Skip to main content
. 2022 Mar 22;13:854752. doi: 10.3389/fgene.2022.854752

TABLE 4.

Low-level: Network-based unsupervised integration methods.

Approach Model Macro category* Author Omics data** Objective Software***
Matrix Factorization-based (MF-based) Networks • CMF/CMF-W (Collective Matrix Factorization) ModE Liany et al. (2020) Any Omics Outcome/Interaction-prediction • Python code (https://github.com/lianyh)
• NBS (Network-Based Stratification) ModE Hofree et al. (2013) MiE, CNV, DM, GE, PE Patient-subtyping • pyNBS Python code (https://github.com/idekerlab/pyNBS)
• DFMF (Data Fusion by Matrix Factorization) ModE Žitnik and Zupan, (2014) GE, GO-terms, MeSH-descriptor Gene function-prediction -
• FUSENET ModE Žitnik and Zupan, (2015) GE, Mutation Disease-insight (Gene-Disease association- prediction) • Python code (https://github.com/mims-harvard/fusenet)
• Medusa ModE Zitnik and Zupan, (2016) Any Omics Module-discovery, Gene-Disease association- prediction • Python code (https://github.com/mims-harvard/medusa)
• MAE (Multi-view factorization AutoEncoder) ModE Ma and Zhang, (2019) MiE, DM, GE, PE, PPIs Disease-prediction PyTorch code (https://github.com/BeautyOfWeb/Multiview-AutoEncoder)
• DisoFun (Differentiate isoform Functions with collaborative matrix factorization) ModE Wang et al. (2020) GE, IE Disease-function Prediction MATLAB code (http://mlda.swu.edu.cn/codes.php?%20name=DisoFun)
• IMCDriver DatE Zhang et al. (2021) GE, Mutation, PPIs Gene-discovery Python code (https://github.com/NWPU-903PR/IMCDriver)
• RAIMC (RBP-AS Target Prediction Based on Inductive Matrix Completion) ModE Qiu et al. (2021) AS, RBPs Protein-prediction MATLAB code (https://github.com/yushanqiu/RAIMC)
Bayesian Networks (Pearl, 2014) (BNs) • PARADIGM (PAthway Recognition Algorithm using Data Integration on Genomic Models) ModE Vaske et al. (2010) CNV, GE, PE Disease-subtyping, Disease-insight GIANT interface (http://giant.princeton.edu/)
• CONEXIC ModE Akavia et al. (2010) GE, CNV Gene-discovery • -
Network Propagation-based Networks (Random walk-, and Network Fusion-based Methods) • GeneticInterPred ModE You et al. (2010) GE, PE Interaction-prediction • -
• RWRM (Random Walk with Restart on Multigraphs) ModE Li and Li, (2012) GE, PPIs Gene-prioritizing • -
• TieDIE (Tied Diffusion through Interacting Events) ModE Paull et al. (2013) GE, TF, PPIs Module/sub-network detection • Python code (https://sysbiowiki.soe.ucsc.edu/tiedie)
• SNF (Similarity Network Fusion) ModE Wang et al. (2014) MiE, DM, GE Patient-subtyping SNFtool (https://cran.r-project.org/web/packages/SNFtool/index.html)
• HotNet2 ModE Leiserson et al. (2015) SNV, CNA, GE, PPIs Sub-network detection • HotNet software (http://compbio.cs.brown.edu/projects/hotnet/)
• NetICS ModE Dimitrakopoulos et al. (2018) MiE, CNV, GE Biomarker-prediction • Matlab code (https://github.com/cbg-ethz/netics)
• RWR-M (Random Walk with Restart for Multiplex networks) ModE Valdeolivas et al. (2019) GE, Co-expression, PPIs Gene-prediction • R code (https://github.com/alberto-valdeolivas/RWR-MH)
• RWR-MH (RWR for Multiplex-Heterogeneous networks) ModE Valdeolivas et al. (2019) GE, Co-expression, PPIs Gene-prediction RandomWalkRestartMH (http://bioconductor.org/packages/release/bioc/html/RandomWalkRestartMH.html)
• MSNE (Multiple Similarity Network Embedding) ModE Xu et al. (2020) CNV, DM, GE Disease-subtyping • Python code (https://github.com/GaoLabXDU/MSNE)
• RWRF (Random Walk with Restart for multi-dimensional data Fusion) ModE Wen et al. (2021) MiE, DM, GE Disease-subtyping • R code (https://github.com/Sepstar/RWRF/)
Correlation-based and Other Networks • WGCNA (Weighted Gene Co-expression Network Analysis) DatE Langfelder and Horvath, (2008) GE (from multiple platforms/species) Gene-prioritizing WGCNA (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/)
• GGM (Gaussian Graphical Model) ModE Krumsiek et al. (2011) SNP, GE, Met Metabolite-pathway reactions • -
• GEM (GEnome scale Metabolic models) ModE Shoaie et al. (2013) GE, Met Metabolite-subnetwork • -
• DBN (Deep Belief Network) ModE Liang et al. (2014) MiE, DM, GE Disease-subtyping • Python code (https://github.com/glgerard/MDBN)
• Lemon-Tree ModE Bonnet et al. (2015) CNV, GE Biomarker-discovery • JAVA command (https://github.com/erbon7/lemon-tree)
• TransNet (Transkingdom Network) ModE Rodrigues et al. (2018) Any Omics Causal network • TransNetDemo R code (https://github.com/richrr/TransNetDemo)

*Main categories include (A) Multi-step and Sequential Analysis (MS-SA), (B) Data-ensemble (DatE), (C) Model-ensemble (ModE). ** CNV: copy number variation, CAN: copy number alternation, SNV: single nucleotide variation, DM: DNA methylation, AS: alternative splicing, MiE: Micro RNA expression, GE: gene expression, TF: transcriptional factor, IE: isoform expression, PE: protein expression, RBPs: RNA-Binding Proteins, PPI: Protein-protein interactions, Met: Metabolite. ***R packages, unless otherwise stated.