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Abstract

A strong reduction in diversity around a specific locus is often interpreted as a recent rapid fixation of a positively selected allele, a phe-
nomenon called a selective sweep. Rapid fixation of neutral variants can however lead to a similar reduction in local diversity, especially
when the population experiences changes in population size, e.g. bottlenecks or range expansions. The fact that demographic processes
can lead to signals of nucleotide diversity very similar to signals of selective sweeps is at the core of an ongoing discussion about the roles
of demography and natural selection in shaping patterns of neutral variation. Here, we quantitatively investigate the shape of such neutral
valleys of diversity under a simple model of a single population size change, and we compare it to signals of a selective sweep. We analyti-
cally describe the expected shape of such “neutral sweeps” and show that selective sweep valleys of diversity are, for the same fixation
time, wider than neutral valleys. On the other hand, it is always possible to parametrize our model to find a neutral valley that has the same
width as a given selected valley. Our findings provide further insight into how simple demographic models can create valleys of genetic di-
versity similar to those attributed to positive selection.
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Introduction
Past demography and natural selection play a critical role in

shaping extant genetic diversity. A central question in population

genetics is to quantify their respective impact on observed geno-

mic diversity. Because selection interferes with demographic esti-

mates and vice versa, estimation of one of these 2 components is

difficult without accounting for the other (Charlesworth et al.

1993, 1995; Kaiser and Charlesworth 2009; O’Fallon et al. 2010;

Charlesworth 2013; Nicolaisen and Desai 2013; Johri et al. 2020,

2021b). Moreover, the relative importance of demography and se-

lection as determinants of genome-wide diversity is currently

hotly debated and may vary extensively among species (Corbett-

Detig et al. 2015; Rousselle et al. 2018; Pouyet and Gilbert 2019;

Galtier and Rousselle 2020). It has been shown that selection and

demography can leave very similar footprints on the genetic di-

versity of a population (Andolfatto and Przeworski 2000; Teshima

et al. 2006; Thornton and Jensen 2007; Johri et al. 2021a).

Disentangling the effects of demography and selection is, there-

fore, crucial to avoid the erroneous inference of evolutionary sce-

narios from genomic data (Jensen et al. 2005; Wares 2009;

Mathew and Jensen 2015; Johri et al. 2020).
Hard selective sweeps lead to valleys of strongly reduced di-

versity around positively selected sites due to the hitchhiking

of linked neutral loci (Maynard Smith and Haigh 1974), such

observations of strong depletions of diversity in some genomic
regions are often interpreted as due to past episodes of positive
selection because the probability to observe a fast fixation of a
neutral variant in a population of constant size is extremely low.
However, during a range expansion for instance, some neutral or
even mildly deleterious mutations can go quickly to fixation due
to the low effective size of populations on the front of the range
(Edmonds et al. 2004; Klopfstein et al. 2006; Hallatschek and
Nelson 2008; Peischl et al. 2013), a phenomenon termed allele
surfing (Klopfstein et al. 2006). Theoretical studies have shown
that the average neutral diversity on the wave front decays expo-
nentially as the range expands (Hallatschek and Nelson 2008),
similarly to what happens when a population experiences a sud-
den decay of the population size, i.e. a population contraction,
due to a drastic change in the environment for example. In both
cases, a mutation appearing when the population size is shrink-
ing might go quickly to fixation, inducing a strong decrease of di-
versity in the surrounding genomic region, whereas the average
level of diversity might stay quite high depending on the strength
and the duration of the contraction. As a result, the coalescent
tree of alleles sampled in a population with strongly reduced ef-
fective population size will have short external branches, and
long internal branches, depending on the parameters of the
model (Excoffier et al. 2009). The average site frequency spectrum
associated to such a tree resembles a neutral Site Frequency
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Spectrum (SFS), but with a lack of rare alleles and an excess of
high frequency sites, i.e. it becomes “flatter” (Sousa et al. 2014;
Peischl and Excoffier 2015). The footprint left by the rapid fixation
of a neutral allele on the surrounding genomic diversity might
thus be like that of a positively selected allele sweeping through a
constant size population.

The expected shape of nucleotide diversity in genomic regions
surrounding a site undergoing a rapid neutral fixation has been
investigated analytically and numerically. Tajima (1990) studied
the reduction of diversity during a neutral fixation at a given re-
combination distance from the fixing site. His results rely on rig-
orous mathematical arguments based on diffusion theory, but no
closed form solution is provided for the shape of a neutral sweep.
Johri et al. (2021a) described the valley of diversity occurring
around a neutral fixation using an approach introduced for selec-
tive sweeps, assuming that the evolution of the allele frequency
is that of a selected allele except in the initial stochastic phase.
Here, we extend this work by inferring the dynamics of fixation of
neutral alleles after a population contraction and we examine
their effects on neighboring regions of the genome. We provide
an analytical result for the expected coalescence time as a func-
tion of the recombination distance from the locus undergoing a
fast fixation. Importantly, our results apply regardless of the pro-
cess driving the allele going to fixation (neutrality, positive selec-
tion, background selection), as it only relies on the typical
trajectory of an allele going to fixation in a given time, even
though this trajectory differs depending on the underlying driver
of this fixation (i.e. neutrality or selection). We compare our
results against simulations and find that they hold for a wide
range of realistic parameter combinations. We compare our
results about the signature of neutral sweeps to patterns
expected under selective sweeps and discuss potential differen-
ces between the signatures that could potentially allow us to dis-
criminate between neutral and selective processes for a given
demographic scenario. Finally, we investigate the similarity be-
tween the genomic signature of an allele going to fixation either
selectively or neutrally and observe that a selective sweep signal
can in principle be replicated in a neutral model with an appro-
priate choice of demographic parameters. We conclude that
strong diversity depletions in the genome of a population, often
attributed to the effect of positive selection, can be obtained with
demographic effects only, and we call for caution when trying to
detect signals of adaptation from genomic data, adding support
to previous studies reaching similar conclusions (Thornton and
Jensen 2007; Crisci et al. 2013; Jensen et al. 2019).

Model
We model here the effect of an instantaneous population con-
traction on genomic diversity. Throughout the whole manuscript,
time is measured backwards. We assume that tc generations be-
fore the present, the population size instantaneously dropped
from N0 diploid individuals to Nc individuals with Nc < N0. We as-
sume a standard coalescent model (Kingman 1982a,b) with dis-
crete nonoverlapping generations, random mating, monoecious
individuals, and no selection. Two haplotypes sampled in the
current population at time t ¼ 0 have, as we go backwards in
time, a constant probability (2Nc)

�1 of coalescing at each genera-
tion, for the first tc generations, and then, this probability
switches to (2N0)�1 as we enter the ancestral uncontracted popu-
lation. We can approximate the distribution of coalescence time
T of these 2 haplotypes as a piecewise exponential distribution
(see Appendix A1) with expected value:

E T½ � ¼ 2 N0 � Ncð Þ e�tc=2Nc þ 2Nc: (1)

We see that the expected coalescence time decreases expo-
nentially with the age of the contraction tc and that it approaches
2Nc for a very old contraction. Coalescence times cannot be mea-
sured directly from empirical data, but they are closely related to
nucleotide diversity p. Under the infinitely many sites model, the
number of nucleotide differences between 2 homologous DNA
segments is proportional to their coalescence time T as p ¼ 2lT,
where l is the total mutation rate for the whole segment.
Multiplying Equation (1) by 2l shows that an instantaneous pop-
ulation contraction leads to an exponential decrease of the
expected nucleotide diversity along the genome with the age of
the contraction tc. However, it does not inform us on the distribu-
tion of nucleotide diversity p along the genome, or on spatially
correlated patterns of diversity such as local depletion or excess
of diversity relative to the expectation.

Figure 1 shows the evolution of the distribution of p as a func-
tion of the time tc elapsed since the contraction. For tc ¼ 0, there
is no contraction, and the population size remains constant and
equal to N0. In this case, we see (Fig. 1, a and b, tc ¼ 0) that the dis-
tribution of p is symmetric and centered at E[p] ¼ 4N0l. For an
older contraction, we see that the distribution is not only shifted
to lower values of diversity as expected from Equation (1), but
that it also becomes strongly peaked around p ¼ 4Ncl. This bimo-
dality of the distribution can be understood intuitively in the fol-
lowing way. There are 2 possible types of coalescent trees for
haplotypes sampled after the population contraction (note that
the tree depends on the locus considered because of recombina-
tion). Indeed, the most recent common ancestor (MRCA) of the
sample lived either before the contraction (TMRCA > tc) or after the
contraction (TMRCA < tc). In the former case, the tree at this locus
has long inner branches and short outer branches, whereas in
the latter case, the tree is essentially a (short) neutral tree corre-
sponding to a population of constant size Nc (Excoffier et al.
2009). Both types of trees occur at different loci and correspond
to the 2 observed modes in the distribution of the nucleotide di-
versity along the chromosome. The precise shape of the distribu-
tion of nucleotide diversity across sites depends on the relative
frequency of both types of trees, which itself depends on the age
of the contraction tc. For a sample of size 2, the probability that
the MRCA lived after the contraction, that is TMRCA < tc is
1� e�tc=2Nc . For a larger sample of haplotypes, there is no closed
form solution for this probability, but the trees rooted after the
contraction are rare for tc� 2Nc and very frequent when tc� 2Nc

(Tavar�e 1984). Therefore, the evolution of the distribution of p for
increasing contraction age tc appears to be a transition from a
unimodal distribution centered at 4N0l to another unimodal dis-
tribution centered at 4Ncl, with both modes coexisting for inter-
mediate ages (Fig. 1). This bimodality has been pointed out
previously in the context of population bottlenecks (Austerlitz
et al. 1997); however, those studies mainly focused on long dura-
tion bottlenecks (the effect of a contraction or a bottleneck on nu-
cleotide diversity is the same provided that the bottleneck is not
yet finished, or that it finished very recently so that the effect of
population recovery is negligible). In the present work, we investi-
gate the effect of short contractions on the genetic diversity and
make the claim that this short contraction regime is of particular
interest as it can lead, such as in Fig. 1c, to genomic signatures
similar to those generated by positive selection acting on a few
sites in an otherwise neutral genome. More specifically, we want
to quantitatively describe the reduction of diversity along the ge-
nome that is observed around a locus with a small TMRCA (such as
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in Fig. 1c in the regions around 10–11 and 19–20 Mb), where we
observe a valley or trough of diversity. Akin to what is done for
selective sweeps, we consider the (neutral) fast fixation of an al-
lele and analyze the impact of hitchhiking on the genetic diver-
sity of neighboring loci, and we refer to this process as a neutral
sweep.

To investigate neutral sweeps in our model, we consider the
following scenario: tm generations ago a mutation occurred at a
single site on the chromosome, which we call the focal site. We
further assume that this mutation has just fixed in the popula-
tion, i.e. that it was segregating at a frequency strictly lower than
1 in the last generation (at t ¼ 1) and has now (at t ¼ 0) a fre-
quency equal to 1. We assume that the population contraction
occurred tc generations ago, with tc � tm. As the mutant enters
the population as a single allelic copy at the focal locus, defined
as a nonrecombining region surrounding the focal site, this copy
is a common ancestor for all the copies (2Nc) present at fixation.
However, it is not necessarily the most recent common ancestor.
Figure 2 shows a sketch of our model to help visualize how re-
combination can maintain diversity at linked loci around a locus
where a new mutation quickly fixed in the population.

Results
Average coalescence time at a linked locus
We can calculate the expected coalescence time T(l) of 2 ran-
domly sampled haplotypes at a linked locus as a function of the
recombination rate r from the focal locus. The idea is to consider
2 haplotypes with a given coalescence time T(f) at the focal locus,
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Figure 1 Nucleotide diversity of a population experiencing a contraction, as a function of the time tc elapsed since the contraction, measured in units of
2Nc. a) Distribution of nucleotide diversity as a function of time, nucleotide diversity along the chromosome at tc ¼ 0 b), at tc ¼ 0.25 c) and at tc ¼ 0.75 d).
Population size before contraction N0 ¼ 2.37 � 106 and after contraction Nc ¼ 4,400. Mutation rate l ¼ 5.42 � 10�10 per site per generation.
Recombination rate r ¼ 3.5 � 10�8 per site per generation. Chromosome size L ¼ 20 Mb. Window size 10 kb sliding at 1-kb intervals. Sample size: 30
haplotypes. These parameters are taken from Rogers et al. (2010). Simulations were performed with fastsimcoal2 (Excofffier et al. 2021).
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Figure 2 Instantaneous population contraction with a subsequent
neutral fixation. A mutant (green star) appeared tm generations ago and
has just fixed neutrally in a diploid population that experienced a
contraction tc generations ago. We represent the population as a set of
2Nc 2-locus haplotypes that are painted so that the gene copies present
at t ¼ 0 can be traced back to t ¼ tm. Due to recombination, haplotype i
carries a red gene copy at the linked locus at t ¼ 0. Correspondingly, the
coalescence time T(l) of the haplotypes i and j at the linked locus (black
tree) is larger than tm. On the other hand, the coalescence time T(f) at the
focal locus (green tree) is smaller than tm because at this locus all gene
copies descend from the same haplotype (due to the fixation of the focal
mutation).
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and then follow the genealogy of the gene copies carried by these

2 haplotypes at the linked locus backward in time, while consid-

ering possible recombination events. The expected coalescent

time at the linked locus is then

E T lð Þ
� �

¼ 1� E e�2r
PT fð Þ

t¼1
ð1�xtÞ

h i� �
tm þ Tmð Þ þ E T fð Þ e

�2r
PT fð Þ

t¼1

ð1�xtÞ

" #

(2)

where xt is the average frequency of the mutant (derived) allele

at the focal locus at time t counting backward from present. A de-

tailed derivation of this equation is given in Appendix D. The first

term of the right-hand side of Equation (2) corresponds to cases

where lineages escape the neutral sweep due to recombination

and still have not coalesced after tm generations. In this case we

need to wait on average Tm ¼ 2 N0 � Ncð Þ e�ðtc� tmÞ=2Nc þ 2Nc extra

generations before the lineages coalesce, due to the contraction

that happened tc � tm generations before the focal mutation. The

second term of the right-hand side of Equation (2) corresponds to

cases where the lineages cannot escape the sweep and are forced

to coalesce at a time T(l) � tm.

Distribution of coalescence times at the focal
locus
To evaluate Equation (2), we need to determine the probability

distribution of the pairwise coalescence times T(f) at the focal lo-

cus, as well as the expected frequency trajectory of the derived

allele. Even though this allele fixes neutrally in a population of

constant size (the contraction occurs prior to the mutation), the

distribution of coalescent times at the focal locus T(f) departs

from the usual exponential distribution for a neutral coalescent

process because the allele fixes in exactly tm generations, and

hence, the coalescence time for a randomly chosen pair of haplo-

types is at most tm. Slatkin (1996) investigated the coalescent pro-

cess within a “mutant allelic class” that originated from a single

mutation at a given time in the past. He derived exact analytical

results for the average pairwise coalescence time, but the coales-

cence distribution itself can only be expressed with multidimen-

sional integrals and obtaining a closed form expression does not

appear feasible. We therefore use a different approach: given a

particular fixation trajectory of the mutant allele, i.e. given the

number of mutant copies Nl at each generation between t ¼ 0

and t ¼ tm, we can express the coalescence time distribution

within the mutant allelic class, using the result of a coalescent in

a population with a time-dependent (but deterministic) size Nl tð Þ
(Griffiths and Tavar�e 1994). Averaging over all possible trajecto-

ries of the mutation, we obtain:

P T fð Þ
� �

¼
X
fxtg

1
2NcxT fð Þ

YT fð Þ�1

t¼1

1� 1
2Ncxt

� 	2
4

3
5P fxtgð Þ (3a)

where xt ¼ Nl tð Þ= 2Ncð Þ is the frequency of the mutant t genera-

tions from fixation, and P fxtgð Þ is the probability of a given trajec-

tory. P fxtgð Þ can be evaluated (see Appendix B) and the sum in

Equation (3a) can in principle be computed numerically; how-

ever, the number of trajectories to consider is prohibitive. As a

first approximation, we can replace xt by its expectation xt, i.e.

we neglect the fluctuations of the trajectory around the mean to

obtain

P T fð Þ
� �

’ 1
2Nc xT fð Þ

YT fð Þ�1

t¼1

1� 1
2Nc xt

� 	
: (3b)

The last step is to determine the average trajectory of an allele
fixing in exactly tm generations. Zhao et al. (2013) as well as
Maruyama and Kimura (1975) have investigated the characteris-
tic trajectory of an allele fixing in a given time but they do not
provide a closed form solution. Here, we use a different approach
(also based on diffusion theory to obtain an approximation for
the average trajectory of an allele fixing in exactly tm generations,
starting from a frequency p0. As detailed in Appendix B, we ob-
tain

xt ¼ 1=2 1� 1� 2p0ð Þe� tm�tð Þ=Nc þ e�t=Nc

� �
(4a)

which is valid for tm � 2Nc. For very fast fixations, i.e. when
tm � 2Nc, the frequency of the allele increases approximately lin-
early as

xt ¼ 1� 1� p0ð Þ t
tm
: (4b)

We remind the reader that t is counted backwards from fixa-
tion. Figure 3 compares Equations (4a) and (4b) to trajectories
obtained from simulations of a Wright–Fisher diploid population.
We find good agreement between the simulations and the analyt-
ical results. Importantly, the typical neutral trajectory for large
values of the fixation time has an “inverse-sigmoid shape”
(Fig. 3c), contrary to the typical sigmoid trajectory of a positively
selected allele going to fixation in a constant size population (see
Fig. 5a). This neutral trajectory occurs because, conditional on
nonloss, neutral alleles need to quickly escape loss at the begin-
ning and remain at intermediate frequencies to stay away from
both fixation and loss until they eventually fix in the population
at t ¼ 0 (i.e. in exactly tm generations). Figure 3, e–h also shows
the coalescence time distribution for several values of the fixa-
tion time tm. The comparison of the distribution of pairwise coa-
lescence time with numerical simulations of a Wright–Fisher
model shows that our approximation Equation (3b) is quite accu-
rate but overestimates the probability of coalescence for large co-
alescence times when tm is small (Fig. 3d). Notably, coalescence
(simulated or theoretical) is more probable at large times (i.e.
when the mutant appeared) for short fixation times (Fig. 3d),
whereas it is more probable at small times (i.e. close to fixation)
for large fixation times (Fig. 3e). The coalescence rate within the
mutant allelic class is given by the inverse of the number of mu-
tant copies and is for all values of the fixation time slightly more
than 1/2Nc at the first generation. However, when the fixation
time is short (Fig. 3e), there is a fast increase of the coalescence
rate backwards in time, and many lineages are forced to coalesce
at t ¼ tm. When the fixation time is large (Fig. 3h), the coalescence
rate also increases backwards in time, but the increase is much
slower. In that case, most coalescence events happen in much
less than tm generations, so that the early increase in frequency
of the mutant has almost no influence on the coalescence distri-
bution.

Effect of a neutral sweep on linked diversity
Combining Equations (3b) and (4a) with Equation (2) allows us to
get an approximation for the average coalescence time at linked
loci. Since the derivation of Equation (2) assumes that there is at
most 1 recombination event in the genealogy of a randomly
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chosen pair of gene copies, we expect it to be only accurate for
small values of the recombination rate r. For large values of r we
use a heuristic approach combining the result of Equation (2),
which is accurate for small r, and the expected diversity at un-
linked loci, which is equal to T0 ¼ 2 N0 � Ncð Þ e�tc=2Nc þ 2Nc as
stated in Equation (1). We fit the trough of diversity with an expo-
nential function of the form:

E T lð Þ
� �

rð Þ ¼ T0 1� ce�arð Þ (5)

where the coefficients c ¼ 1� E T fð Þ
� �

=T0 and a ¼ 2E½ðtm þ Tm �
T fð ÞÞ

PT fð Þ
t¼1 ð1� xtÞ�=ðT0 � E T fð Þ

� �
Þ are obtained by imposing that

Equations (2) and (5) coincide for small values of r (using a linear
expansion in r). In Fig. 4, we compare the result of Equation (5) to
Wright–Fisher simulations with two recombining loci. We see in
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Figure 3 Average frequency (a–d) and coalescence time distribution (e–h) of an allele fixing in a diploid population of constant size Nc ¼ 20 in exactly tm

generations, starting as a single copy (i.e. p0 ¼ (2Nc)
�1). The red dots are the results of Wright–Fisher simulations, and the black and white dashed lines

are calculated with Equations (4b) (first and second columns), (4a) (third and fourth columns), and (3b). In (a)–(d), we show the variability of the fixation
process by overlapping 1,780 fixing trajectories. The (numerically estimated) probability, for a mutant that appears at the onset of the contraction, to fix
in less than tm generations is 0.006, 0.16, 0.64, and 0.86 for tm ¼ 20, 40, 80, and 120, respectively (for this particular value of Nc).
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Figure 4 Average coalescence time at a linked locus, as a function of the recombination distance from the focal locus where a mutant fixed in exactly tm

generations, starting from a single copy tm generations ago. tm ¼ 15 in black, tm ¼ 20 in red, and tm ¼ 40 in blue. The dots are calculated with 2-locus WF
simulations, and compared to Equation (5) with either a numerical estimation (solid lines) or a theoretical estimation (dashed lines) of xt and P T fð Þð Þ. Nc

¼ 20. N0 ¼ 1,500. The population experienced a contraction tc ¼ tm generations ago.
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Fig. 4a that the exponential function fits the data accurately at

large values of the recombination distance, but that the fit is bi-

ased for intermediate values of r. In Fig. 4b we see that the ap-

proximation is very good for low values of the recombination

distance, although there still is a slight bias. This discrepancy at

small r can be corrected (solid lines in Fig. 4) if we use numerical

estimations of xt and P T fð Þ
� �

, instead of Equations (4) and (3b), to

evaluate Equation (5).
We observe, as expected, in Fig. 4 that the troughs of diver-

sity induced by neutral sweeps are wider and deeper for short

fixation times. Similarly to what happens after a selective

sweep, there is less opportunity for linked loci to escape the

sweep by recombination and maintain diversity when the fixa-

tion is fast. In addition, the diversity level at the center of the

valley is given by the average coalescence time at the focal lo-

cus, which quickly decreases for small fixation times tm.

Comparison of neutral sweeps and selective
sweeps
Since we did not make any assumption regarding the process

driving the mutant allele to fixation when deriving the average

coalescence time at linked loci (Equation (2)) and the coales-

cence time distribution at the focal locus (Equation (3b)), our

framework allows us to directly compare the signatures of dif-

ferent processes that can drive mutations to fixation in a given

number of generations. We illustrate this by comparing the ef-

fect of neutral and hard selective sweeps on linked diversity.

Later, we will discuss how neutral sweeps compare to a larger

variety of scenarios (e.g. background selection, small selection

coefficients, or dominant alleles). Here we assume that the

neutral and selected fixations occurred over the same time in-

terval, that is in both cases in exactly tm generations. The se-

lected fixation is assumed to be codominant (h¼0.5) and occurs

on an autosomal locus in a randomly mating diploid popula-

tion of constant size N1, and we consider a strong selection

strength (2N1s � 1) so that the allele frequency follows the de-
terministic trajectory

xt ¼
1

1þ 2N1 � 1ð Þ e�2 1�t=tmð Þ log 2N1ð Þ (6)

where the fixation time is given by tm(s) ¼ 2log(4N1s)/s (Barton

1995). Then combining Equations (5), (3b), and (6), we can com-

pute the average coalescence time at linked loci as a function of

the recombination distance r to the focal locus, after replacing
Tm, the average coalescence time at t ¼ tm, by 2N1 in Equation (5)

and Nc by N1 in Equation (3b). This approach yields results similar

to Charlesworth (2020), where the author investigated signals of

selective sweeps correcting for coalescent events that happen

during the sweep, thus going beyond the common assumption of
a star tree structure at the focal locus. For the sake of simplicity

in the neutral case, we consider that the mutant appeared at the

time of the contraction, i.e. tm ¼ tc. Furthermore, we will assume

that the average coalescence times (and consequently the genetic
diversity) are equal in both scenarios, i.e. that T0 ¼ 2N1 which

implies that

N0 tmð Þ ¼ N1 � Ncð Þ etm=2Nc þNc : (7)

In the neutral case, we want the diversity to remain as high as

4N1 l after the contraction, which is possible only if the ancestral
diversity was even higher, i.e. we have in general N0 > N1 > Nc.

In Fig. 5a, we compare the mutant average frequency as a

function of time for a selected and a neutral fixation. The dynam-

ics of the neutral fixation is the opposite of that of the selected al-

lele in the sense that when one is increasing, the other is “resting”
and vice versa. These different trajectories translate into differ-

ent coalescence distributions at the focal locus (Fig. 5b). If selec-

tion drives the fixation of the mutation, the distribution of

coalescence time is peaked at large coalescence times. In con-

trast, in the neutral case the distribution is skewed toward small
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coalescence times. Correspondingly, the coalescence tree for the
selected case has a star-like structure (Hermisson and Pennings
2017), whereas the tree for the neutral case has shorter outer
branches. Therefore, for a given recombination distance, there
will be fewer recombinations on the neutral tree because it has a
much smaller total length. As recombination helps maintain di-
versity at linked loci, we would expect neutral troughs of diver-
sity to be wider than in the selected case. However, this is at odds
with the valleys of diversity observed in Fig. 5c, where the selec-
tive trough is wider than the neutral trough. Even though recom-
binations occur less frequently on the neutral tree as compared
to a selected tree, a recombination on the neutral tree is more
likely to lead to a change of genomic background from derived to
ancestral allele due to the inverse sigmoid neutral trajectory of
the derived allele. Recombination on the neutral tree will thus
more often lead to a lineage escaping the sweep, resulting in
more efficient recovery of diversity in the neutral case for a given
genomic distance from the focal locus. Furthermore, we see that
the trough is deeper in the neutral case (Fig. 5c), since the average
coalescence time is smaller at the focal site due to the smaller to-
tal length of the coalescence tree.

To determine if these differences between selective and neu-
tral troughs hold for other fixation times and population sizes,
we define 2 quantities that characterize the shape of a trough, as
well as its propensity to be detected in real data: (1) the trough
relative depth and (2) the width of the trough. The relative depth
is defined as the difference between the background level of di-
versity and the diversity at the focal locus, divided by the back-
ground diversity, and the width is measured at half depth, i.e.
halfway between the background diversity and the diversity at
the focal locus. In Fig. 6, we plot the relative depth of neutral and
selective troughs as a function of their width for different fixation
times tm, calculated with our analytical expressions. We see that
the neutral troughs are not only always narrower than the selec-
tive troughs for the same value of tm, but also deeper. This is due
to differences in the focal tree structure between the selective
case and the neutral case as well as difference in the ancestral
background level in both cases, as explained above. For very

short fixation times (corresponding to selection coefficients
larger than 0.1), there is almost no difference between troughs
generated by selective and neutral sweeps. Indeed, for such val-
ues of tm, in both cases, the focal coalescence tree is essentially a
star tree because the increase in frequency is very fast, and the
ancestral backgrounds of diversity, 2N0 and 2N1, are also practi-
cally equal. Note however that at small tm the corresponding
value of the selection coefficient s (see legend of Fig. 6) may be
unrealistically high. For realistic values of the selection coeffi-
cient/fixation time, the neutral troughs tend to be quite deep but
narrow, whereas selective troughs are wider and their depth
decreases quickly for low selection coefficients. From Fig. 6, we
see that the shape of a neutral trough is generally different from
a selective sweep signal, but in practice those differences might
be hidden due to the noise inherent present in real genomic data,
and it might be difficult to decide whether a genomic signal is a
due to a neutral sweep or a selective sweep.

Discussion
It has repeatedly been suggested that strong depletions of diver-
sity in the genome are not necessarily due to the presence of posi-
tive selection (Johri et al. 2020) and can also be the result of
demographic effects only, such as the allele surfing phenomenon
occurring at the front of a range expansion (Klopfstein et al.
2006). In this work, we considered a model of population contrac-
tion to analyze quantitatively the genomic signature of the rapid
fixation of a mutation during a population contraction, but it
should also apply in case of range expansions or recurrent
founder events by considering the harmonic mean of population
sizes. Taking a step further from previous work that focused on
the impact of range expansion on mere allele frequencies, we
have studied here the impact of a neutral allele fixation on neigh-
boring genomic diversity. We show that the diversity profile
around a recently fixed locus crucially depends on the frequency
trajectories of the allele going to fixation, and we outline the fact
that neutrally fixing alleles have an inverse-sigmoid trajectory
(Fig. 3d), as compared to the standard sigmoid frequencies ob-
served for positively selected alleles. For the same fixation time,
this difference translates into different genomic signatures (see
Figs. 5c and 6). Our results demonstrate that there is a short pe-
riod after a demographic contraction (or during a range expan-
sion) where observed profiles of genomic diversity would look like
those usually attributed to selection (Fig. 1c) and that selective
sweep signals can be mimicked by neutrally fixing mutations
without the need to invoke complex histories of population size
changes.

Our results allow for a systematic comparison of selective and
neutral troughs of diversity, and we used our results to investi-
gate trough shapes for a range of neutral and selected scenarios
(see Fig. 6), which in principle can be used to decide whether a
given empirical trough is due to selection or demography, and to
infer the corresponding parameters. However, we did not con-
sider the whole spectrum of possible selection scenarios. It would
be indeed interesting to use our results to study cases of back-
ground selection, small selection coefficients, and a variety of
dominance coefficients. All these cases should have their own
characteristic trajectories of fixation, and hence potentially dif-
ferent genomic signatures. In addition, in our model we do not
consider mutations that fixed in the past (we always assume that
the allele has just reached fixation), nor do we consider muta-
tions appearing before the population contraction, i.e. with tm >

tc. The average coalescence time in the former case can be
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expressed as a function of the coalescence time at fixation using
conditional probabilities, and we can show that a sweep signal
vanishes exponentially with the time elapsed since fixation (see
Appendix D). In the latter case, we can solve the problem by con-
sidering the number of gene copies at tc that descend from the
original copy that appeared at tm. One could extend our results by
considering an allele starting from an arbitrary number of copies
at tc, akin to soft selective sweeps; however, the analytic calcula-
tions are complex, and we leave this study for future research. In
any case, those additional scenarios must be considered when
trying to infer models from the study of troughs found in empiri-
cal data. Another phenomenon that renders the inference of
parameters cumbersome is a possible interference between
troughs. Indeed, when two loci fix neutrally in the population,
the genetic diversity in the region between those loci will be influ-
enced by both fixations and will differ from the diversity expected
in the vicinity of a single fixing locus. As in the case of interfer-
ence between the fixation of selected alleles (Weissman and
Barton 2012), this should limit the number of independent neu-
tral fixations. The effect of trough interference is stronger for
neighboring troughs, and the probability to observe close troughs
depends on the relative frequency of troughs along the genome,
which itself depends on the distribution of the TMRCA. In Fig. 1d,
for example the distribution of TMRCA has a mode centered
around 4Nc (not shown) and correspondingly the nucleotide di-
versity is peaked around 4Nc l. As a result, we see many regions
of the chromosome with a low diversity. It is likely that those
troughs interfere with each other and that they do not corre-
spond to the profile of an isolated trough. On the other hand, in
Fig. 1c, the first mode of the TMRCA distribution is truncated be-
cause tc is much smaller than 4Nc, and only TMRCAs equal or close
to tc are observed (plus all the TMRCAs corresponding to the second
mode centered at 4N0). In this case, there is no interference and
the (rare) troughs, such as the one in Fig. 7, are correctly fitted by
their theoretical expectation. Those considerations imply that,
even though we know the forward in time probability that an al-
lele will fix in tm generations, it is difficult to infer the parameters
of a fixation scenario from a single observed neutral valley of di-
versity. It appears therefore difficult to perform model selection
from a single trough signal, i.e. to decide whether a particular
trough is due to selection or demographic effects, because alter-
native demographic scenarios that we did not consider here
could also lead to similar signals.

We performed simulations to investigate the signature of a
neutral rapid fixation on the SFS (Supplementary Fig. 1). We
chose demographic parameters such that troughs are not numer-
ous along the genome and leave a strong footprint on genomic di-
versity. Out of 10,000 simulations of 20-Mb chromosomes, only
432 exhibit a (single) region of highly reduced diversity (here arbi-
trarily set to less than 7% of the background diversity). By averag-
ing over all these valleys of diversity, we calculated the average
SFS observed in a 15-kb window at the center of the valley and
obtained a U-shape SFS, which is also expected around a selective
sweep (Huber et al. 2016). However, contrary to a fixation driven
by selection (Supplementary Fig. 1), the SFS around a neutral fix-
ation shows a slight excess of variants at intermediate frequen-
cies. This is probably due to the fact that some neutral
haplotypes have spent more time at intermediate frequencies be-
fore going to fixation than selected haplotypes that rapidly
"jump" from very low to very high frequencies (see Fig. 5a). Note
also that the background (genome-wide) SFS away from neutral
sweeps has a global excess of intermediate and high frequency
variants compared to a constant size population. This excess of

high frequency variants is typical of populations having gone
through a recent population size reduction or a bottleneck (Marth
et al. 2004) due to the higher coalescence rate during the popula-
tion contraction. These differences in expected SFS around neu-
tral and selected sweeps could help decide whether regions of
low diversity observed in empirical data are due to selection or to
demographic processes. However, since very few variants are
usually observed in the vicinity of single troughs, the empirical
SFS in such a region might be too noisy to confidently identify the
cause of the diversity reduction. In principle, if several troughs of
diversity were observed in a genome, one could use the distribu-
tion of trough shapes and pooled SFS expected under a given sim-
ple demographic model and a distribution of fitness effect to
compare neutral and selection models under a likelihood frame-
work, but such an exploration is beyond the scope of the present
paper.

In conclusion, our results suggest that any empirical valley of
diversity found in empirical data can be reproduced neutrally
with a population contraction using appropriate parameters. One
could argue that this identifiability problem disappears once the
true evolutionary history is correctly inferred. However, inferring
the true demographic history requires precise knowledge about
how selection has shaped genomic diversity (Johri et al. 2020). In
humans, for instance, it has been estimated that roughly 95% of
genomic diversity is affected by some form of nonneutral forces
such as background selection or biased gene conversion (Pouyet
et al. 2018) potentially biasing demographic inference (Ewing and
Jensen 2016). These considerations indicate than genome scans
in search for signals of adaptation might be more affected by past
demography than previously thought. We thus believe that de-
spite current advances using supervised machine learning or
similar approaches (Schrider and Kern 2018), it remains impor-
tant to further study the effect of neutral fixations in various de-
mographic scenarios using localized genomic approaches such as
the present analytical work (Johri et al. 2021b), as well as with
controlled experiments on real living organisms where both the
selected locus and the population history are known (Orozco-
terWengel et al. 2012). Such work will be critical in order to de-
velop more appropriate evolutionary null models for statistical
inference (Hahn 2008; Johri et al. 2020).
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Appendices

Appendix A: Coalescence distribution after a
contraction
We want to determine the coalescence time of 2 lineages in a

population that experienced a contraction tm generations ago,

from a diploid size N0 to Nc. As we go backward in time, the coa-

lescence rate switches from ð2NcÞ�1 to ð2N0Þ�1 at T ¼ tc. The prob-

ability distribution might still be approximated by a piecewise

exponential density:

f0 Tð Þ ¼ 1
2Nc

exp � T
2Nc

� 	
for 0 < T < tc

¼ 1
2N0

exp � tc

2Nc

� 	
exp �T � tc

2N0

� 	
for T � tc:

The corresponding expectation for this distribution is

E T½ � ¼ T0 ¼
Ð1
0 T f0 Tð Þ dT

¼ 2N0 e�tc=2Nc þ 2Nc 1� e�tc=2Ncð Þ:

Appendix B: Average frequency of an allele
fixing in exactly tm generations
In this section, time is counted forward from the mutation, which

appears after the contraction, so that during the fixation the dip-

loid population size is constant and equal to Nc. We condition on

the fixation time tm of the mutant. We define the trajectory of a

mutant as the list of frequencies at all generations:

fxtg ¼ x0; x1; . . . ; xtm�1; xtmð Þ. We assume that the mutant fixes in

exactly tm generations, starting from a frequency p0, i.e. x0 ¼ p0,

0 < xtm�1 < 1, and xtm ¼ 1. The probability that the mutant fol-

lows a given trajectory might be expressed as the product of the

transition probabilities

P fxtgð Þ ¼
Ytm�1

t¼0

P i; t! j; tþ 1 j fix in tm; p0
� �

:

For an unconditional Wright Fisher model, P i; t! j; tþ 1
� �

is

the probability to have j copies of the new allele at tþ 1 given

that there were i copies at t. We note Pt i! j
� �

for brevity. If we

only consider trajectories fixing in exactly tm generations and

starting from a number 2Nc p0 of copies at t ¼ 0, then the transi-

tion probabilities are not equal to the transitions of the uncondi-

tional Wright–Fisher model. However, thanks to Bayes theorem,

we can write

Pt i! j j fix in tm; p0
� �

¼
Pt fix in tm j i! j; p0
� �

Pt i! j j p0
� �

P fix in tm j p0
� �

¼
P fix in tm j jtþ1
� �

Pt i! j
� �

P fix in tm j p0
� � :

(B1)

From the first to the second line, we use the Markov property.

The 3 terms involved in the right-hand side of this equation can

be approximated thanks to diffusion theory. In this framework,

the probability for an allele to fix in tm generations, given that

there were i copies at time t is approximately (Ewens 2004)

P fix in tm j it
� �

¼ 3
2Nc

1� i
2Nc

� 	
i

2Nc
e� tm�tð Þ=2Nc : (B2)

The term Pt i! j
� �

is the unconditional binomial transition
probability of the Wright Fisher model (which does not depend
on t). In principle, Equation (B1) can be used to compute the exact
distribution of coalescence times at the focal locus, using
Equation (3a). However, the huge number of possible trajectories
fixing in tm generations ( 2Nc � 1ð Þtm�1) makes the average over tra-
jectories impossible to evaluate numerically. For this reason, we
use the approximation in Equation (3b).

We consider here the probability that the allele has frequency
x at time t, given that it started at frequency p0 at t ¼ 0. Again if
we only consider trajectories that fix in exactly tm generations,
this probability is not equal to the neutral diffusive result.
However, similarly to the previous section, we can use Bayes
theorem:

P xt jfix in tm; p0
� �

¼
P fix in tm j xt
� �

P xt j p0ð Þ
P fix in tm j p0
� � :

From diffusion theory (Ewens 2004), we also have

P xt j p0ð Þ ¼ 6p0 1� p0ð Þ e�t=2Nc 1þ 5 1� 2p0ð Þ 1� 2xð Þe�t=Nc

� �

which is a second order expansion of an infinite series involving
vanishing exponential terms (e�k kþ1ð Þt=4Nc for all k � 1). This ex-
pansion is thus valid in the limit of large times t� 2Nc. We de-
duce that the probability that an allele fixing in tm generations
has frequency x at time t is

P xt jfix in tm; p0
� �

¼ 6x 1� xð Þ 1þ 5 1� 2p0ð Þ 1� 2xð Þe�t=Nc

� �

which yields E xt jfix in tm; p0
� �

¼ 1=2 1� 1� 2p0ð Þe�t=Ne
� �

.
This expression is valid for tm � t� 2Nc and does not allow

one to estimate the frequency close to fixation. If we evaluate
this expression for a given value of t, we must assume that tm is
much larger than t (otherwise Equation (B2) is not accurate). It
implies that we cannot evaluate the frequency close to fixation,
because wherever we “look,” the fixation is always much later in
time. Consequently, we see that E xt½ � tends to 1=2 when t is very
large, which is the only possible value for an average frequency
infinitely far away from both fixation (at t ¼ tm) and loss (at t ¼ 0).
However, we know that the frequency should be symmetric, i.e.
the allele should on average approach fixation in the same way it
escapes loss, because the neutral fixation of a derived allele is the
same as the loss of the ancestral allele. We thus write

E xt j fix in tm; p0
� �

¼ 1=2 1� 1� 2p0ð Þe�t=Nc þ e� tm�tð Þ=Nc

� �
:

When tm � 2Nc, we can use a linear approximation for the tra-
jectory (based on the numerical observations)

E xt jfix in tm; p0
� �

¼ p0 þ 1� p0ð Þ t
tm
:

Appendix C: Coalescence distribution at
linked loci around a neutral fixation
We now return to the scenario of Fig. 2, with a backward in time
approach. Using Bayes theorem, we express the coalescence time
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of 2 haplotypes at the linked locus T lð Þ, conditioning on the coa-
lescence time at the focal locus T fð Þ

P T lð Þ
� �

¼
ðtm

0
P T lð Þ j T fð Þ
� �

P T fð Þ
� �

dT fð Þ ¼ E P T lð Þ j T fð Þ
� �h i

:

We assume that the linked locus is close to the focal locus on
the chromosome, more precisely that the recombination rate r is
very small r� 1, so that we consider at most 1 recombination,
occurring on one of the 2 focal lineages. We distinguish cases
where there is no recombination between t ¼ 0 and t ¼ T(f), cases
where the allele at the linked locus recombines (somewhere be-
tween t ¼ 0 and t ¼ T(f)) onto a haplotype carrying the ancestral
allele at the focal locus, and cases where the allele at the linked
locus recombines onto a haplotype carrying the derived allele at
the focal locus. We call the second and third case heterozygous
and homozygous recombinations, respectively, referring to the
zygosity at the focal locus of the recombining pair of haplotypes
(note that are 3 haplotypes, the 2 first ones have a coalescence
time T(f) and the third one recombines with one of these 2). If
there is no recombination, then the coalescence time is the same
for both loci, T(l) ¼ T(f). To treat the case with a homozygous re-
combination, it is convenient to name the haplotypes: i and j coa-
lesce at Tij

(f) ¼ T(f) at the focal locus, and k is a third haplotype,
onto which the linked allele recombines (coming from i). The
linked allele carried by j stays on the same haplotype (no more
than 1 recombination), and after recombining onto k, the linked
allele initially carried by i also stays on k (again, at most 1 recom-
bination). This implies that those 2 linked alleles coalesce at Tij

(l)

¼ Tjk
(f). This time is in general different than Tij

(f); however, on av-
erage, Tjk

(f) and Tij
(f) are equal (averaging over all possible coales-

cence trees at the focal locus). This implies that we can treat the
case with homozygous recombination as if there was no recombi-
nation. If there is a heterozygous recombination between i and k,
at some generation between t ¼ 0 and t ¼ T(f), then the linked
alleles still have not coalesced at t ¼ tm because after the recom-
bination one of them is linked to a derived focal allele and the
other one to an ancestral focal allele (and they stay linked be-
cause there is at most 1 recombination). In that case, Tij

(l) is equal
to tm plus a random time given by (on average) Tm and is indepen-
dent of Tij

(f). Using again Bayes theorem and the previous results
to write

P T lð Þ j T fð Þ
� �

¼ P T lð Þ j T fð Þ; one het: rec: in 0; T fð Þ
h i� �

P one het: rec: in 0; T fð Þ
h i� �

þP T lð Þ j T fð Þ; no het: rec: in 0; T fð Þ
h i� �

P no het: rec: in 0; T fð Þ
h i� �

¼ fm T lð Þ � tm

� �
1� P no het: rec: in 0; T fð Þ

h i� �h i

þd T lð Þ � T fð Þ
� �

P no het: rec: in 0; T fð Þ
h i� �

where d 
ð Þ is the Dirac delta function, and fm is the unconditional
coalescence distribution of a pair of lineages sampled at t ¼ tm,

i.e. it is equal to the function f0 introduced above but replacing tc

by tc � tm (note also that fm tð Þ ¼ 0 if t < 0). We then have to evalu-

ate the probability that there is no heterozygous recombination.

At generation t (counted backward), the probability that a linked

allele recombines onto a haplotype carrying the ancestral allele

at the focal locus is r 1� xtð Þ, where xt is the frequency of the de-

rived allele at the focal locus, we deduce that the probability that

there is no heterozygous recombination on either lineage is

P no het: rec: in 0; T fð Þ
h i� �

¼
QT fð Þ

ð1� r½1� xt�Þ2

’ exp �2r
XT fð Þ

t¼1

1� xtð Þ

0
@

1
A:

This probability depends explicitly on the allele trajectory,

which means that rigorously, all the calculations should be con-

ditioned on a given trajectory and then averaged over all trajecto-

ries. To allow for mathematical tractability, and to avoid heavy

expressions, we consider that as a good approximation xt ¼ xt.

Finally, we obtain

P T lð Þ
� �

¼ E d T lð Þ � T fð Þ
� �

exp �2r
XT fð Þ

t¼1

1� xtð Þ

0
@

1
A

2
4

3
5

þ fm T lð Þ � tm

� �
E 1� exp �2r

XT fð Þ

t¼1

1� xtð Þ

0
@

1
A

2
4

3
5:

The expectation corresponding to this distribution yields

Equation (2).

Appendix D: Average coalescence time at a
linked locus around a mutation that completed
fixation tfix generations ago
Thanks to Bayes theorem we can write

E T lð Þ
� �

¼ E T lð ÞjT lð Þ < tfix

h i
P T lð Þ < tfix

� �
þ E T lð ÞjT lð Þ > tfix

h i
P T lð Þ > tfix

� �

i.e. we distinguish coalescence events happening in less than tfix

generations or more than tfix generations. In the former case, the

coalescence is neutral, unconditional (the fixation is completed)

and happens in a population of constant size Nc which means

that E T lð ÞjT lð Þ < tfix

h i
and P T lð Þ < tfix

� �
can be worked out from the

neutral exponential distribution. On the other hand,

E T lð ÞjT lð Þ > tfix

h i
is equal to tfix plus the expectation from Equation

(5), which we note here E T lð Þ½ � t ¼ tfixð Þ. We obtain

E T lð Þ
� �

¼ 2Nc 1� e�tfix=2Ncð Þ þ E T lð Þ
� �

t ¼ tfixð Þ e�tfix=2Nc :

We see that the sweep signal vanishes exponentially with the

time elapsed since fixation.
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