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Abstract

Adaptation dynamics on fitness landscapes is often studied theoretically in the strong-selection, weak-mutation regime. However, in a large
population, multiple beneficial mutants can emerge before any of them fixes in the population. Competition between mutants is known as
clonal interference, and while it is known to slow down the rate of adaptation (when compared to the strong-selection, weak-mutation
model with the same parameters), how it affects the shape of long-term fitness trajectories in the presence of epistasis is an open question.
Here, by considering how changes in fixation probabilities arising from weak clonal interference affect the dynamics of adaptation on
fitness-parameterized landscapes, we find that the change in the shape of fitness trajectory arises only through changes in the supply of
beneficial mutations (or equivalently, the beneficial mutation rate). Furthermore, a depletion of beneficial mutations as a population climbs
up the fitness landscape can speed up the rescaled fitness trajectory (where adaptation speed is measured relative to its value at the start
of the experiment), while an enhancement of the beneficial mutation rate does the opposite of slowing it down. Our findings suggest that
by carrying out evolution experiments in both regimes (with and without clonal interference), one could potentially distinguish the different

sources of macroscopic epistasis (fitness effect of mutations vs change in fraction of beneficial mutations).
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Introduction

For unicellular organisms, as individuals in an asexual popula-
tion gain mutations and increase in fitness, how their average fit-
ness increases over evolutionary timescales [which we refer to as
the average fitness trajectory F(t)] depends on the distribution
p(s) of fitness effects s of potential new mutations (i.e. mutations
that can potentially occur). This distribution may change as a
population evolves, an effect known as macroscopic epistasis
(Fig. 1a) (Good and Desai 2015). This could come about, for exam-
ple, when the fitness effects of mutations depend on the state of
other genes or the presence of other mutations (Chou et al. 2011;
Khan et al. 2011; Wang et al. 2013). The effect of such changes in
p(s) on fitness trajectories has been studied in the context of
fitness-parameterized landscapes, where p(s|x) is assumed to de-
pend only on the fitness x of the cell (Kryazhimskiy et al. 2009;
Good and Desai 2015).

Within this framework, adaptation dynamics observed experi-
mentally can be used to infer features of the underlying fitness
landscape or equivalently, the type of epistasis present in the sys-
tem (Wiser et al. 2013; Kryazhimskiy et al. 2014; Good and Desai
2015). The shape of fitness trajectories (which we characterize

using its functional form) is typically studied theoretically in the
strong-selection, weak-mutation (SSWM) regime, in which the
time for beneficial mutations to fix is much shorter than the time
for successful beneficial mutations to emerge (Desai and Fisher
2007). However, in large populations, multiple beneficial mutants
can emerge before any of them fixes. Competition between bene-
ficial mutants in different lineages is known as clonal interfer-
ence (Fig. 1b) and has been shown to reduce fixation probabilities
(Gerrish and Lenski 1998; Lin et al. 2020), and hence slow down
adaptation rate when compared to the SSWM model with the
same parameters. There have also been suggestions that clonal
interference slows down the form (i.e. shape) of fitness trajecto-
ries (Wiser et al. 2013) (here, we are interested in the functional
forms of the fitness trajectories, and therefore the trajectories are
compared after scaling time such that they have identical initial
slopes—we consider a trajectory to be slower than another if it
has a slower fitness increase after this re-scaling, Fig. 1c). In par-
ticular, the slow fitness trajectory observed in Lenski’s long-term
evolution experiment (where the fitness appears to continue in-
creasing over a long period of time without reaching any plateau)
was previously attributed to both diminishing returns epistasis
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Fig. 1. Schematic of the model and the question-of-interest. a) Whenever
a cell divides, there is a probability u, (x) of it gaining a beneficial
mutation which can depend on the fitness x of the cell. When a
beneficial mutation occurs, we assume that the selection coefficient s of
the mutation is drawn from some normalized distribution p,,(s|x) which
can also depend on x. The overall distribution p(s|x) of beneficial
selection coefficients when a mutation occurs specifies the fitness-
parameterized landscape, or equivalently, the form of macroscopic
epistasis. b) Clonal interference refers to the phenomenon where a
mutant (“A,” already growing exponentially in size) is out-competed by a

»”

new mutant (‘B”) with a higher selective advantage. c) The functional
forms of the average fitness trajectories F(t) are compared after rescaling
time such that the initial adaptation speeds are identical. We ask
whether clonal interference speeds up (left) or slows down (right) the
functional form of the average fitness trajectory, and how this depends
on p(s|F).

and clonal interference (Wiser et al. 2013). However, the relative
contributions from these two factors have not been explored, and
it is not clear if it is generally the case that clonal interference
slows down the form of fitness trajectories in the presence of
epistasis.

Here, by considering how changes in fixation probabilities
arising from weak clonal interference affect the dynamics of ad-
aptation on fitness-parameterized landscapes, we find that the
change in the form of fitness trajectory due to clonal interference
arises only through changes in the supply of beneficial mutations
(or equivalently, the beneficial mutation rate), independent of
any changes in the average fitness effect of beneficial mutations.
This implies that as long as the fraction of beneficial mutations
stays the same, the functional form of the fitness trajectory will
be the same with or without clonal interference, even if the mean
fitness effect of beneficial mutations decreases over time (i.e.
diminishing returns). Furthermore, a depletion of beneficial
mutations as a population climbs up the fitness landscape can
speed up the functional form of the fitness trajectory (while an
enhancement of the beneficial mutation rate slows it down).
These findings suggest that by carrying out evolution experi-
ments in both regimes (with and without clonal interference),
one could potentially distinguish the different sources of macro-
scopic epistasis (change in fitness effects of mutations vs change
in the fraction of beneficial mutations).

Results

We consider the Moran process, where a population has a con-
stant size N, and each cell divides at some rate which we call the
fitness of the cell. Whenever a cell divides, a random cell is

simultaneously removed from the population. Experimentally,
this corresponds, approximately, to growing cells in a continuous
culture (e.g. in a turbidostat) (Bryson and Szybalski 1952; Moran
et al. 1964). During each division event, there is some probability
that the daughter cell gains a new mutation (Fig. 1a). We assume
that the fitness effects of deleterious mutations are typically
much larger than those of beneficial ones, such that beneficial
mutations rarely compensate deleterious mutations, and hence
deleterious mutations cannot fix. The adaptation of the popula-
tion is therefore driven by the probability w, of gaining a benefi-
cial mutation during division, which is a dimensionless quantity
that we will refer to as the beneficial mutation rate.

Inspired by previous theoretical studies (Gillespie 1984; Orr
2003), we assume an exponential distribution for the fitness
effects of beneficial mutations. Such a distribution also seems to
have some experimental support (Imhof and Schlotterer 2001;
Rokyta et al. 2005; Kassen and Bataillon 2006). Nevertheless, there
are other data that suggest otherwise (Rokyta et al. 2008; Levy
et al. 2015), and we show in Appendix B and Appendix C that our
main conclusions hold for a more general class of distributions.
Generalizing the approach of Kryazhimskiy et al. (2009), given the
current fitness of a cell x, the distribution of its beneficial mutant
fitness values y > x is assumed to be given by:

O (y) :f(x)eff(X)(ny)efh(X) 1)
where ﬁ;) represents how the mean fitness effects (y —x) of
mutations vary with current fitness, and h(x) governs how the
fraction of beneficial mutations changes with the current fitness
of the cell. The beneficial mutation rate is then given by
1p(X) = poe "®, with g, being the initial beneficial mutation
rate.

For any @y(y), the corresponding distribution of fitness selec-
tion coefficients s = X is then given by

plslx) = a(x)e e ), 2)

where a(x) = xf(x) = (s) " is the inverse of the mean selection coef-
ficient of beneficial mutations. Within this model, macroscopic
epistasis can act through changing the mean of beneficial mutation
effects as the population increases in fitness, through changing the
availability of new beneficial mutations, or a combination of both.
This framework reduces back to other previously known mod-
els for specific forms of f(x) (or equivalently, «(x)) and h(x). For ex-
ample, the House of cards (HoC)/Uncorrelated fitness landscape
is the case where ®(y) is independent of x and corresponds to
f(x) ~ 1 and h(x) ~ x (Kryazhimskiy et al. 2009). This implies that
while the absolute mean fitness increase conferred by mutations
stay the same, the availability of beneficial mutations decreases
exponentially as fitness increases. Similarly, the nonepistatic
(NEPI) fitness landscape is the case where the distribution of fit-
ness effects of mutations is independent of genotype, i.e. Ox(y) is
only a function of y—x (Kryazhimskiy et al. 2009), which corre-
sponds to having f(x) ~ 1 and h(x) = 0. The Stairway to heaven
(STH) fitness landscape (Kryazhimskiy et al. 2009) is the case
where p(s) is independent of fitness, and corresponds to having
a(x) ~ 1 while h(x) = 0. The diminishing returns epistasis model
adopted by Wiser et al. (2013) can also be mapped to this fitness-
parameterized framework with o(x) ~ x9 for g > 1 and h(x) = 0.
We assume that the beneficial mutation rate is not too large
such that the population is typically in a monomorphic state.
When a new beneficial mutation with fitness effect s emerges, it
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fixes with some probability P¢(s). The average fitness trajectory
F(t) on such fitness-parametrized landscapes is then approxi-
mately given by (Kryazhimskiy et al. 2009):

dF >
G = NP0 [P (o)o(sIFrs, 3

where time t here refers to real time (i.e. the actual amount of
time that has passed in a continuous culture), in contrast to be-
ing the number of generations often considered in other studies
(Kryazhimskiy et al. 2009; Wiser et al. 2013). This definition of time
is why, compared to those previous studies, we have an addi-
tional factor of F in the equation (since we have defined fitness to
be the growth rate, such that the number of generations in a
small time interval dt is F(t)dt).

In the SSWM regime [Ny, log(Ns) < 1 (Desai and Fisher 2007)],
Ps(s) = n(s) = s. Substituting p(s|F) from Equation (2) and defining
§ = os (the selection coefficient of a mutation relative to the aver-
age selection coefficient), the dynamics of fitness in this regime
are given by:

dlog(F) _ NFuyoe "® > 5 ..
at 20 JO steds
4)
_ o NFuoe "
B W(F) 7

where the functional form of the fitness trajectory depends on
the type of epistasis specified through «(F) and h(F). For exam-
ple, the HOC landscape (h(F) ~ F, «(F) ~ F) gives F(t) ~ log(t), the
NEPI landscape (h(F) = O, «(F) ~ F) gives F(t) ~t, and the STH
landscape («(F) ~ 1, h(F) = 0) gives a function F(t) that increases
faster than linearly. The diminishing returns model («(F) ~ F9,
h(F) = 0) by Wiser et al. gives a power law trajectory with expo-
nent zglj (Note that this exponent is slightly different from
that in Wiser et al. because of the difference in how time is de-
fined. Also, in Wiser et al. clonal interference is taken into ac-
count in addition to the assumption of the diminishing returns
model. We will show later that taking into account clonal inter-
ference has no effect on this exponent.)

When a population is sufficiently large, after a mutation has
escaped loss via genetic drift and the number of mutants starts
to increase deterministically, there is some probability that an-
other new successful mutation emerges in the resident popula-
tion while the first mutant is still in the process of taking over
the population. The second mutant could then potentially out-
compete the first mutant, causing the first mutation to go ex-
tinct. (Note that if a second mutation were to occur in a cell
that already contains the first mutation, it is not considered an
interfering mutation because if the second mutation were to
fix, the first mutation would fix along with it. In this case, we
also assume that this second mutation does not affect the fixa-
tion probability of the first mutation since the first mutant was
already on its way to fixation even without the second muta-
tion.) Following the approach in Gerrish and Lenski, for a mu-
tant that emerges in a clonal population containing individuals
with fitness F, the probability of it fixing, Ps(s) , will then be the
probability that it escapes loss via genetic drift (and would go
on to fix in the absence of any interference), =(s), and not out-
competed by any other mutation that could potentially emerge
in the background population while the first mutant popula-
tion is growing in size:

Pf(S) =n(s)e” JO‘ Rr(f)di’ .

where T =~ w is the average number of generations it takes for
a mutant to fix without any interference (assuming determinis-
tic, logistic growth of the mutant strain). R(f) is the rate at which
a successful interfering mutation emerges at generation t after
the first mutant sub-population starts growing in size, and is
given by the rate at which the resident population gains another

more beneficial mutation which subsequently goes on to fix:

Ri(®) = Nppon(t) J:O p(s1|F)ps (n(t)]s, sr)dsi, (6)

where n(t) = % is the fraction of resident cells (again from
logistic growth of the mutant strain), p(s|F) is the distribution of
fitness effects of mutations that can arise in a cell with fitness F
(Equation 2), and ps(n(t)ls,s;) is the fixation probability of the in-
terfering mutant with fitness effect s;. Intuitively, we expect
ps(nls,s1) to increase with n since the closer the first mutant is to
fixing (i.e. lower n), the harder it is for the new mutant to outcom-
pete the original mutant. In particular, one might also expect the
probability of the interfering mutant fixing in this mixed popula-
tion to be the same as that in a clonal population with the same
average population growth rate (i.e. all cells grow at this rate). We
will show that this is indeed true for all n when the growth rate of
the mutant is much larger than that of the population-averaged
growth rate (but not in general).

Assuming that clonal interference is weak such that at most
one successful competing mutation occurs during the time a mu-
tant is trying to fix (i.e. no further mutations occur after the
emergence of the second mutant), the extinction probability
Pext(n) of the new (interfering) mutant (in the large N limit) can be
found by considering the different events that can happen (differ-
ent cell types dividing and leaving the population) in the next
time step and requiring all remaining mutants to go extinct
(Appendix A). The fixation probability pg(n) =1 — pex(n) is then
found to be given by the solution to the following equation
(Appendix A):

0 )
(1+sl)pf2(n)+(s(1—n)—s1)pf(n)_@ ggin) ( pgr(ln):o,

)

where D(n) = "52(2 + 5) and v(n) = n(1 —n)s, and the boundary
conditions are given by p(0)=(s;—s)/(1+s;) and
ps(1) = s1/(1 + 1), which are also the fixation probabilities of a
mutant in a clonal population within the Moran process (Moran
et al. 1964; Nowak 2006).

When the first two terms in Equation (7) dominate (either
when n is close to 0 or 1, or when s; > s), we recover the intuitive
result that the fixation probability is the selective advantage of
the interfering mutant over that of the population average:

ps(n) = sp —s(1 —n), (8)

where we have also taken the limit where fitness effects are
generally small s,s; < 1. For simplicity and concreteness, we will
assume this specific form for ps(n) in the rest of the paper, but we
argue in Appendix B that adopting the more general solution of
Equation (7) does not affect our main conclusions.
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Within this approach, we have considered the effect of poten-
tial interfering mutants on the fixation probability of a mutant
that initially arose in a clonal population. This implicitly assumes
that clonal interference is sufficiently weak that most of the time
a mutation emerges when the population is dominated by a sin-
gle subgroup. We elaborate on this assumption more extensively
in the Discussion section.

The dynamics of fitness in the presence of weak clonal inter-
ference is therefore given by (using Equations [3], [5], [6], [8], see
Appendix B):

529—(§+2(§,F))d§’ (9)

dlog(F)  NFp,e "™ J%
dt  —  «2(F) 0

where, in the limit log(N) > 1,

16, F) ~ Nlog(N) e (g + 1) et (10)

If the beneficial mutation rate does not depend on fitness [h(F) =
0], we recover the same expression for A(5) derived by Gerrish and
Lenski (1998).

In the following section, we will explore the effect of clonal in-
terference on the functional form (i.e. shape) of the average fit-
ness trajectory by comparing the dynamics with (Equation 9) and
without (Equation 4) clonal interference. When comparing the
numerical solutions of Equations (4) and (9), we scale time in the
case with clonal interference by a factor such that % lieo =
%h:o (since we are interested in comparing functional forms
rather than the absolute time dynamics).

To verify our findings, we also carried out full Gillespie simula-
tions of the Moran process, where we keep track of the fitness
values of all cells, with the probability of a cell dividing propor-
tional to its fitness (see Appendix D for simulation details). When
a mutation event occurs during division, the fitness effect of the
mutation is drawn from a distribution based on the fitness of the
dividing cell. Within each simulation, the mean population fit-
ness at any time is obtained from an average over all cells in the
population. We show in Fig. A2 that the fitness trajectory given
by Equation (9) agrees well with our simulation data over a range
of mutation rates.

Change in functional form of fitness trajectory
only depends on how beneficial mutation rate
changes

Since any additional dependence on F due to the clonal interfer-
ence term comes only from h(F) (Equations 9 and 10), we expect
weak clonal interference to only affect the functional form of the
fitness trajectory if the beneficial mutation rate uy, = e "®
changes with fitness (Figs. 2 and A2). In other words, if h(F) ~
O(1) (such as in the case of the diminishing returns model and
the STH landscape), even if there is epistasis that acts through
«(F), clonal interference does not change the functional form of
the trajectory (Fig. 2a, left panel in Fig. A2). This is the case be-
cause as long as the availability of beneficial mutations does not
change, the presence of clonal interference reduces the rate of fit-
ness increase by the same amount at all times.

If h(F) depends on F, whether the form of the trajectory is sped
up or slowed down by clonal interference depends on whether
h(F) increases or decreases with F. In many commonly used and
widely studied models of fitness landscapes, h(F) increases with

F, ie. the beneficial mutation rate decreases with fitness. For ex-
ample, in the HOC landscape, a new fitness value is drawn from
the same distribution whenever a mutation occurs (Park and
Krug 2008; Kryazhimskiy et al. 2009), implying that as fitness
increases, the probability of drawing a higher value of fitness (for
the mutant) decreases. In Fisher’'s geometric model (Fisher 1930),
the state of the cell lies in a multidimensional phenotypic space,
with a certain point being the optimal phenotype, such that the
fitness is specified by how close the state of the cell is to the opti-
mal state. Mutations then correspond to drawing random vectors
in the space. Within this model, the probability of a mutation
providing an improvement (i.e. bringing the population closer to
the optimal state) also decreases with fitness (Fisher 1930; Hartl
and Taubes 1996; Ram and Hadany 2015). In these cases where
h(F) increases with F, clonal interference speeds up the functional
form of the trajectory (Fig. 2b, middle panel in Fig. A2).
Intuitively, this occurs because as fitness increases, the effect of
clonal interference is reduced since there are fewer potential ben-
eficial interfering mutations. This phenomenon was previously
described in Park and Krug (2008).

Similarly, in the opposite case where h(F) decreases with F,
there are more potential beneficial mutations as the population
climbs up the fitness landscape (one could imagine this happen-
ing if gaining certain mutations opens up more beneficial muta-
tional paths). In this case, interfering mutations become more
common as the population evolves and the form of the trajectory
is slowed down by such an effect (Fig. 2c, right panel in Fig. A2).

Besides the average fitness trajectory, we find that these gen-
eral arguments and results also hold for the average substitution
trajectory, ie. how the average number of fixed mutations
increases over time, when Ny, is sufficiently small (Appendix E).
However, there is a regime where this theory underestimates the
number of accumulated mutations while still providing good pre-
dictions for the average fitness, suggesting that the excess muta-
tions arise from nearly neutral mutations (Appendix E). We
return to this point in the Discussion section.

Proposed experimental protocol for determining
how beneficial mutation rate changes

To determine whether and how the availability of beneficial
mutations changes over time (with fitness), one can carry out
two or more sets of long-term evolution experiments at different
population sizes or mutation rates (Sprouffske et al. 2018) span-
ning both the SSWM regime and the regime with weak clonal in-
terference (Fig. 3a). N can be varied, for example, by carrying out
experiments in a turbidostat at different optical densities, while
potential ways of varying the overall mutation rate u (i.e. the
probability of gaining a mutation per division) include changing
the expression levels of DNA repair enzymes, such as mutH
(Sherer and Kuhlman 2020) and Ada (Uphoff et al. 2016) in
Escherichia coli, and inducing mutagenesis using UV radiation
(Shibai et al. 2017). If N is the variable being varied, it would be
useful to first measure the mutation rate of the initial strain (e.g.
by carrying out the Luria Delbruck fluctuation test) if it is not al-
ready known, as this would provide an upper bound for . This
can inform the possible choices of N for the experiment. For ex-
ample, if N~ 1/pu [and assuming that N is large enough so that
fixation of deleterious mutations via genetic drift can be
neglected, although in general it may not be true (Silander et al.
2007; Kryazhimskiy et al. 2012)] it would almost certainly be in
the SSWM regime, and one can then adopt increasingly large
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Fig. 2. Effect of clonal interference on fitness trajectory for different types of macroscopic epistasis. a) Within the diminishing returns model where the
mean fitness effect of beneficial mutations decreases with fitness but the beneficial mutation rate stays the same, the functional form of the fitness
trajectory stays the same. The upper panels show the fitness trajectories as a function of actual time t with (red) and without (blue) clonal interference.
The solid lines are obtained from solving Equations (4) and (9), while the dashed lines (pink) are individual replicates from simulations. The lower panels
compare trajectories (blue and red solid lines in the upper panel) after rescaling time t = At for the case with clonal interference, with A being a
constant chosen such that both trajectories have the same derivative at t = 0. [Landscape parameters: «(F) = 20F°, u, = 0] b) With the House-of-Cards/
uncorrelated landscape where the mean fitness effects of beneficial mutations stays the same but the beneficial mutation rate decreases with fitness,
the presence of clonal interference speeds up the functional form of the fitness trajectory. [Landscape parameters: «(F) = 100F, u, = e~ T~1] ¢) With a
mutation-releasing landscape where the beneficial mutation rate increases with fitness, the presence of clonal interference slows down the functional
form of the fitness trajectory. [Landscape parameters: «(F) = 50ef 1, u, = wyoef~*.] [Other parameters in a—c): N = 10°, o = 1-107° ]

values of N. [One could also sequence samples of the population
at regular intervals during the initial stage of the experiment to
extract the allele frequency trajectories of all detected mutations
(Good et al. 2017)—predominantly nonoverlapping selective
sweeps would indicate that the population is initially either in
the SSWM or weak clonal interference regime.] The average fit-
ness trajectory for a given N and u can then be obtained by aver-
aging over the replicates in the corresponding set of experiments
(Fig. 3b). In general, the initial rate of fitness increase will differ
between sets of experiments (Fig. 3b). For an experimentally
obtained average trajectory (where fitness values are obtained at
discrete time points), the initial gradient F/(0) can be estimated
by extracting the time point t, at which the measured fitness F(t)
first exceeds some value F, (Fig. 3b). The initial gradient can then
approximated by F'(0) ~ X1, where we have implicitly assumed
that the trajectory is sufficiently well sampled that F(t.) is not
much larger than F, i.e. F(t.) — F. < e with ¢ controlling the de-
sired time resolution At. Since the upper bound to the initial gra-
dient is 2Ny, /23 (Equations 4 and 9), a conservative choice would
be for At < 5= —often ao and sy are a priori unknown in which
case one could start with conservative estimates, take fitness
measurements more frequently initially and adapt the measure-
ment frequency as the experiment progresses. Scaling time for
each trajectory by a factor proportional to F/(0) such that all
scaled fitness trajectories have approximately the same initial
derivative (Fig. 3, c-€), one can then infer how w, changes. In par-
ticular, if the different trajectories overlap (or are statistically in-
distinguishable), it would suggest that p, remains approximately
constant (Fig. 3c). If instead the scaled trajectories speed up (slow
down) as N or the overall mutation rate is increased, it would sug-
gest that w, decreases (increases) as fitness increases over time
(Fig. 3, d and e). Note that since we are comparing the scaled tra-
jectories, the different sets of experiments (with different N or )
should be run to approximately the same final F rather than for
the same period of time (i.e. for smaller N or g, the experiment
should run longer for fitness to increase to the same level). The

trajectories should also be sufficiently long for any effect of epis-
tasis (occurring through o(F) u,(F)) to be captured (since the
strength of epistasis that can be detected depends on the range
of F spanned by the trajectory).

To test this protocol, we applied it on synthetic data obtained
from our numerical simulations (Fig. 4, three leftmost columns).
We coarsely sample the fitness trajectories, such that the time
between successive measurements is at least a hundred (with
the initial growth rate set to be 1), and focus on analyzing data
from the diminishing-returns (Fig. 4a) and the House-of-cards
landscapes (Fig. 4b). We find that the qualitative observation of
how the shape of the trajectories changes with N remains ap-
proximately the same across different values of F. (Fig. 4, three
leftmost columns), suggesting that the inference is robust to how
the initial fitness gradients are estimated. This is also consistent
with the effect of varying F. when rescaling trajectories obtained
from solving Equation (9) (Appendix F, Fig. A5). In practice, exper-
imental data could be noisier, and it would be useful to compare
the trajectories using multiple values of F. to ensure that any
trends remain consistent.

An alternative way of extracting the initial gradient would be
to fit the trajectories directly to Equation (9). We assume that
a(F) = aoF? and h(F) = y(F — 1) such that u,(F) = wee Y, and
treat ao, ¢, py and y as parameters of the cell to be inferred from
the fitness trajectories. We find that minimizing the least-
squares error between the synthetic data and the trajectories
obtained from solving Equation (9) allows a good recovery of the
underlying landscape parameters (Fig. 4, right column). While
these parameters already directly provide information about the
type of epistasis present, they also allow a direct calculation of
the initial fitness gradient (using Equation 9) which can again be
used for visualizing the scaled trajectories (Fig. 4, right column).
It is important to note that this approach requires the assump-
tion of some general form for «(F) and h(F) which we typically
have no knowledge of. Nevertheless, this fitting procedure can
still be potentially useful for testing specific classes of landscapes
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Fig. 3. Proposal for experimental protocol to determine how the
availability of beneficial mutation changes as fitness increases. a) The
first step is to carry out multiple sets of long-term evolution experiments
at different population sizes or mutation rates that span both the SSWM
regime and the regime with weak clonal interference. For example, if the
initial strain has estimated beneficial mutation rate p,, ~ 107>, one
could carry out experiments with N = 10*, N = 10°, and N = 10°. b) For
each set of experiment (with a given N), one can then then obtain the
average fitness trajectory by averaging over multiple replicates in each
set (solid lines), and calculate the corresponding initial rate of fitness
increase (dashed lines). c-e) By scaling time (t = At) such that the
average trajectories have the same initial derivative, one can then infer
how the beneficial mutation rate changes over time. c) If the scaled
trajectories approximately overlap for all values of N, it would suggest
that w, remains approximately constant. d) If the scaled trajectories
speed up as N is increased, it would suggest that u, decreases as fitness
increases over time. e) If the scaled trajectories slow down as N is
increased, it would suggest that up, increases as fitness increases over
time.

and for distinguishing the relative types of epistasis (e.g. by com-
paring the magnitudes of ¢ and y).

Discussion

In the SSWM regime, different types of epistasis have been
known to give very similar fitness trajectories. For example, both
the HoC landscape (where the mean fitness effect stays the same
but beneficial mutations deplete exponentially with fitness) and
diminishing returns epistasis with constant beneficial mutation
rates can give rise to a slow, approximately logarithmic fitness
trajectory that does not seem to approach any plateau. Our
results suggest that one way of distinguishing whether it is the
average fitness effects of potential mutations or the average frac-
tion of available mutations (or both) that is changing over time is

to carry out the same set of evolution experiments with two or
more different population sizes (Kryazhimskiy et al. 2012) or mu-
tation rates (Sprouffske et al. 2018) (in both the SSWM regime and
the regime with weak clonal interference), and compare their fit-
ness trajectories.

Although we have only considered adaptation dynamics on
fitness-parameterized landscapes, it is possible for such macro-
scopic epistasis to arise from a microscopic model of fitness land-
scape that explicitly takes into account interactions between
genes (i.e. microscopic epistasis) (Guo et al. 2019; Reddy and Desai
2021). Furthermore, in many of these microscopic models, the
rate of beneficial mutations decreases as the population climbs
up the fitness landscape. In fact, such depletion of beneficial
mutations also occurs when one models the genome as a finite
sequence of sites, each having its own independent contribution
to fitness [i.e. no microscopic epistasis, in which case F(t)
approaches a maximum F,, according to a power law Fpax —
F(t) ~ 1/t? in the SSWM regime if the independent contributions
to fitness follows an exponential distribution] (Good and Desai
2015). Our results therefore suggest that clonal interference can
speed up the functional form of fitness trajectories even in these
microscopic models.

Even though we have neglected the accumulation of deleteri-
ous mutations, if the selection coefficients of deleterious muta-
tions are typically much larger than that of beneficial ones, one
might consider the effect of deleterious mutations as decreasing
the fraction of cells that can gain successful beneficial mutations
(Fisher 1930; Orr 2000). When the deleterious mutation rate is
much higher than that of beneficial mutations, the system can
be thought of as being in a quasi-equilibrium state (mutation-se-
lection balance), with the fraction of cells having t}}‘de highest fit-
ness (i.e. free of deleterious mutations) being Py = e %, where u4 is
the deleterious mutation rate, and s4 is the harmonic mean of the
distribution of fitness effects of deleterious mutations (Orr 2000).
In the presence of macroscopic epistasis, ug, s, and hence Py can
potentially depend on the fitness of the cell. Since successful in-
terfering mutations can only arise in the fraction of resident pop-
ulation that is free of deleterious mutations, there would be an
additional factor of Po(F) in the expression for A(S,F)
(Equation 10), which could further affect the shape of F(t)
(Equation 9) in the presence of clonal interference (relative to
that in the SSWM regime). Nevertheless, if s4 is independent of F,
since py(F) = u— pmy(F) (with p being the constant probability of
gaining a mutation per division), Po(F) changes (i.e. increases or
decreases) with F in the same way as ,(F). This implies that the
effect of Py(F) in terms of slowing or speeding up the shape of the
trajectory is the same as that of w,(F). In general, s; could vary
with F and this could potentially be inferred by comparing fitness
trajectories obtained with different u (since this would change
the contribution from Py).

If instead the effects of deleterious mutations are typically
weak, one needs to take into account the possibility of beneficial
mutants emerging in backgrounds other than the fittest sub-
group, and that a beneficial mutant that further accumulates
deleterious mutations might still be able to fix (Johnson and
Barton 2002; Pénisson et al. 2017; Jain 2019). In the limit where the
selection coefficients of deleterious mutations are very weak
(sq — 0), the probability =(s) of a beneficial mutation with selec-
tion coefficient s surviving drift can be approximated by a step
function at s = u; (Johnson and Barton 2002; Pénisson et al. 2017;
Jain 2019), such that z(s)=0 for s < u; while remaining
unchanged (n(s) = s) for larger values of s. In this case, the lower
bound of s in the integral in Equation (3) would be y4(F), and the
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fit to Eq.9

* N =10000

N =100000 E ; &(F) = 20.1F**
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0 scaled time ¢ 5 0 scaled time ¢t 5 scaled time ¢t 5 0 scaled time ¢ 5
x10° x10° x10° x10°
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Fig. 4. Inferring the type of epistasis from synthetic data obtained from simulations on a) a diminishing-returns landscape with «(F) = 20F° and

1y, = iy = 1 x 107°, and b) a House-of-Cards/uncorrelated landscape with «(F) = 100F and p, = e~ -1 using different values of N. The time between
successive measurements is at least a hundred (with the initial growth rate set to be 1), and each data point represents the average over 10 replicates
with the error bars indicating the 95% confidence interval around the mean. The first 3 columns (from the left) are scaled trajectories obtained with
different values of F. used for estimating the initial fitness gradient. In both a) and b), how the shape of the trajectories change with N remains
approximately consistent across all values of F, suggesting that the qualitative results are robust to how the initial fitness gradients are obtained. The
last, right-most column show scaled trajectories where the initial fitness gradients are estimated from fitting the trajectories to Equation (9) assuming
that the landscape takes the following form: a(F) = aoF? and g, (F) = e "V, with ao, ¢, 0 and y being free parameters used in the fitting. The solid
black lines represent the fits to the data, while the inferred landscapes 4(F) and i, (F) are shown in the insets. Based on how the shape of the scaled
trajectories vary with N, one would infer that y, remains relatively constant in a) and decreases over time in b).

corresponding lower bounds for both the integrals in Equations
(4) and (9) would be py(F)«(F). The factor of «(F) in the lower
bound suggests that even if p4 is independent of F, epistasis act-
ing through «(F) can potentially change the relative shape of the
fitness trajectories with and without clonal interference. In par-
ticular, as «(F) increases with F (representing a decrease in the
mean selection coefficient of beneficial mutations), the increase
in the lower bound implies that the effect of clonal interference is
reduced over time since stronger mutations are less likely to be
interfered by other mutations (Equation 10). This would lead to a
speed-up of the form of the trajectory if the population started
off in the clonal interference regime. Nevertheless, if u4(F)a(F) <
1 (i.e. the deleterious mutation rate is smaller than the mean se-
lection coefficient of beneficial mutations) throughout the mea-
sured trajectory, the influence of deleterious mutations is small
and our main conclusions would still hold. Experiments with dif-
ferent values of mutation rates would therefore allow one to dis-
entangle the effects of weak deleterious mutations from that of
clonal interference.

In the regime where the time taken for a mutant to fix is at
least comparable to the time for new successful mutations to
emerge, besides interference from other beneficial mutations
that emerge in the resident population, the original mutant

population can also gain additional mutations. The fixation prob-
abilities of these new mutations are enhanced since they are ac-
cumulated in cells that already have a fitness advantage in the
population. This effect could be important when there are a large
number of different subgroups (i.e. genotypes) in the population,
such that the average fixation probability of a mutation (of a cer-
tain fitness effect) should also be an average over the different
background fitness values the mutation can occur in (Good et al.
2012). In general, not accounting for multiple mutations would
underestimate the fixation probabilities of small effect mutations
since these benefit most from hitch-hiking (Fogle et al. 2008).
However, these small effect mutations also contribute the least
amount to fitness, which may explain why taking into account
clonal interference alone seems to provide a good agreement
with simulated fitness trajectories (Figs. 2 and A2), even when
there are more accumulated mutations than predicted by the
current framework (Fig. A4). Nevertheless, how including the ef-
fect of multiple mutations would affect the functional form of
long-term fitness trajectories in the presence of epistasis, and
how our results extend to the regime of strong clonal interfer-
ence, are interesting questions that we leave for future work.
Another potential direction for future studies is to take into ac-
count the interactions between clonal interference and
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horizontal gene transfer (Slomka et al. 2020) (and how these
would affect adaptation dynamics), an aspect we have not stud-
ied in this paper.

Data availability

The MATLAB codes for simulation and analysis can be found on
GitHub repository https://github.com/yipeiguo/Effect-of-clonal-in
terference-on-fitness-trajectories.
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Appendix A: Fixation probability of a new
mutantin a population with 2 subgroups

We consider the scenario where there are two genotypes 1 and 2
with growth rates g, and g, when a new mutant with growth rate
gm emerges. Let p,.[N1,N,] be the extinction probability of the
mutant lineage when there are N; type 1 cells and N, type 2 cells
in the population of constant size N. Assuming the dynamics fol-
low a Moran process, and that no further mutations occur, these
extinction probabilities satisfy the following set of equations:

pext[NlaNQ]R(leNZ)

NN - -
=57 @1oxN1 + 1Nz — 1] + goPe[N1 — 1, N2 + 1])
type 1 replaces type 2 (or viceversa)
N-N;—-Np - -
t—— (91N1Pexe[N1 + 1, No] + g2NoPey[N1, N2 + 1)

type 1/2 replaces mutant

N —N; — N2)gm = D
+%(Nlpextﬂ\h - LNQ] + NZpext[Nl’N2 - 1])

mutant replaces type 1/2

1 -
+N(N591 +N3g2 + (N—N; *Nz)zgrn)Pext[NmNz]; (Al)

no change

where the first term on the right takes into account the probabil-
ity that the next event involves the division of a type 1 cell and
the removal of a type 2 and vice versa, the second term involves
the removal of the mutant, the third term is associated with the
division of the mutant and removal of one of the other cell types,
and the last term is for cases where there is no change in the
composition of the population. The boundary conditions are
Poxt[0,0] = 0 and P, [N1,Ns] = 1 when Ny + N, = N, and R(Ny,N»)
is the total growth rate of all cells:

R(N1,N;) = Nig1 + Nags + (N — Nt — Np)g. (A2)

The corresponding fixation  probabilities  p¢[Ni,No] =
1 — Poy[N1,Ny] can then be obtained exactly by solving this large
system of w — 1linear equations (Equation A1).

The extinction probability pe([n] of a newly emerged mutant
cell is then given by:

Pext[N] = Pexe[M(N = 1), (1 = )(N = 1)], (A3)

where n is the fraction of type 1 cells among the type 1 and 2
cells.
Since Ny =n(N —1)and N; = (1 —=n)(N - 1), for N > 1,

- 1 1

Pexe[N1 + 1,No — 1] = Pext {Vl +m} ~ Pext {” +N}’ (A4)

- 1 1

pext[l\h —1,Np + 1] = pext |:V1 - m:| =~ Pext |:Y1 - N:|7 (AS)
pext[N1+17NZ]:pext[N17N2+1]:1' (A6)

If there are two mutant cells in the population, the probability
of the mutant strain eventually going extinct is the probability
that the lineages of both mutant cells separately go extinct. In
the large N limit, the fates of the two mutant cells can be

assumed to be approximately independent of one another, such
that:

patts =191 = (pr 2571 = (o 222])'

(A7)

n(N-1) : n 2
pext[vaNZ_l]: (pext|: N—2 :|) ~ (pext |:n+m:|> . (AS)
Substituting these expressions (Equations A4-A8) into

Equation (A1) and allowing terms of O(1) and above in N (which is
why we neglect the change in n when the mutant replaces a type
1/2 cell—this requires the mutant to divide and the probability of
the mutant being the next to divide is a factor of N lower than a
type 1/2 cell being the next to divide), pex[n] satisfies the following
equation:

Pext[MR(n) = wn(l —n) (91pm {n + %} + G2Pext {n - %D

type 1 replaces type 2 (orvice versa)

N-1

N-1
+—— @+ G(1-n)+ = gmPi ]

mutant removed mutant replaces type 1/2

N (_(N &1)2 (w91 + (1 -n)g2) +%">pext[n]7 (A9)

no change

with R(n) = (N — 1)(ng1 + (1 — n)g2) + g (from Equation A2).
ForN > 1,

1 1, 1
Dext {” + N} R Pext[N] + 7 Pext {” + ﬂ] ) (A10)

1 1, 1
Pext {” - N} ~ Pext[] — 3 Pext {” - @} ) (A11)

such that

1 1
J1Dext |:1’1 + N:| + J2Pext [H - N:|

1 , 1 , 1
= (91 + 92)Pex ] + 5 { 91Plext [N+ 55| = 2Pl [N =~ 55

= (g1 + g2 )peclr] + ((%Q)pé” [” +%] B (wz;g)pé“ {n B % )

where w=¢1 + g, and Q=91 — g»
@« /1 /
= (91 + 92)pEXI[n] + Wp ext[n] + Npext[n]'
(A12)
Substituting this into Equation (A9), letting g» = g1(1+5) > g1

and gm = g1(1 +s1) > g1, and taking the large N limit, the solution
for pr(n) = 1 — pexe[n] is given by:

& 9
(1 +s)p?(n) + (s(L - ) fSI)pf(n)7@ ggygn)+u(n) Péy(ln) o,
1 2 3 4
(A13)

where D(n) = w (2+s5), v(n) = n(1 —n)s, and the boundary con-
ditions are given by ps(0) = (s; —s)/(1 +s1) and ps(1) = s1/(1 +s1).
In the large N limit, the third term will be much smaller than the
other terms.
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Fig. Al. Fixation probability prof a mutant (with growth rate g,» = 1 + 51) as a function of n, the fraction of type 1 cells in a population of size N=1,000.
Type 1 cells have growth rate g; = 1 and type 2 cells have growth rate g, = 1 +s. a) When s < s; (blue curves: s=0.005, s; = 0.05, red curves: s=0.01,

s1 = 0.1), ps(n) is approximately linear in n and is given by the selective advantage of the mutant over that of the population average. Solid lines are
exact solutions obtained from Equation (A1) while dashed lines plot the expression in Equation (A14). b) In general, ps(n) is not a linear function of n
(dash-dotted lines, Equation A14), but is well approximated by Equations (A15) and (A18) (dashed lines vs solid lines). [Blue curves: s =0.03, s; = 0.05,

red curves: s =0.05, s; = 0.1.]

If the first two terms in Equation (A13) dominate (either when
nis close to 0 or 1, or when s; > s),

) = p(n) = 2202

~ s1—s(1—-n),

(A14)

where in the second line we have taken the limit s; < 1. For 0 <
n < 1ands>0, the fourth term in Equation (A13) is positive and
hence this expression is an overestimate of the true fixation prob-
ability.
Denoting the actual fixation probability as:
pr(n) = pr(n) + A(n) (A15)
and substituting this back into Equation (A13), we find that to
first order in A and in the limit s; < 1, A(n) satisfies the following
equation:

% %A-ﬁ-s:o. (A16)
Defining the integrating factor:
I(n) = el — it (A17)
(1-n)'s
with ds = s; — s, the solution to Equation (A16) is given by:
A(n,s,ds) = —s o 17, 5)d (A18)

In,%)

which satisfies the boundary conditions A(n =0) =A(n=1) = 0.

We find that these expressions for the fixation probability pro-
vide a good estimate of the exact values for a finite (but large)
population (Fig. Al).

Appendix B: Effect of clonal interference on
fitness trajectories

The rate that a successful interfering mutation emerges at gener-
ation t after a mutation of fitness effect s has escaped loss via ge-
netic drift and is still on its way to taking over the population is
given by:

Ry(t) = Nugon(t) Jm p(si|F)ps (n(t)]s, si)dsi, (A19)

where n(t) = ﬁ%ﬁe;‘ is the fraction of resident cells at genera-
tion t (assuming deterministic, logistic growth of the mutant
strain), pr(n(t)ls,s;) is the fixation probability of the interfering
mutant with fitness effect s; (Appendix A), and p(s;|F) is the distri-
bution of fitness effects of beneficial mutations that can arisein a
cell with fitness F.

Here, we consider a general class of exponential-like fitness ef-
fect distributions that has been adopted in previous theoretical
studies (Fogle et al. 2008; Schiffels et al. 2011; Good et al. 2012):

(F)

[R5 R CT B
PR =rap ¢

(A20)

where I' is the Gamma function, e " is the fraction of mutations
that are beneficial, and o and f characterize the shape of the dis-
tribution. In particular, if =1, we recover the exponential distri-
bution used in the main text (Equation 2). When g > 1, p(s) falls
faster than exponentially; when g < 1, p(s) falls more slowly
than exponentially. The effect of the shape of p(s) on the speed of
adaptation in the clonal interference regime has been explored in
Park et al. (2010) and Fogle et al. (2008) assuming that p(s) does
not change over time (i.e. no epistasis); here we are interested in
how different types of macroscopic epistasis affect the shape of
the average fitness trajectory.
Substituting this distribution into Equation (A19) gives:
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Fig. A2. Scaled fitness trajectories for different values of initial beneficial mutation rates u, on different fitness landscapes (left panel: diminishing
returns model with «(F) = 20F° and p;, = 14, middle panel: House-of-Cards/uncorrelated landscape with a(F) = 100F and p, = wy0e~ Y, right panel: a
mutation-releasing landscape with «(F) = 50ef~1, u, = ,0ef 1) [Other parameters: N = 10°, f=1.]. The solid lines are obtained from solving Equation
(A24), while the lighter, shaded regions represent the 95%-confidence interval around the mean obtained from the average of 10 simulation replicates.
For the case where 0 = 1 x 1078, we set the rescaled time f to be the actual time t, and for other values of y,,, time is rescaled such that the initial

gradient % .o is the same as when gy, = 1 x 1078,
Ri(t) = Nype"n tJ P —
(t) = Niwo O, T+ 178

_ Npoe "On(t)
- OC(F) f(S,Yl(t))7

,(a(F)(erés))/‘pf(n(t), s, 8s)dds

(A21)

where § = a(F)s, s = s; — s, and the function f(s,n(t)) depends on
the value of g and whether we adopt the approximate (linear in n,
Equation A14) or more accurate (Equations A15 and A18) expres-
sion for ps(n(t),s, ds). For f=1, if we assume that ps(n(t),s, ds) =
ds +sn(t) (Equation Al14), then f(3,n(t)) = e 5(1 4 3n(t)).

Integrating this over all possible times the interfering mutant
can emerge gives:

A3, F) = [y Ri(t)dt =

—h(F) (Hog(N-1)
e [ G

(F)
_ Npyoe™"®) J““Nf(in) in (A22)
S 1/N 1-n
= Mﬁ(g)

S

where f,(s) is a function of 5. In the main text, we assumed the
simple form of pg(n(t),s,ds) = ds +sn(t) and f=1, in which case
fE,n(t) = e*(1 +35n(t)) and hence:

@) =e? <1og(N71)(1+§)*§<1*§>> (A23)
~ e~*log(N)(1 +3),

where we have taken the large N limit (log(N) > 1) in the approxi-
mation. Substituting this into Equation (A22), we recover
Equation (10) in the main text.

Since the fixation probability Pyis reduced by a factor of e~
in the presence of clonal interference (Equation 5), the dynamics
of average fitness is given by:

dlog(F) _  NFuyoe ™™ (%5 wriicm)
dt 2O+ 1/p) Jo s @s. (A24)

We find that this expression agrees well with the simulation
data over a reasonably wide range of mutation rates (with Ny,
not too large, Fig. A2).

The fact that A(S,F) explicitly depends on h(F) but not «(F)
implies that only h(F) affects the functional form of the fitness
trajectory.

Appendix C: Numerical results with other
distributions of fitness effects

We find that our expression for the dynamics of fitness in the
clonal interference regime (Equation A24) agrees well with simu-
lation data for other distribution of fitness effects specified
through different values of g (Equation A20), and that the conclu-
sion that depletion in beneficial mutations speeds up the func-
tional form of the trajectory holds for these different
distributions (Fig. A3).

Appendix D: Simulation Details

We carry out full simulations of the evolutionary process within
the Moran model using the Gillespie algorithm. For each simula-
tion, the population is initialized with N cells, each with initial fit-
ness (i.e. division rate) of 1. Throughout the simulation, we keep
track of the size Nj (i.e. number of cells) and fitness F; of cells in
each subgroup i =1,2,...,ns, where ng is the number of currently
existing subgroups that is present in the population. For example,
the initial population consists only of ng = 1 subgroup of size N; =
N and fitness value F; = 1. At each point during the simulation,
we also calculate the corresponding beneficial mutation rates
(i.e. probability of gaining a beneficial mutation per division)
iy i(Fy) = mpoe ") (Equation 2, Equation A20) of each subgroup.
The possible events that change the composition of the popula-
tion are: (1) a cell from a subgroup i divides (without mutation)
and replaces a cell in another subgroup j # i, which occurs with
rate Ri; = %Niﬂ-(l — 1), and (2) a cell from a subgroup i divides
and mutates while a cell from subgroup j is removed, which
occurs with rate RL}' = %Nﬁybi. The total rate of an event occur-
ring is then given by Rit = 3i,Rij + 3 Rij, and we draw the
time to the next event from an exponential distribution with
mean given by 1/Ry:. The next event is drawn with probability
proportional to the rate at which the event occurs, and the com-
position of the population is updated accordingly. If a beneficial
mutation occurs while a cell in subgroup i divides (i.e. event type
b), we draw its selection coefficient from the specified distribution
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Fig. A3. Fitness trajectories on the HoC/uncorrelated landscape with fitness effect distribution p(s) specified by a) f = 0.5,b) p = 1,and c) § = 2. The
parameter  characterizes how fast p(s) decays with s (Equation A20). In each sub-figure, the upper panel shows the fitness trajectories as a function of
actual time with (red) and without (blue) clonal interference (CI). The solid lines are are obtained from solving Equation (A24) [with 2 given by Equation
(A22) in the CIregime and 42 = 0 in the SSWM regime], while the dashed lines are individual replicates from simulations. The lower panel compares
trajectories (blue and red solid lines in the upper panel) after rescaling time t =t - A/2 for the case with clonal interference such that both trajectories

have the same derivative at t =0. [Landscape parameters: «(F) = 100 Eg% F, wp = mpoe~F-D, other parameters: N = 10°, 0 = 1-107°]
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Fig. A4. Scaled substitution trajectories S for different values of initial beneficial mutation rates u,, on different fitness landscapes (left panel:
diminishing returns model with «(F) = 20F> and g, = 0, middle panel: House-of-Cards/uncorrelated landscape with o(F) = 100F and w;, = pyoe~ 1,
right panel: a mutation-releasing landscape with «(F) = 50e"1, , = wyee" 1) [Other parameters: N = 10°, f=1]. The solid lines are obtained from solving
Equation (A27), while the lighter, shaded regions represent the 95%-confidence interval around the mean obtained from the average of 10 simulation
replicates. The rescaled time { is the same as that for the fitness trajectories in Fig. A2. The average number of accumulated mutations S is not scaled
for the case where p = 1 x 1078, and for the other values of y,, S is rescaled such that the initial gradient ‘;—f |io is the same as when g,y = 1 x 107%.

In the presence of weak clonal interference, assuming the sim-
plified linear expression for the fixation probability (Equation
Al4) gives:

with mean given by (s)(F;) = %%ﬁ (Equation A20, or Equation

[2]if B = 1), and this new mutant is stored as a new subgroup.

. . —Nh(F) poo
Appendix E: Effect of clonal interference on dﬁ—wj 5o GHIGR) g,

. . . N dt - O((F) (A27)
substitution trajectories 0

Analogous to the fitness trajectory, the average substitution tra-
jectory S(t) (i.e. the number of fixed mutations as a function of
time) is given by:

ds o0
S = NFio | “Pr(s)otslPas.
0

(A25)

Assuming an exponential distribution of fitness effects
(Equation 2), in the SSWM regime, the average substitution tra-
jectory is therefore given by:

dS  NFpuyee " o(F)dlog(F)
T L 2 @ (A26)

where (3, F) is the same as in the expression for fitness dynamics
(Equation 10).

As for the fitness trajectory, Equations (A26) and (A27) suggest
that clonal interference changes the form of the substitution tra-
jectory only through h(F). If the beneficial mutation rate w, stays
the same, the form of the substitution trajectory stays the same
regardless of whether there is clonal interference. If u, decreases
with fitness, the form of the substitution trajectory speeds up; if
instead yup increases, the trajectory slows down.

When comparing the numerical solutions of Equation (A27)
across different values of u,,, we first scale time as we would for
the fitness trajectories (such that the initial fitness gradient % lieo

is the same) and then scale S accordingly such that dgfl li_o is the
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Fig. AS. The effect of varying F. when estimating initial fitness gradient on scaled fitness trajectories. The trajectories are obtained from solving
Equation (9), with the rescaled time t = kt, where k is the estimated initial gradient over that for the case with N =1,000. Top row: diminishing returns
model with a(F) = 20F° and p, = w0, middle row: House-of-Cards/uncorrelated landscape with «(F) = 100F and g, = e~ Y, bottom row: a mutation-
releasing landscape with a(F) = 50eF1, 1, = m,ee" 1. [Other parameters: u, = 1 x 107° ]

same. For small values of Ny, (see lines for uy, = 107 and w0 =
1077 in Fig. A4), Equation (A27) agrees well with the simulation
data and we see indeed that as yu,, is increased from 1072 to 1077,
the shape of the trajectory remains unchanged in the
diminishing-returns model, speeds up in the HOC landscape, and
slows down in a mutation-releasing landscape.

However, as the value of y,, is increased further, Equation
(A27) increasingly underestimates the mutation trajectory. This
is the case even though the fitness trajectories are in good agree-
ment with the theory (Fig. A2), suggesting that the excess muta-
tions observed in the simulations likely arise from nearly neutral
mutations that do not contribute much to fitness. The fixation of
nearly neutral mutations that typically do not fix on their own
could occur, for example, when a neutral mutant gains an addi-
tional beneficial mutation which then drives fixation. Therefore,
to distinguish the different types of macroscopic epistasis (and in
particular whether y, changes over time), comparing the shape of

fitness trajectories would be more reliable (i.e. would work over a
larger range of Np) than comparing substitution trajectories.

Appendix F: Effect of varying Fc when
estimating initial gradient

In practice, experimental data consist of fitness values measured
at discrete time points. One way of estimating the initial gradient
of the fitness trajectory is to find the time point t. when the aver-
age fitness F(t.) first exceeds some value F,, and let the estimate
156 of the initial slope be % When comparing the shape of fitness
trajectories across different values of N, the time for each trajectory
is rescaled (t = kt), with the scaling factor k being proportional to
the corresponding value of Fj. By solving Equation (9) for different
landscapes and then rescaling the trajectories using different esti-
mates of gradients using different values of F., we find that our
qualitative results are insensitive to the choice of F. (Fig. A5).
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