
ators may evaluate “male, Fitzpatrick skin type I” versus “male, 
Fitzpatrick skin type V,” or “female, ages 18–34 years” versus 
“female, ages 35–50 years.” Disaggregating the measures of a 
model before putting it in production can prevent embarrass-
ing and potentially harmful errors.

Examples in Radiology
This section applies datasheets for datasets (4) and model cards (5) 
to two well-known papers. We build a datasheet for the ChestX-
ray8 dataset from the original paper (6) and other sources, aug-
mented with a multidimensional exploration of the dataset in the 
form of tables and visualizations. We build a model card for the 
CheXNet model from the original paper (7) and other sources.

In both cases, we follow the visual design (order of sections, 
text formatting, colors, and other elements) of the original data-
sheets for datasets (4) and model cards (5) papers. We believe 
that following a consistent visual language will, over time, make 
it easier for the community to identify the presence (or absence) 
of datasheets and model cards in the literature, directing atten-
tion to the sections that are more relevant to their interests. This 
recognizable visual design approach is similar to other reporting 
methods, such as the distinct Consolidated Standards of Report-
ing Trials (CONSORT) flow diagram (19), whose presence in 
papers is readily recognizable.

http://radiology-ai.rsna.org
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Summary
Procuring a dataset and training a model are the most critical 
steps of the ML lifecycle. Getting them wrong can be detri-
mental to the performance of an ML product. Waiting until 
a dataset has been created and a model has been trained may 
be too late to take any meaningful corrective action. However, 
these early stages are the most technical and not as easily un-
derstood by those outside of the ML community. To involve 
the other disciplines as early as possible, we need to increase 
transparency in these early stages.

To increase transparency of datasets, we applied datasheets for 
datasets (4) to a well-known scientific paper. This demonstrates 
how a structured description of what the dataset contains and how 
it was created allows other disciplines to participate in its creation 
and application. This checklist was also applied to the CheXpert 
dataset (26), resulting in the dataset datasheet available at Garbin 
et al (27).

To increase transparency of models, we applied model cards 
(5) to a well-known scientific paper that was based on the dataset 
we used for the datasheet. Similarly, this shows that a structured 
description of the model allows for a well-informed, productive 
discussion to take place in the community, which involves not 
only ML practitioners but also domain experts.

Whether or not these two tools in particular are the tools 
we will use a few years from now is not the essence of the solu-
tion. The essence is transparency in the AI product lifecycle in 
all stages, with the participation of all stakeholders. We may find 
even better ways to achieve the same results, or we may find 
other ways to augment them with even more tools and methods.

Datasheets for datasets and model cards bring transparency 
to the early stages of the ML cycle. But in the end, we want to 
bring transparency 
to the end user at 
the point where the 
products are used. 
A recent proposal 
to increase transpar-
ency for end users 
is Model Facts (16). 
Using a form that 
resembles the labels 
and leaflets we see in 
medicine packages, 
a model fact card 
clearly explains uses, 
directions, and limi-
tations (the warn-
ings section). It gives 
the end user “actionable information” (16) at the point where it 
is most needed, when the products are used.

As checklists are added, we begin to see them as a series of 
checklists built throughout the ML lifecycle. Each checklist 
builds on the previous one. If we link them together, we can 
avoid duplication of work and increase their accuracy (Fig 5).

As we step back further, we see a similar picture in a larger 
context. We have discussed so far checklists that are directly 

related to ML work. However, the ML work we do is part of 
a larger picture. For example, in the realm of health care ap-
plications, we have some general health care checklists, like 
CONSORT-AI. Health care journals are publishing their own 
set of checklists, like CLAIM (15) and the Radiology journal 
AI guide (28).

Once we add more checklists for specific purposes, we should 
approach them as a pipeline of checklists, to build them more 

Figure 3: One of the questions in the uses section of the dataset datasheet. 
This question prompts reflection on how the tools and methods used to create the 
dataset affect its uses. As indicated, these aspects include image preprocessing, 
image source, label accuracy, label interpretation, and label source. NLP = natural 
language processing.

Figure 4: The caveats and recommendations section of a model card. DICOM = digital imaging and communications in medicine.
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Figure 6: An example of a pipeline of checklists focusing on medical imaging. Some of the checklists (yellow background) are generic and use-
ful for all machine learning (ML) applications. Other checklists (white background) are used for all types of health care applications. As we move into 
a specific domain (eg, medical imaging), specific checklists are used (green background and dashed outline). AI = artificial intelligence, CLAIM = 
Checklist for AI in Medical Imaging, CONSORT-AI = Consolidated Standards of Reporting Trials–AI, PROBAST = prediction model risk of bias as-
sessment tool, TRIPOD-AI = Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis–AI.

Figure 5: Datasheets for datasets, model cards, and model facts are assembled through the machine learning (ML) lifecycle stages. As we move from the earlier stages 
of the ML lifecycle to the later stages, each checklist is augmented with new information and used to build the next checklist. Building them as an ensemble makes them even 
more useful. 

http://radiology-ai.rsna.org
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efficiently and accurately. As an illustration, in Figure 6, we can 
see a pipeline of checklists for medical image ML. Starting at the 
top, we see the two checklists that cover the fundamental steps 
of procuring a dataset and training a model. As we move down 
the list, we add checklists specific to medical image applications 
and health care in general.

Approaching them as a logical sequence of checklists, with later 
ones building on top of the earlier ones, allows us to reduce dupli-
cation of work and increase the accuracy of the checklists by draw-
ing from reliable information as we move through the pipeline.
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The Dataset Nutrition 
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X X

The ML Test Score X X X
TRIPOD-AI X X X X X X
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= Consolidated Standards of Reporting Trials–AI, ECLAIR = evaluating commercial AI solutions in radiology, ML = machine learning, 
PROBAST-AI = prediction model risk of bias assessment tool–AI, SPIRIT-AI = Standard Protocol Items: Recommendations for Inter-
ventional Trials–AI, STARD-AI = Standards for Reporting of Diagnostic Accuracy Studies–AI, TRIPOD-AI = Transparent Reporting of a 
multivariable prediction model for Individual Prognosis or Diagnosis–AI.
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† This refers to clinicians using a product.
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