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Abstract

Around 5% of the population is affected by a rare genetic disease, yet most endure years of 

uncertainty before receiving a genetic test. A common feature of genetic diseases is the presence 

of multiple rare phenotypes that often span organ systems. Here, we use diagnostic billing 
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information from longitudinal clinical data in the electronic health records (EHRs) of 2,286 

patients who received a chromosomal microarray test, and 9,144 matched controls, to build a 

model to predict who should receive a genetic test. The model achieved high prediction accuracies 

in a held-out test sample (area under the receiver operating characteristic curve (AUROC), 

0.97; area under the precision-recall curve (AUPRC), 0.92), in an independent hospital system 

(AUROC, 0.95; AUPRC, 0.62), and in an independent set of 172,265 patients in which cases were 

broadly defined as having an interaction with a genetics provider (AUROC, 0.9; AUPRC, 0.63). 

Patients carrying a putative pathogenic copy number variant were also accurately identified by 

the model. Compared with current approaches for genetic test determination, our model could 

identify more patients for testing while also increasing the proportion of those tested who have a 

genetic disease. We demonstrate that phenotypic patterns representative of a wide range of genetic 

diseases can be captured from EHRs to systematize decision-making for genetic testing, with the 

potential to speed up diagnosis, improve care and reduce costs.

Rare diseases, of which the majority are genetic, affect 3.5–6.2% of the worlds 

population1,2. Many genetic diseases have yet to be discovered or characterized, leaving 

those patients to endure particularly long and challenging diagnostic odysseys2,3. Even for 

the thousands of genetic diseases that have already been described4,5, heterogenous clinical 

symptoms may complicate identification of the underlying cause, thereby delaying diagnosis 

and the opportunity for medical benefits. Genetic testing represents a standard means to 

diagnose a patient with a genetic disease. However, current approaches that determine 

which patients receive a genetic test are inconsistent and inequitable6. There are numerous 

conditions for which genetic testing is recommended, yet the vast majority of patients still 

do not receive a genetic test7,8. Developing a systematized way to identify patients who are 

likely to have a rare genetic disease could guide genetic testing decision-making to improve 

diagnostic outcomes, reduce the healthcare costs and the burden on patients, and enable 

opportunities for improved care.

The identification of genetic diseases has typically been through clinical ascertainment of 

shared syndromic features9,10. However, there exists variable expressivity and penetrance 

such that two patients with the same underlying genetic variant may not present similarly, or 

may not present with all or many of the features of the well-characterized genetic disease11. 

For example, a large deletion on chromosome 22 causes 22q11.2 deletion syndrome, which 

includes both velocardiofacial syndrome and DiGeorge syndrome, which were historically 

believed to be different syndromes due to their differing clinical presentations. Additionally, 

patients may carry multiple contributing genetic factors leading to a phenotypic presentation 

that deviates from those previously defined and challenges a clear diagnosis12,13.

Longitudinal clinical data stored in the electronic health record (EHR) have enabled 

approaches to identify patients at risk for numerous conditions14. In particular, recent 

work has shown that specific genetic diseases can be identified by looking for patients 

carrying many of the expected symptoms15,16. Although each genetic disease may present 

with a recognizable phenotypic profile, across the majority of genetic diseases there exists 

a recurring pattern of multiple phenotypes that are often rare and affect multiple organ 
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systems. We propose that this constellation of rare and diverse phenotypes is a hallmark 

signature of patients with a genetic disease and can be captured from data in the EHR.

Here, we test this hypothesis by building a machine learning-based prediction model to 

identify patients who have a clinical profile representative of receiving a genetic test for a 

suspected genetic disease. Specifically, we trained and tested our model on 2,286 patients 

who received a chromosomal microarray (CMA) test and 9,144 demographically matched 

controls using only diagnostic billing information from the EHR. We show highly accurate 

performance in our held-out testing sample, as well as in an external validation sample 

from another institution, and in an independent set of more than 170,000 hospital patients. 

We further validate the ability of this model to identify patients with genetic disease from 

among patients with putative pathogenic copy number variants (CNVs) and those carrying 

a diverse array of genetic diseases including many not present in our training data. Overall, 

our approach establishes the potential to identify patients with genetic disease from EHR 

data and presents a systemized way to improve the consistency and equity of genetic testing.

Results

Demographic and phenotype description of the CMA sample.

The primary case population consisted of 2,286 patients who received a CMA test. We 

matched each patient in the CMA group to four controls based exactly on age, sex, 

race, number of unique years in which they visited Vanderbilt University Medical Center 

(VUMC), and the closest available match on medical record length in days (maximum 

difference, 365 days). The vast majority (95%) of the recipients of the CMA test were 

less than 20 years old (mean age, 8.1 years), and most were male (61.3%) and white 

(75.6%, Table 1). Twenty-four per cent of patients (n = 550) had an abnormal result, 

including 250 with at least one gain and 257 with at least one loss. Of these 550 patients, 

37% (201 of 550) had a potential diagnosis included in the report. Although the reported 

genomic coordinates were most often unique, several known recurrent syndromes were seen 

more frequently, such as DiGeorge syndrome, Charcot-Marie-Tooth syndrome and 16p11.2 

deletion syndrome.

We tested the difference in the frequency of phecodes (that is, an organization of EHR-based 

diagnostic billing codes for use in phenome-wide association studies (pheWASs))17 between 

the patients in the CMA group and the matched controls. Conditions of early development 

such as autism, developmental delay, delayed milestones, and multiple congenital anomalies 

such as heart defects represented the most significantly associated phecodes (Extended Data 

Fig. 1). When we performed the same analysis between the patients in the CMA group 

with an abnormal report and those without, we identified two significant phecodes after 

correction for 1,620 tests (P < 3.1 × 10−5), that is, chromosomal anomalies (758.1, P = 3.31 

× 10−151) and developmental delays and disorders (315, P = 2.73 × 10−5).

Building a prediction model for patients receiving a CMA test.

We posed a prediction problem in which we sought to distinguish individuals who received 

a CMA test from matched controls to capture the clinical suspicion of a genetic disease, 
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but in an automated and systemized way. We included both presence–absence and the 

counts of 1,564 phecodes as input, and applied multiple prediction methods including naive 

Bayes, logistic regression, gradient boosting trees and random forest analysis (Methods). 

The phecodes for chromosomal anomalies and all 56 phecodes in the congenital anomalies 

group, all of which might indicate a need for or result from a CMA test, were removed 

to avoid potential data leakage that could inflate prediction performance. We further used 

several approaches to reduce the dimensionality of the input and included an all-phecode 

phenotype risk score16 for comparison. Using a fourfold cross-validation strategy, we trained 

on 80% of the data (1,818 cases, 7,326 controls) and applied the model with the highest 

area under the precision–recall curve (AUPRC) to the remaining 20% for testing (468 

cases, 1,818 controls). Broadly, the use of dimensionality reduction worsened performance, 

and logistic regression performed only slightly worse than the more complex classifiers 

(Supplementary Tables 1 and 2). The best-performing model applied random forest analysis 

and used phecode counts as input, with no dimensionality reduction. At a probability 

threshold of 0.5, the model predicted 452 cases and 1,834 controls, of which 87% of the 

predicted cases (392 of 452) and 96% of the predicted controls (1,758/1,834) were classified 

correctly. Correct predictions included 84% of all true cases (392 of 468) and 97% of 

all true controls (1,758 of 1,818). Furthermore, the model had an area under the receiver 

operating characteristic curve (AUROC) of 0.97 (Fig. 1a) and an AUPRC of 0.92 (Fig. 1b). 

Calibration was measured, and the Brier score was 0.0460 after the application of isotonic 

regression (Fig. 1c). Gini feature importances were largely correlated with the results from 

the pheWAS, and pointed to mostly developmental phenotypes (Supplementary Table 3).

To assess whether the performance of the model was biased by phecodes that occurred after 

the genetic test, we performed a secondary analysis in which we censored the phecodes of 

patients in the CMA group from the day their CMA report was entered. Despite a loss of 

phecode data (average time between first and last censored phecode, 686 days), the censored 

model still performed similarly to the uncensored model, and had an AUROC of 0.96, an 

AUPRC of 0.88 and a Brier score of 0.0594 (Fig. 1a–c), indicating a minimal bias from 

phecodes that occurred after the CMA test. To maximize data availability, we elected to use 

the uncensored model. Finally, we assessed model disparity by building models using the 

same input data, classification methods and pipeline as in the primary experiment to instead 

predict socioeconomic status (SES), self-reported race and sex. These models performed 

poorly compared with our model to predict genetic testing, and had much lower AUROCs 

(SES, 0.61; sex, 0.72; race, 0.67) and AUPRCs (SES, 0.34; sex, 0.62; race, 0.22). However, 

they performed better than random, and the biases in our training data patient group, that 

is, disproportionately lower SES, white race and male sex (Table 1), resulted in higher 

probabilities in those groups. Importantly performance within these subgroups of patients 

remained high (AUROCs > 0.959, AUPRCs > 0.877) (Supplementary Table 4).

Internal and external validation in hospital populations.

CMA tests are often the first line of genetic testing but they do not account for all genetic 

testing in a hospital system. To validate our model in a broader set of patients receiving a 

genetic test, we applied it to a hospital sample that consisted of 172,265 patients under 

20 years of age (to match our training population) who had at least 4 years of data 
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(Table 1). Cases were defined as patients with evidence of visiting a genetics clinic and 

controls as those with no mention or suspicion of genetic disease across their medical record 

(Methods). In total, there were 10,074 cases and 107,263 controls. Application of the model 

in this population (Fig. 1d–f) resulted in a similar classification performance (AUROC, 0.9) 

but a lower average precision compared with the CMA test dataset, which was at least 

partially driven by the much larger case imbalance (AUPRC, 0.63). External validation was 

performed at Massachusetts General Brigham (MGB) and was applied to the same defined 

population by age and record length, with the same exclusions, but with two important 

differences. For ease of portability, we selected the best-performing logistic regression 

model and we defined cases as patients with a procedural code for having received a CMA 

test (that is, the American Medical Association Current Procedural Terminology (CPT) code 

81228 or 81229). Across the 599 cases and 39,000 controls at MGB, the AUROC was 0.95 

and the AUPRC was 0.62, For comparison, when the same phenotype definition and model 

were used for the 1,635 cases and 107,323 controls at VUMC, the AUROC was 0.92 and the 

AUPRC was 0.55.

Genetic validation among CNV carriers.

CNVs were generated from genotyping data on an independently ascertained subset of 

6,445 patients from our hospital population described above (Methods). We assessed the 

performance of the model in identifying patients with known or putative pathogenic variants 

in three ways. First, we identified 132 patients who carried a 10 Mb or greater duplication 

on chromosome 21. Based on the diagnostic codes and explicit mentions in the notes, all 

of these patients had a clinical diagnosis of Down syndrome, validating the CNV calls. For 

these patients, the median probability was 0.92 (mean, 0.82), and 117 patients (89%) had a 

probability greater than 0.5. The 15 patients with probabilities below 0.5 had fourfold fewer 

phecodes (mean, 174.4; mean unique, 24.8) than those who had probabilities greater than 

0.5 (mean, 698.1; mean unique, 65.1).

Second, patients were defined as having a CNV syndrome if they carried a deletion or 

duplication that overlapped at least 50% of one of 23 highly penetrant, recurrent, pathogenic 

(grade I) CNV syndromes from DECIPHER (22 deletions, 1 duplication)18. There were 

46 patients, consisting of 44 carrying deletions and 2 carrying duplications, who met 

this criterion (Fig. 2a). The median probability in these patients was 0.97 (mean, 0.82), 

with 40 patients (87%) having a probability above 0.5 and 31 (67%) having a probability 

above 0.9. Nine syndromes were represented in this group, with the most frequent being 

DiGeorge syndrome, Angelman or Prader–Willi syndrome, and cri du chat syndrome. Of 

the six patients with probabilities below 0.5, two had CNVs associated with neuropathies 

that typically present with symptoms later in life. In our CMA group, patients with these 

later-presenting neuropathies received their reports when older than 10 years on average, 

compared with near birth for patients who had diseases such as Down syndrome or 

DiGeorge syndrome (Extended Data Fig. 2). For one of the neuropathies, hereditary liability 

to pressure palsies (HNPP), we see a diverse presentation of symptoms, corresponding to 

more variable predictions that may be a product of age (Fig. 2b).
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Finally, we wanted to quantify what proportion of patients identified by the model carried a 

potentially diagnosable genetic disease, how that proportion compared with current clinical 

practice, and how many undiagnosed patients could be identified. We defined patients with 

a potentially diagnosable genetic disease as those carrying a CNV overlapping at least 50% 

of one or more of 7,773 pathogenic CNVs curated by ClinGen. In total, 673 patients (10.4%) 

had at least one CNV overlapping at least one of these variants. We then calculated the 

proportion of patients carrying a pathogenic CNV at different probability thresholds (Fig. 

3). As the probability threshold increased, so did the proportion of potentially diagnosable 

patients, reaching a maximum of just over 22%. For comparison, in the group of patients 

who received a CMA test and who had a reported abnormal gain or loss in our training 

dataset, 15.2% had a CNV that overlapped with one of these pathogenic CNVs using the 

same definition. Of the 673 patients with a pathogenic CNV, 435 (64.6%) remain potentially 

undiagnosed, that is, they have no evidence of visiting a genetics clinic (previously defined 

as a case in our hospital population). The numbers of these patients who would be identified 

by the model and who would therefore have an opportunity to be tested and diagnosed 

are 247, 203, 178, 161 and 152 at probability thresholds of >0.1, >0.2, >0.3, >0.4 and 

>0.5, respectively. Across the entire hospital population, there are thousands of potentially 

undiagnosed patients who the model suggests need a genetic test. For example, at a high 

probability threshold of >0.5, there are 10,979 patients with no evidence of visiting a 

genetics clinic. Of these, we would expect around 19% (n = 2,086) to have a putative 

pathogenic CNV that could lead to a diagnosis.

Model performance on a diverse set of 16 genetic diseases.

There are numerous genetic diseases that would not be included in our training dataset, 

given that a CMA test would not be the appropriate genetic test. To assess our hypothesis 

more broadly, we tested our model’s ability to predict patients with a diverse set of 16 

genetic diseases previously identified and validated in our sample15. These genetic diseases 

were selected because they occur frequently and because they are well-characterized for 

EHR-based work. They ranged from syndromes based on large genomic alterations such 

as Down syndrome and DiGeorge syndrome, which were present in our training dataset, to 

many other common genetic diseases such as cystic fibrosis, hemochromatosis and sickle 

cell anemia, which would not be present in our training dataset. In total, 1,843 patients in 

our hospital population had a chart-validated diagnosis of at least one of these diseases. 

On average, our model identified the entire group of patients 4–8-fold more frequently 

than expected based on the population rate of testing at different probability thresholds 

(Fig. 4). For example, 1,051 patients had a probability of >0.5, corresponding to 57% 

of those with a diagnosis of one of these diseases, whereas only 9% of the population 

would be tested at this threshold (sixfold increase in identification). The model performed 

best for the syndromes caused by large genomic alterations and identified 76% of these 

patients at a probability threshold of 0.5. However, regardless of genetic architecture and 

whether a disease was included in training, all of these disorders are captured better than 

the population expectation, with several (such as tuberous sclerosis, cystic fibrosis and 

Duchenne muscular dystrophy) being particularly well-captured at most thresholds (Fig. 4).
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Assessing earlier detection of need for genetic test.

In an independent set of 2,377 patients receiving a CMA test who were born in or after 

2011, we applied our model to calculate probabilities longitudinally at each unique visit with 

at least one diagnostic code (Methods). Using these data, we simulated how much earlier we 

might have suggested that a patient receive a genetic test compared with when they actually 

received the test. On average there were 50.6 unique visit dates per patient (median, 25) 

ranging from 1 to 947. Twenty-four per cent of those visits occurred before receiving the 

CMA test, 74% occurred after receiving the test and 2% of visits were on the same date. 

The mean age at the time of the CMA test for this cohort was 1.77 years (645.8 days, Fig. 

5a) and the median was 0.93 years (341 days). A potential limitation of this analysis is the 

need for extended amounts of data preceding the CMA test. Here, we had on average 0.89 

years of data (323.3 days, Fig. 5b) with a median of 0.16 years (58 days). At five different 

probability thresholds we calculated the proportion of patients surpassing that threshold at 

least N days before their test, meaning that the patient was required to have at least that 

many days of health record data (Fig. 5c). The overall proportion of patients identified at 

least 1 day before the test was 81%, 67%, 56%, 45% and 35% for probability thresholds of 

>0.1, >0.2, >0.3, >0.4 and >0.5, respectively. The average number of days that the model 

would have identified a patient at that threshold before the performance of the CMA test 

was 315, 243, 199, 153 and 122 (medians, 109, 57, 28.5, 7 and 1) for probability thresholds 

of >0.1, >0.2, >0.3, >0.4 and >0.5, respectively. By contrast, the proportion of patients who 

the model would have suggested for testing after they received the CMA test (at the same 

thresholds), was 9%, 18%, 24%, 37% and 49%, respectively.

Discussion

Thousands of genetic diseases have been described based on the presentation of a set of 

phenotypes seen across multiple individuals. Although the specific profile of phenotypes 

may be unique, the overall pattern of multiple rare phenotypes that indicates a genetic 

disease is shared. Here, we show that this pattern can be predicted from phenotype data in 

the EHR across multiple institutions. In essence, we demonstrate the potential to automate 

and systematize the clinical suspicion of a genetic disease, which is the primary indication 

for a genetic test. We further validate the ability of this prediction model to identify patients 

who receive a genetic test, not only a CM A test, in a real-world population of hospital 

patients and those having genetic diseases based on clinical diagnosis or genetic evidence.

Genetic testing is crucial for the diagnosis, prognosis and treatment of rare diseases. 

However, it is not consistently or equitably provided to those who need it and it has often 

been delayed by many years by the time it is offered. This study demonstrates the potential 

of using EHR data to systematically identify patients who should receive a genetic test. 

Importantly, this model is portable and demonstrates consistent performance when applied 

to EHR data from an independent institution. The present results highlight the existence 

of the thousands of patients with phenotypes that indicate the need for a genetic test but 

who have no clinical suspicion in their medical record. A substantial number of these 

patients might finally receive a genetic diagnosis with the potential to alter their care. Even 

for those patients who have already received a CMA test, for many of them the model 
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could have suggested genetic testing years earlier, and potentially shortened the common 

diagnostic journey. Furthermore, this type of approach could lead to identification of new 

genetic diseases and improved phenotypic understanding of previously identified ones. 

Implementation of this type of model as an additional piece of information contributing 

to clinical suspicion could reduce the time to testing, identify undiagnosed patients and flag 

unnecessary tests, thereby improving care and reducing costs.

Using a set of putative pathogenic CNVs we were able to show that the proportion of 

patients who would have a pathogenic finding reached more than 20% at higher probability 

thresholds. This proportion compares favorably to the 15.2% of patients in the present 

CMA group who had an abnormal gain or loss variant overlapping the same set of CNVs. 

Importantly, our model identifies 10,979 patients with high probabilities (>0.5) and no 

recorded interaction with a genetics provider, and 2,234 patients who have high probabilities 

(>0.5) but who lack any clinical suspicion of a genetic cause. These results indicate that 

implementation of such a model would provide at least as good a diagnostic yield as the 

current determination of genetic testing, while also more completely identifying all of those 

who could benefit from testing. Ultimately, the goal is not to increase testing but to improve 

diagnostic outcomes for more patients. Although the model was trained using data from 

patients who received a CMA test, which is typically the first line test, we wanted to assess 

the ability of the model to identify patients with other genetic diseases for which a CMA 

test would not be the appropriate test. Despite the specific nature of the training data, when 

the model was validated using a set of 16 genetic diseases, the performance of the model 

was still high on the subset of diseases the model had not been trained on. This highlights 

the importance of our hypothesis, that is, the consistency of that pattern of many rare 

phenotypes across many genetic disorders, as well as the broader applicability.

An ongoing goal of this work is to directly improve the identification of patients with a 

genetic disease. In our training dataset, 24% of those receiving a CMA test had an abnormal 

report (20.6% had a gain or a loss). Although this provides a subset that we could have 

trained on, there are two important limitations. The first is that all of these patients were 

identified based on the clinical suspicion of a genetic disease, and therefore on the need 

for a CMA test. There are minimal phenotypic differences between those with an abnormal 

CMA test and those without for that exact reason. Furthermore, a CMA test can identify 

only large genetic alterations, which are more likely to be of high effect but which are less 

frequent than variants of smaller size that could also have a large effect. Therefore we do not 

know how many of the 76% of patients with a ‘normal’ CMA report also have a contributing 

genetic variation. To enable a model that can directly inform the likelihood of carrying a 

genetic disease, we will require higher resolution genetic data such as genome sequencing 

and a full clinical assessment of pathogenicity. This type of effort is ongoing and these 

data will be used to amend the training data to improve the model and move towards the 

prediction of genetic disease.

There are several limitations to note in this work. The current model is trained exclusively 

on young patients (<20 years of age), who most frequently have developmental issues with 

the suspicion of carrying large chromosomal anomalies. There are many genetic diseases 

that would not receive this particular test and therefore would be excluded from our training 
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data. Although our model performs better than expected for a diverse set of 16 diseases, 

it performs better for diseases most similar to those it was trained on, particularly at the 

highest probabilities. We anticipate substantial improvements in performance, and expansion 

to a larger population when additional genetic data are incorporated into the training of the 

model.

It is important that any model built into healthcare reduces bias as much as possible19. 

We tested whether the data going into our model could predict SES, sex or race. Although 

the prediction performance for these features was substantially worse than for our intended 

outcome of genetic testing, it was not equivalent to a random model. This implies that 

although the model was unaware of SES, race and sex, combinations of features still 

encoded this information, therefore it is not blind to these attributes. Our training CMA 

data are skewed to lower SES, and to higher proportions of male individuals and of white 

individuals, which is contributing to those populations having higher probabilities overall. 

Based on epidemiological data, it is expected that male individuals will be at a higher 

risk for the developmental disorders that are most commonly tested for with CMA tests, 

therefore this increased rate may be biological and appropriate. However, it is not clear 

that the increase in probabilities for white patients is appropriate, and further work is 

needed to ensure that any such model does not increase disparities in healthcare before 

implementation. Another major concern in healthcare is the association of better access 

with higher SES, which often corresponds to more comprehensive private insurance. In our 

sample, we saw increased numbers of patients from lower SES receiving a CMA test, which 

is likely explained by local public insurance coverage for CMA testing. This represents an 

inverse of the typical concern but nonetheless is a bias worthy of further consideration.

Finally, this approach requires longitudinal EHR data, however, as seen in a subset 

of patients with Down syndrome, when data are limited this could negatively affect 

performance. Additional work is required to assign confidence to these predictions based 

on the amount and specific phenotype data available for a given patient. The need for 

extended amounts of EHR data, particularly preceding a CMA test, is especially important 

for assessing the ability of the model to shorten the time to testing. These data remain 

somewhat limited, and although our results indicate that the model could save patients up 

to several years of diagnostic odyssey, there are many potential confounders and caveats 

relating to how this would generalize to a true prospective study. Importantly, the current 

model uses only structured diagnostic codes, making it more amenable for use within many 

other systems, and performs equally well in an independent institution using the simpler 

regression-based classifier. It will be important to convert the statistical performance gain 

from the more complex classifiers to clinical benefit, to determine which model would 

provide the best balance of clinical utility and ease of portability.

In conclusion, we present an approach that leverages EHR data and machine learning 

to predict which patients should receive a genetic test based on the hypothesis that a 

unique constellation of rare phenotypes is a hallmark of genetic disease. We show that this 

model can accurately identify patients who need a genetic test across multiple datasets and 

institutions, using differing definitions of genetic tests, among patients carrying pathogenic 

CNVs, and across numerous genetic diseases. There exists the potential for a model of this 
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type to improve the healthcare of those with genetic diseases by speeding up diagnosis and 

reducing the healthcare burden and costs.

Methods

Identification of patients receiving a genetic test and matching.

Our case population included 2,388 patients who received a CMA test intended to identify 

large deletions and duplications. Those receiving this test were identified using CMA 

pathology reports from 2012 to 2018 from the VUMC Synthetic Derivative (a de-identified 

EHR system). The extracted data for the CMA reports include the date of report, indication 

for receiving the test, and interpretation (whether there were reported variants and if so, the 

size and location of the variant). Twenty-four per cent of patients (575 of 2,388) had at least 

one abnormal finding of which the majority (84%) were a gain or a loss, with the rest being 

runs of homozygosity or more complex genetic variation. For every case, we identified four 

patients with identical age, sex, race, number of unique years in which the patient had visited 

VUMC and the closest EHR record length in days (maximum difference of 365 days). The 

median absolute difference in record length across all matched pairs is 3 days (mean, 16 

days). When looking across all matched controls for each case, the median absolute sum of 

the record length difference between each case and the four controls is 16 days, and for 92% 

of cases the median sum of record length differences is less than 50 days. After matching, 

there were 2,286 cases and 9,144 controls (Table 1). The vast majority (95%) of the cases 

were less than 20 years of age (mean age, 8.1 years), and most were male (61.3%) and white 

(75.6%). This study was approved by the Vanderbilt University Institutional Review Board 

(IRB no. 170337).

Generation of feature matrices for inclusion in the prediction model.

We translated International Classification of Diseases, Ninth Revision, Clinical Modification 

(ICD9-CM) and ICD10-CM codes to 1,685 pheWAS17 codes (phecodes, v1.2) and 

generated three different methods of representing the diagnostic data of these patients. 

The first was a binary matrix indicating the presence or absence of phecodes, the second 

was a matrix of phecode counts and the third was a broadly defined phenotypic risk score 

(pheRS)16. Instead of being disorder specific, we calculated a pheRS across all phecodes, 

to create a singular score that aims to balance both the diversity of a patient’s phenotypes 

and the rarity of those phenotypes. In the calculation of prevalence as weights, we rolled all 

phecodes up the hierarchy to ensure that higher level codes were at least as common as the 

codes below them. PheWAS codes are organized in a hierarchical structure in which more 

specific phenotypes branch off with additional digits. ‘Rolling up’ refers to ensuring that all 

parent phecodes are counted whenever a child code is seen. For example, a patient with code 

758.1, but not 758, would be marked as having 758 as well. For prediction, we removed all 

phecodes under the category of congenital anomalies, given that the use of even one of these 

codes could be sufficient to support a genetic test or could represent a diagnosis as a result of 

a genetic test.
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Construction and testing of the prediction model.

We trained our model using fourfold cross-validation on 80% of the data and reserved 20% 

as a held-out test set. For the binary phecode and phecode count matrices, we additionally 

evaluated three different methods of dimensionality reduction. They consisted of principal 

component analysis (PCA), uniform manifold approximation and projection (UMAP)21, and 

PCA preserving a number of components that account for at least 95% of the cumulative 

variance in the dataset and which are fed into UMAP for final dimensionality reduction. 

We considered four different classification algorithms for this dataset, that is, naive Bayes, 

logistic regression (F2 regularization), gradient boosting trees and random forest. Aside 

from UMAP, all classification algorithms used were from the scikit-learn package20 in 

Python. After selecting a range of hyperparameters for each classifier and a dimensionality 

reduction method, we applied a grid search within our cross-validation framework and 

optimized our model selection using the AUPRC calculated by average precision, which 

summarizes all available precision (positive predictive value) for every possible recall 

(sensitivity).

To assess whether phecodes occurring at or after the time of genetic testing affected 

performance, we also trained a model in which the phecodes were censored from the date of 

the CMA report, therefore the training and testing procedure described above was performed 

twice. To test for potential disparities in our model in SES, race and sex, we trained the 

classifiers using the same process as for the main classifier, except that we used only the 

phecode counts matrix as the input because it had performed best in the primary task. 

We used the same sample set, but the classification target was instead set to SES, sex or 

race. SES was calculated as a census tract-level deprivation index from six separate SES 

measures, that is, per cent of vacant housing, per cent of households below the poverty level, 

per cent of individuals without health insurance, median income, per cent without a high 

school education and per cent on assisted income22. For SES, we split the deprivation index 

into quartiles. Not every patient in the case–control set had SES data available, and this 

analysis involved 1,481 patients in the CMA group and 6,089 controls. Due to the presence 

of multiple outcomes for SES and race, we used the F1 score (defined as the harmonic mean 

of precision and recall) for model selection during cross-validation, due to the complexity 

of implementing AUPRC across multiple classes during cross-validation. When evaluating 

test performance in the case of multiple potential outcomes, we tested the prediction of each 

outcome and averaged the AUPRC across all classes.

We quantified which phecodes were most correlated with a CMA test in two ways. First, we 

performed pheWAS testing for the association of the presence of the phecode in the CMA 

group compared with the matched controls. Second, we calculated the importance of a given 

feature, X, based on the decrease in Gini impurity23 for every split that X is involved in, 

averaged across all trees and weighted by the number of samples that arrive at that particular 

split during training.

Definition of a hospital population dataset for validation.

We extracted data on 845,423 VUMC patients with a record length of at least 4 years. We 

reduced this sample to 172,265 patients who were under 20 years of age to best match our 
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training sample. Cases (n = 10,074) were defined as those identified as having evidence of 

being seen in a genetic clinic, which was determined by searching for relevant keywords 

such as ‘genetic’ in the titles of their clinical notes or the first 200 characters of the 

note, excluding notes with titles containing the phrase ‘hereditary cancer’, given that this 

indicated that the note originated from the hereditary cancer genetics clinic. We further 

performed a broad search for any clinical suspicion of genetic disease in the clinical records 

to identify patients who may have received genetic tests but who did not visit a genetic 

clinic at VUMC. These patients were identified using regular expressions related to ‘genet’, 

‘chromosom’, ‘congenital’, ‘copy number’, ‘gene test’, ‘genetic test’, ‘nucleotide’, ‘dna’, 

‘mutation’, ‘genotype’, ‘heterozy’, ‘homozy’, ‘recessive’, ‘autosomal dominant’, ‘exon’ and 

‘genes’, and excluding common negations such as ‘no genet’, ‘no congenital’ or ‘not due to 

genet’. In total, there were 64,924 patients in this category, including 99.2% of the cases (n 
= 9,996). After removing those patients, we were left with 107,263 controls to compare with 

our cases to further validate the performance of the model.

External validation and portability.

At MGB there were 402,167 patients who had at least 4 years of records (1,460 days) 

and who were under the age of 20 years. Of these, 599 patients had received a CMA 

test (identified by the presence of either procedural code 81228 or 81229 (CPT-4)). Of 

the 212,299 controls screened for no evidence of clinical suspicion of genetic disease, we 

selected a random sample of 39,000 to achieve a case–control ratio of 1:65 to match the 

VUMC hospital population, to enable more straightforward performance comparisons. We 

extracted the inpatient, outpatient and emergency department ICD diagnosis codes for these 

patients and mapped them to phecodes (v1.2). The lifetime presence of a given phecode was 

used as a feature in the VUMC logistic regression model, which was selected for ease of 

portability and which had only a minor decrease in performance (Supplementary Table 2). A 

small number of phecodes (n = 36) were not present at MGB and were therefore excluded.

CNV quality control.

We used data from 93,626 patients from the Vanderbilt Biobank who had genotyping done 

on the Illumina Multi-Ethnic global Array (MEGAex). These patients were selected from 

nearly 250,000 patients in the biobank for dozens of different phenotypes and by many 

individual researchers. To improve the quality of the input to CNV calling, we reduced the 

set of total variants (n = 2,038,233 single-nucleotide polymorphisms) to only those with 

high genotyping call rates (>95%). CNVs were called using PennCNV24 with a population 

frequency of B allele (PFB) file and a GC model file25 generated from 1,200 randomly 

selected samples. We removed samples with a log R ratio s.d. of <0.3, a B allele frequency 

drift of <0.01 and an absolute value of waviness factor (|WF|) of <0.05. Only CNVs greater 

than 10 kb and which had at least 10 contributing variants were retained. We further 

removed samples with outlier (z-scores greater or less than 1.96) numbers of CNVs after 

quantile normalization. CNVs were removed if they overlapped genomic regions such as 

centromeres, telomeres and ENCODE blacklist regions26. Adjacent CNVs were merged if 

the gap were less than 20% of the combined length of the merged CNV. Finally, only CNVs 

in less than 1% of the sample (allele frequency 0.5%) were kept for analysis. There were 
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945,196 CNVs in 86,294 samples, of which 6,445 were from the 172,265 patients in the 

hospital reference population described above.

Validation of the prediction model using CNVs.

Further validation of our model was performed by comparing the CNVs to three sets 

of pathogenic variants. First, we used a list of 66 pathogenic CNV syndromes from the 

DECIPHER consortium18. We examined individuals who were in our hospital population set 

and who had a CNV that overlapped at least 50% with a CNV classified as having grade 

1 pathogenicity. Second, we downloaded 7,773 putative pathogenic CNVs from ClinGen 

(downloaded from University of California Santa Cruz (UCSC) Genome Browser June 

2019) and again required a 50% overlap. Finally, we identified 132 patients carrying a 10 

Mb or greater duplication on chromosome 21, indicative of Down syndrome.

Gold standard genetic diagnoses extraction and validation.

We used a previously developed cohort of patients with confirmed clinical diagnoses for 

16 different genetic diseases (achondroplasia, α-1 antitrypsin deficiency, cystic fibrosis, 

DiGeorge syndrome, Down syndrome, fragile X syndrome, hemochromatosis, Marfan 

syndrome, Duchenne muscular dystrophy, neurofibromatosis type I, neurofibromatosis type 

II, phenylketonuria, polycythemia vera, sickle cell anemia, telangiectasia type I, tuberous 

sclerosis)15. These patients were identified through manual chart review. Using this gold 

standard cohort of patients diagnosed with genetic disease, we validated the performance 

of our model by comparing the proportion of patients with the genetic diagnoses and 

probability above different thresholds to the proportion of the population with probabilities 

above the same thresholds. In this way we aim to quantify the fold increase in the number of 

patients with genetic disease who would be identified at particular thresholds compared with 

the proportion of patients who would be tested.

Time to CMA analysis.

We sought to quantify whether our model would identify patients earlier in their medical 

history then the time in which they received a CMA test and if so, by how much. We 

identified an additional group of 3,572 patients who received a CMA test who were 

not included in the training or testing of our model. The initial set of patients were 

identified through analysis of a subset of notes titled ‘pathology report’, while the data 

on the additional patients were acquired by broadening the search criteria and using string 

matching in the note context for key phrases such as ‘microarray report’. We first extracted 

all visits in which a patient received a diagnostic code and applied the model to calculate 

a probability at unique dates based on codes prior to and including that date. This then 

provided a longitudinal series of probabilities that allowed us to calculate the timepoint at 

which a patient may have passed a given threshold compared with when they received the 

CMA test. In total there were 3,545 patients with at least one phecode. We further reduced 

this sample to 2,382 patients who received the CMA test since 2011, when the test became 

commonly used at VUMC, to avoid inflating the time to test results due to technical or 

standard of care reasons. A further restriction to even later birth years did not meaningfully 

alter the results. An additional four patients were removed for exclusively having phecode 
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data after receiving their CMA test, leaving 2,377 patients for analysis. All analyses were 

done using R v3.6.0.

Extended Data

Extended Data Fig. 1 |. PheWAS of CMA cases versus matched controls.
PheWAS Manhattan plot showing significance of associations from logistic regressions of 

each of 1,620 phecodes and whether an individual received a CMA vs controls. Triangle 

points represent direction of effect and points are colored by phecode category. For clarity, 

only phecodes with uncorrected p-values below 5 × 10−150 are labeled.
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Extended Data Fig. 2 |. Age of patients at date of CMA testing differs by syndrome.
Age of patients at the time of their CMA report grouped into the most common syndromic 

region by combining diagnosis and genomic coordinates of reported abnormal variant. 

Independent patient numbers within each category: 15q11.2 syndromes (32), 16p11.2 

syndromes (14), 1q21.1 syndromes (9), CMT/HNPP (18), DiGeorge/22q11.2 Duplication 

syndrome (31), Down Syndrome (7), Turner/Klinefelter (14), Williams syndrome (9).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Predictive performance of the model in a held-out CMA test set and a general hospital 
population.
Performance metrics of the prediction model applied to the held-out CMA test dataset (both 

uncensored and censored versions) (a-c) and to a hospital population (d-f). ROC, receiver 

operating characteristic. Data are presented as mean values generated via bootstrapping (n = 

1,000) with a 95% confidence interval.
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Fig. 2 |. Identification of patients with CNV syndromes and interpretability.
a, Probabilities of genetic testing generated by the prediction model for each of the 46 

patients in the hospital sample with a CNV overlapping at least 50% of a known CNV 

syndrome, stratified by disease. b, Tree Explainer plots20 for all three HNPP patients, 

showing the phecodes that contributed to the posterior probabilities from the random forest 

model. The probabilities given are before recalibration (that is, they are decision scores), 

the blocks represent a phecode, red implies that it contributes to increased probability, blue 

implies that it contributes to decreased probability, and width represents the amount of the 

contribution.
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Fig. 3 |. Proportion of patients with a putative pathogenic CNV identified by the model.
The proportion of patients with a CNV overlapping a putative pathogenic CNV by at least 

50% in ClinGen, stratified by the probability threshold. The dashed line represents the 

proportion of patients in the CMA group with reported abnormal gains or losses that overlap 

a ClinGen CNV by at least 50%. Data are presented as the mean values generated by 

bootstrapping (n = 1,000) with a 95% confidence interval.
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Fig. 4 |. Prediction performance across diverse genetic diseases.
The proportion of patients diagnosed with one of 16 genetic diseases above a probability 

threshold compared with the proportion of patients that would be tested above the same 

probability threshold. The dashed line represents the identity line, where the proportion 

of cases above the threshold is equal to the proportion of the sample tested above that 

threshold. The plotted points correspond to values at different probability thresholds (>0.1, 

>0.2, >0.3, >0.4, >0.5, >0.6, >0.7, >0.8, >0.9) increasing from right to left. Each column 

of points corresponds to one of those thresholds, with the most liberal threshold (>0.1), 

the right most stack of points, resulting in the largest proportion of patients with a genetic 

disease being identified as well as the largest proportion of the population being tested. The 

second column of points from the right corresponds to the probability threshold of 0.2, the 

third from the right is >0.3, etc.
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Fig. 5 |. Clinical time period preceding the genetic test.
Assessment of whether the model can identify patients who received a CMA test earlier 

than when they actually received it through current practice. a, Distribution of the age at 

which the patients received a CMA test. b, Distribution of the years of phecode data that 

were available before the CMA test. c, Proportion of patients who the model would have 

identified for genetic testing at probability thresholds of 0.1, 0.2, 0.3, 0.4 and 0.5 stratified 

by the time preceding their actual CMA test, up to 4 years prior.
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