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Abstract

Accurate segmentation and tracking of cells in microscopy image sequences is extremely 

beneficial in clinical diagnostic applications and biomedical research. A continuing challenge 

is the segmentation of dense touching cells and deforming cells with indistinct boundaries, in 

low signal-to-noise-ratio images. In this paper, we present a dual-stream marker-guided network 

(DMNet) for segmentation of touching cells in microscopy videos of many cell types. DMNet 

uses an explicit cell marker-detection stream, with a separate mask-prediction stream using a 

distance map penalty function, which enables supervised training to focus attention on touching 

and nearby cells. For multi-object cell tracking we use M2Track tracking-by-detection approach 

with multi-step data association. Our M2Track with mask overlap includes short term track-to-cell 

association followed by track-to-track association to re-link tracklets with missing segmentation 

masks over a short sequence of frames. Our combined detection, segmentation and tracking 

algorithm has proven its potential on the IEEE ISBI 2021 6th Cell Tracking Challenge (CTC-6) 

where we achieved multiple top three rankings for diverse cell types. Our team name is MU-Ba-

US, and the implementation of DMNet is available at, http://celltrackingchallenge.net/participants/

MU-Ba-US/.

1. Introduction

The capacity of cells to exert forces on their environment and alter their shape as they 

move [3] is essential to many biological processes including the cellular immune response 

to infections [25], embryonic development [48], wound healing [8] and tumor growth [16]. 

Detecting cell shape and their changes over time as cells navigate the microenvironment 

are essential for understanding the multiple mechanisms guiding and regulating cell motility 

[74]. We propose an end-to-end pipeline for accurate cell detection, segmentation and 

tracking as shown in Figure 1.

Manually segmenting and tracking cells is an expensive, labor intensive and subjective 

(difficult to reproduce) task due to the need for deep expert domain knowledge and large 

amounts of image data acquired during live-cell studies. Automated methods and pipelines 

are needed to perform microscopy video analysis, particularly to segment, track, and 

characterize cells to accelarate scientific discovery and clinical adoption.
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Over several decades, many classical computer vision methods and pipelines have been 

developed for automated cell detection and segmentation [8, 54, 23, 47]. More recently, 

various models have been developed for cell boundary prediction to handle segmentation 

of touching cells [63, 57, 63, 57, 40, 39, 27, 64]. However, accurate cell analysis 

under different protocols, imaging modalities and cell types remains challenging due to 

experimental variability, low signal-to-noise ratios, touching or overlapping cells, indistinct 

deforming boundaries particularly in high cell density cases, agile, unpredictable motion of 

individual cells, and dynamic interactions between cells.

Recently, deep-learning methods have shown tremendous success in many applications of 

computer vision including natural object image classification [18], aerial scene classification 

[13], feature tracking in wide area motion imagery [26], 3D point cloud classification [5], 

and particularly in various biomedical image analysis e.g. vessel segmentation [33], and 

malaria diagnosis [34] etc. If adapted, these methods offer promising solutions for cell 

detection and segmentation.

Cell tracking and lineage is the process of locating cells of interest in images and 

maintaining their identity over time across cell divisinos to analyze their spatio-temporal 

behavior (i.e. proliferation, mitosis, and apoptosis). Cell tracking plays an important role in 

biomedical research for tasks such as cell lineage-tracing [60, 6, 19] and high-throughput 

motion or behavior analysis [24, 32, 4, 67]. Analyzing cell behavior on live-cell videos 

requires robust cell tracking approaches to overcome the challenges that the videos have, 

such as, frequent cell deformations, non-distinct appearance, low image quality in term of 

contrast, resolution, and imaging acquisition artifacts.

A two-stage segmentation and tracking pipeline is proposed in this work to localize and 

track different cell types in time-lapse video sequences, as shown in Figure 1. The pipeline 

consists of two main modules: cell segmentation and cell tracking modules. The cell 

segmentation module is designed to precisely localize and segment different cells, and the 

tracking module uses a multi-step data association approach to efficiently track cells across 

frames. Our pipeline participated in CTC-6 with results on eight 2D datasets with different 

characteristics in term of cell shape, density, motion patterns, and microscopy modalities. 

Our results either outperformed the other methods that participated to the challenge or 

produced comparable results as described in the experimental results section.

To summarize, our contributions are three-fold: (i) we developed DMNet a dual-stream 

marker guided network for accurate cell segmentation and detection, (ii) we designed 

M2Track a two level cell tracking module for associating detections and linking tracklets, 

and (iii) our proposed pipeline demonstrates state-of-the-art performance, scalability and 

robustness across cell types on the CTC-6 microscopy videos. The subsequent parts of this 

paper are organized as the following. Section 2 reviews the related work in cell segmentation 

and tracking. Section 3 describes our proposed approach and details in the design of cell 

segmentation and tracking. Section 4 presents quantitative results on CTC-6 followed by 

conclusions.

Bao et al. Page 2

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Related Work

2.1. Cell Segmentation

Early methods for cell segmentation include simple thresholding methods [37, 72], 

hysteresis thresholding [30], edge detection [70, 65], or shape matching [14, 68]. Some 

methods use sophisticated approaches based on region growing [44, 51, 15], machine 

learning [61, 10, 56] or energy minimization [52, 62, 73, 21, 45, 22, 20, 7]. For a more 

comprehensive review of earlier cell segmentation methods, please refer to [47, 53].

More recently, with the development of deep learning networks, many methods benefit 

from training neural networks with annotated data. Existing methods usually design models 

for cell boundary or border prediction to handle touching cells. [63] proposes to predict 

adapted thicker borders and smaller cells in the model to reduce the amount of merged 

cells. [64] designs a novel representation of cell borders, the neighbor distances, to segment 

touching cells of various types. [40] utilizes distance transforms with discrete boundaries for 

single cell nuclei, and [27] uses horizontal and vertical gradient maps. [39] tackles the label 

inconsistencies problem through encoding a center vector.

Different from these other methods working on various border prediction for handling 

clustered cells, we propose a dual-stream network to generate guided markers to help 

splitting cells for accurate cell detection and segmentation.

2.2. Cell Tracking

Cell tracking and behaviour understanding algorithms study individual cell movement, 

velocity, formation, mitosis, cell groups behavior and etc. Tracking methods can be 

categorized into two groups: tracking-by-detection [42, 45, 59] and tracking-by-model 

evolution. Tracking-by-detection, requires locating cells in advance on the entire sequences 

using segmentation [42, 49, 38], or detection algorithms [69, 12] followed by an association 

process to link detections in time to generate cell trajectories. Tracking-by-model evolution 

involves an initialization step to locate the cells of interest on the first frame followed by 

a per cell model evolution in time by using deformable models such as active contours 

to keep track of individual cell states (position, motion, shape, and orientation) in the 

following frames [28, 36, 29]. The most popular cell tracking methodology is tracking-by-

detection [42, 45, 59]. Some methods use online mode [41], which implement track linking 

by associating detections between consecutive frames. In such cases, the information is 

gathered only from current and past frames. These methods tend to be sensitive to detection 

errors, and produce fragmented tracklets. While the offline models [43], exploit information 

from the whole time-lapse sequence (i.e. past, and future frames) and have longer and more 

reliable trajectories.

Our tracking-by-detection cell tracking module is adapted from our earlier works on multi-

object tracking for video surveillance [1, 2]. Multi-cell M2Track module is used to track 

the cells detected by our DMNet segmentation module. The goal is to link the detected 

cells, recover from missed-detections by better data association using a fast intersection-

over-union (IOU) mask matching, predict cell motion using Kalman filtering [31], and 

link tracklets by taking into account tracklet history such as velocity, motion, and spatial 
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information. Our tracking module can explicitly handle cells entering and exiting the field of 

view, birth and death of cells, and mitosis.

3. Our Approach Using DMNet and M2Track

The overall pipeline is illustrated in Figure 1. There are two modules in our pipeline: cell 

segmentation module DMNet, and multi-cell tracking module, as described in the following 

parts.

3.1. DMNet: Detection and Segmentation

The cell detection and segmentation task is defined to find segmentation mask of each cell. 

There are two streams in the proposed DMNet, one stream is designed for cell marker 

detection, and the other is designed for cell mask prediction, as show in Figure 1.

Marker Detection Stream—The marker-based loss function Lmarker(·) is computed 

pixelwise with respect to the labeled marker annotations using a soft Jaccard and weighted 

cross-entropy loss functions,

Lmarker  = αLJaccard( ⋅ ) + βLwce( ⋅ ) (1)

where α and β are used to balance the Jaccard loss LJaccard and weighted cross-entropy loss 

Lwce. The Jaccard loss is,

LJaccard = 1
N ∑

k = 1

N −ykyk
yk + yk − ykyk

(2)

Since the distribution of marker and non-marker pixels is highly biased, we use a class 

balanced cross-entropy loss, which is defined as,

Lwce = − λ− ∑
yk(i, j) ∈ Y−

log 1 − yk − λ+ ∑
yk(i, j) ∈ Y+

log yk (3)

where each prediction map in the mini-batch of marker detection stream is yk, of size R × C, 

yk ∈ (0, 1) denotes a predicted marker map (see Figure 2 (e)), yk is the groundtruth mask (see 

Figure 2 (b), yk is the binarized version of it). λ+ =
Y+

Y+ + Y−
, λ− =

Y−
Y+ + Y−

 balance the 

marker/non-marker pixels to control the weight of positive over negative samples.

Mask Prediction Stream—For the mask prediction stream, the loss function Lmask is 

computed pixelwise with respect to the labeled mask segmentation annotations using a a soft 

Jaccard and distance penalized cross-entropy loss functions as,

Lmask  = αLJaccard ( ⋅ ) + βLdist ( ⋅ ) . (4)

The Ldist is defined as,
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Ldist = − 1
N ∑

k = 1

N
∑
i = 1

R
∑
j = 1

C
(1 + ϕ(i, j))Lce (5)

where Lce is the cross-entropy loss, and 

Lce = mk(i, j)logmk(i, j) + 1 − mk(i, j) log 1 − mk(i, j) . Here each prediction map in the 

mini-batch of mask prediction stream is mk (see Figure 2 (g)), of size R × C. The cross-

entropy loss is modified by a distance penalty map ϕ, which inverses and normalizes the 

distance transform map D. The Euclidean distance transform map is computed as,

D2(i, j) = ∑
i

R
∑

j

C
(x(i, j) − b(i, j))2

(6)

where b(i, j) is the location of a background pixel (value 0) that is closest to corresponding 

input points x(i, j), where edge pixels of cells are 0, and remaining pixels are 1. Figure 2 (c) 

shows an example distance penalty map ϕ.

Cell Detection & Segmentation—During the inference, both markers and masks are 

generated, and then the morphological operation watershed [55] is applied to split cell mask 

guided by our generated markers.

Encoder-Decoder Backbone—For each stream, we use the same Convolutional Neural 

Network (CNN) structure HRNet [71, 66] as the CNN model to learn the marker localization 

and mask prediction map since the HRNet encodes rich representations of low-resolution 

and high-resolution information.

3.2. M2Track: Multi-Cell Tracking Module

Our multi-cell tracking module in Figure 3, tracks the detected cells estimated by the 

DMNet segmentation module. Tracking module is a multi-step cascade data association 

process. The cascade data association has two steps: first, short-term tracking which is 

frame-to-frame data association and matching using mask intersection over union (IOU) 

score. IOU computation speeds up for overcoming dense scenes with very large cell 

number. IOU mask score is used for matching current frame detections with previous 

frame trajectories using linear assignment optimization algorithm [17]. Followed by the 

second step, long-term tracking, which is called global data association step that connects 

cells at the track level using spatial and temporal clues to re-link fragmented tracklets. 

Several modules are used to improve the performance including gating strategy for reducing 

assignment complexity of ids by pruning improbable assignments; Kalman filter for 

recovering from miss-detections, and removing unreliable tracklets. For more details of the 

tracking algorithm, please refer to [1, 2].

Short-Term Tracking: Short-term data association step, optimizes the associations of 

current detected cells Dt at frame t to the predicted track Tt−1 at frame t − 1, where the set 

of detecitons, Dt = {d1, d2, …., dN} is assigned to the previously tracked objects Tt−1 = 

{T1, T2, …., TM}, and Tt−1 is the set of predicted cell trajectories from previous cell motion 
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history computed using Kalman filter with constant velocity model, N is the number of the 

detected cells at frame t, M is the number of tracked cells at frame t − 1. Mask IOU score 

is used to assign detection-to-track between following frames by minimizing a cost matrix 

using Munkres Hungarian algorithm [50] as:

min
b ∈ B

∑
i = 1

m
∑
i = 1

n
cijbij

(7)

where ct
ij is an i row to j column entry on cost matrix representing the cost of assigning 

detection j to tracklet i at time t and its value represents the IOU between the area of i and j 
detect masks as:

ct
ij = Ai ∪ Aj − Ai ∩ Aj

Ai ∪ Aj
(8)

with constraints,

∑
i = 1

m
bij = 1 j = 1, 2, … . , n;

∑
i = 1

n
bij = 1 i = 1, 2, … . , m .

Circular gating regions around the predicted track positions are used to eliminate highly 

unlikely associations to reduce computational cost, and to reduce false matches. Pairs of 

detection and tracks represent the results of minimum optimization. For each individual 

cell, a (one out of four) status (new track, linked track, lost track, and dead track) is 

assigned according to the assignment process. Since this step considers only information 

from consecutive frames, having false detections, occlusions, and matching ambiguities 

causes track fragmentation. Further step is important to improve the performance.

Long-Term Tracking: Problems during object detection or data association process 

result in implicit fragmentation of cells. Long-term tracking is used to re-link fragmented 

trajectories to produce longer tracks. Using information across long video segments can 

make this process expensive. Optimizing hypotheses at the track level rather than the object 

level reduces the computational cost of data assignment by gating uncertain hypotheses. 

Spatial distances and temporal information are used for filtering.

4. Experimental Results

4.1. CTC-6 Dataset

Cell segmentation and tracking benchmark [11] consists of 2D and 3D time-lapse video 

sequences of fluorescent counterstained nuclei or cells moving on top or immersed in a 

substrate. The benchmark consists 20 different datasets (10 for (2D) and 10 for (3D)). 

They can be either contrast enhancing, or fluorescence microscopy recordings of live cells 

and organisms. Each dataset consists of two training and two testing videos. The training 
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videos were provided with annotations, gold annotation (containing human-made reference 

annotations but not for all cells), and silver annotation (containing computer-generated 

reference annotations). The benchmark has different challenges: 1) Different appearances 

between datasets; 2) Low contrast between foreground and background; 3) The benchmark 

were taken in different light condition and different image acquisition environment; And 4) 

The ground-truth annotations for training set are not fully provided for gold annotations and 

not accurate for silver annotations.

We participated in ISBI 2021 CTC-6, with over thirty teams reporting results on the CTC 

website which is updated monthly. Not every method reported results for all datasets in 

the benchmark. We evaluated our pipeline on eight 2D datasets for cell segmentation 

and tracking. OPCSB is used for evaluating cell segmentation which is composed of the 

segmentation metric SEG, and the detection metric DET, as in:

OPCSB = 0.5 ⋅ (DET + SEG) (9)

OPCTB is used for cell tracking which is composed of segmentation metric SEG, and 

tracking metric TRA, as in:

OPCTB = 0.5 ⋅ (SEG + TRA)

For details of evaluation metrics, please refer to the CTC challenge website [11] and [46].

4.2. Implementation Details

Input images are pre-processed to enhance contrast using a z-score mapping. During 

training, the marker detection stream is trained with supervision using ground-truth of 

tracking markers, and segmentation mask is supervised by silver-truth of annotations. Both 

the marker localization and mask prediction streams were trained on eight 2D datasets 

(see Tables 1, 2, 3) and five 3D datasets that are not shown (Fluo-C2DL-MSC, Fluo-C3DH-

H157, Fluo-C3DL-MDA231, Fluo-N3DH-CE, and Fluo-N3DH-CHO). When using 3D 

datasets, we used one frame or slice per volume with the most annotated labels for training. 

Input images are resized then cropped for training. Resize scale factor for each dataset are: 

Fluo-C2DL-MSC: 0.35, Fluo-C3DH-H157: 0.35, Fluo-C3DL-MDA231: 2, Fluo-N3DH-CE: 

0.5, Fluo-N3DH-CHO: 0.6, PhC-C2DL-PSC: 3, BF-C2DL-MuSC: 0.75, BF-C2DL-HSC: 

0.75. We crop patches with size of 256 × 256 from images in each dataset to train the 

networks, except BF-C2DL-HSC, BF-C2DL-MuSC which we crop patches of 512 × 512. 

Regular data augmentation strategies were used including rotation, flip, and scale from 0.8 

to 1.5 for each sample. Hyperparameters are learning rate of 0.001 with Adam Optimizer for 

training both streams for 300 epochs with, α = 2.5 and β = 10.

4.3. Comparison on CTC-6 Benchmark

DMNet+M2Track performance is compared with stateof-the-art methods on Cell 
Segmentation and Cell Tracking Tasks. Since not every method reported results for all 2D 

datasets, we show the three most competitive methods KIT-Sch-GE [35], PURD-US [58] 

and CALT-US [9], which have results for almost all eight 2D cell microscopy videos.
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DMNet is robust and achieves state-of-the-art cell detection and segmentation performance 
on all eight 2D CTC-6 datasets. In Table 1, we compare our DMNet with the state-of-the-art 

methods on CTC-6 challenge. We compute the rank sum of each method of OPCSB on all 

the datasets. Because CALT-US didn’t report results on Fluo-C2DL-MSC, we put NA in 

that column, and compute the rank sum on eight datasets and seven datasets respectively as 

shown in the last column of Table 1. Our DMNet achieves best results on all the 2D datasets 

with rank sum 60 (eight datsets) and 43 (seven datasets), which demonstrates the robustness 

and effectiveness on 2D cell segmentation. DMNet+M2Track is robust and achieves the 
state-of-the-art cell tracking performance on all eight 2D CTC datasets. In Table 2, we 

compute the rank sum of each method of OPCTB on all the datasets. Because CALT-US 

didn’t perform cell tracking, therefore it is empty in this table. Our DMNet + M2Track 

achieves best rank sum with 36, which demonstrates the robustness and effectiveness on 

2D cell tracking task. Table 3 shows the ranks of our pipeline compared to the other 

participants on CTC-6. Our pipeline ranked in the top three on four out of the eight 2D 

cell type microscopy videos. Not every method provided results for all cell types, whereas 

DMNet+M2Track results are given for all videos.

Figure 4 shows the results of DMNet+M2Track segmentation and tracking pipeline for 

three cell types. The first column shows the Raw Input image for three cell types, which 

are typically low contrast, with dense, clustered cells and small object size. A z-score 

normalization is applied to the raw input image to remove outliers. The raw input is 

stretched to increase image contrast, as shown in the second column (Normalized Input). We 

show the groundtruth segmentation with tracking ids as Tracking GT in the third column. 

The fourth and fifth columns are the final marker detections and cell tracking predictions 

for all the cells in each frame of the video. We can clearly see in Figure 4 column (d) that 

DMNet accurately predicts and separates the cell markers. Hence, using labeled markers as 

guidance for the watershed algorithm to split the predicted cell masks results in consistently 

satisfactory cell segmentation results.

5. Conclusions

The proposed DMNet and M2Track cell segmentation and tracking pipelines provide a 

common framework across a variety of cell types for high accuracy lineage estimation under 

challenging sample conditions of high cell density, touching or overlapping cells, deforming 

cell shape, variable size and indistinct boundaries. For cell segmentation, DMNet uses a 

dual-stream marker guided deep networks for detection and separation of touching cells. For 

cell tracking, our M2Track multi-object tracking pipeline generates accurate cell trajectories 

under challenging conditions (e.g high density, irregular shapes, and cell mitosis activity). 

DMNet+M2Track is among the best performing methods on the CTC-6 cell microscopy 

videos across a range of cell types with segmentation and tracking accuracies of over 82 

percent (excluding Fluo-C2DL-MSC which has thin elongated mesenchymal stem cells). 

For 2D cell types our proposed approach has the best rank of all submitted methods in both 

the cell segmentation and cell tracking subtasks.

Bao et al. Page 8

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

This work was partially supported by awards from U.S. NIH National Institute of Neurological Disorders and 
Stroke R01NS110915 and the U.S. Army Research Laboratory project W911NF-18-20285. Any opinions, findings, 
and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily 
reflect the views of the U.S. Government or agency thereof.

References

[1]. Al-Shakarji Noor M, Bunyak Filiz, Seetharaman Guna, and Palaniappan Kannappan. Multi-object 
tracking cascade with multi-step data association and occlusion handling. In IEEE Int. Conf. 
Advanced Video and Signal Based Surveillance, 2018.

[2]. Al-Shakarji Noor M, Seetharaman Guna, Bunyak Filiz, and Palaniappan Kannappan. Robust 
multi-object tracking with semantic color correlation. In IEEE Int. Conf. Advanced Video and 
Signal Based Surveillance, 2017.

[3]. Ananthakrishnan Revathi and Ehrlicher Allen. The forces behind cell movement. Int. J. Biological 
Sciences, 3(5):303, 2007.

[4]. Asante Emilia, Hummel Devynn, Gurung Suman, Kassim Yasmin M, Al-Shakarji Noor, 
Palaniappan Kannappan, Sittaramane Vinoth, and Chandrasekhar Anand. Defective neuronal 
positioning correlates with aberrant motor circuit function in zebrafish. Frontiers in Neural 
Circuits, page 59, 2021.

[5]. Bao R, Palaniappan K, Zhao Y, Seetharaman G, and Zeng W. GLSNet: Global and local 
streams network for 3D point cloud classification. In IEEE Applied Imagery Pattern Recognition 
Workshop (AIPR), 2019.

[6]. Bao Zhirong, Murray John I, Boyle Thomas, Ooi Siew Loon, Sandel Matthew J, and Waterston 
Robert H. Automated cell lineage tracing in Caenorhabditis elegans. Proceedings of the National 
Academy of Sciences, 103(8):2707–2712, 2006.

[7]. Bensch Robert and Ronneberger Olaf. Cell segmentation and tracking in phase contrast images 
using graph cut with asymmetric boundary costs. In IEEE Int. Symp. on Biomedical Imaging 
(ISBI), pages 1220–1223, 2015.

[8]. Bunyak Filiz, Palaniappan Kannappan, Nath Sumit Kumar, Baskin TL, and Dong Gang. 
Quantitative cell motility for in vitro wound healing using level set-based active contour tracking. 
In IEEE Int. Symp. on Biomedical Imaging (ISBI), pages 1040–1043, 2006.

[9]. CALT-US. http://celltrackingchallenge.net/participants/CALT-US.

[10]. Castilla Carlos, Maška Martin, Sorokin Dmitry V, Meijering Erik, and Ortiz-de Solórzano Carlos. 
3-d quantification of filopodia in motile cancer cells. IEEE Transactions on Medical Imaging, 
38(3):862–872, 2018. [PubMed: 30296215] 

[11]. Cell Tracking Challenge. http://celltrackingchallenge.net.

[12]. Chamanzar Alireza and Nie Yao. Weakly supervised multi-task learning for cell detection and 
segmentation. In IEEE Int. Symp. Biomedical Imaging, pages 513–516, 2020.

[13]. Cheng Gong, Han Junwei, and Lu Xiaoqiang. Remote sensing image scene classification: 
Benchmark and state of the art. Proceedings of the IEEE, 105(10):1865–1883, 2017.

[14]. Cicconet Marcelo, Geiger Davi, and Gunsalus Kristin C. Wavelet-based circular hough transform 
and its application in embryo development analysis. In VISAPP (1), pages 669–674, 2013.

[15]. Cliffe Adam, Doupé David P, Sung HsinHo, Lim Isaac Kok Hwee, Ong Kok Haur, Cheng Li, 
and Yu Weimiao. Quantitative 3d analysis of complex single border cell behaviors in coordinated 
collective cell migration. Nature Communications, 8(1):1–13, 2017.

[16]. Condeelis John and Pollard Jeffrey W. Macrophages: obligate partners for tumor cell migration, 
invasion, and metastasis. Cell, 124(2):263–266, 2006. [PubMed: 16439202] 

[17]. Crouse David F. On implementing 2D rectangular assignment algorithms. IEEE Transactions on 
Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

[18]. Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Fei-Fei Li. ImageNet: A large-scale 
hierarchical image database. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 
248–255, 2009.

Bao et al. Page 9

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://celltrackingchallenge.net/participants/CALT-US
http://celltrackingchallenge.net


[19]. Ding Yunfeng, Liu Yonghong, Lee Dong-Kee, Tong Zhangwei, Yu Xiaobin, Li Yi, Xu Yong, 
Lanz Rainer B, O’Malley Bert W, and Xu Jianming. Cell lineage tracing links ERα loss 
in Erbb2-positive breast cancers to the arising of a highly aggressive breast cancer subtype. 
Proceedings of the National Academy of Sciences, 118(21), 2021.

[20]. Dufour Alexandre, Shinin Vasily, Tajbakhsh Shahragim, Guillén-Aghion Nancy, Olivo-Marin 
J-C, and Zimmer Christophe. Segmenting and tracking fluorescent cells in dynamic 3-D 
microscopy with coupled active surfaces. IEEE Transactions on Image Processing, 14(9):1396–
1410, 2005. [PubMed: 16190474] 

[21]. Dufour Alexandre, Thibeaux Roman, Labruyere Elisabeth, Guillen Nancy, and Olivo-Marin Jean-
Christophe. 3-D active meshes: Fast discrete deformable models for cell tracking in 3-D time-
lapse microscopy. IEEE Transactions on Image Processing, 20(7):1925–1937, 2010. [PubMed: 
21193379] 

[22]. Dzyubachyk Oleh, Van Cappellen Wiggert A, Essers Jeroen, Niessen Wiro J, and Meijering 
Erik. Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans. 
Medical Imaging, 29(3):852–867, 2010. [PubMed: 20199920] 

[23]. Ersoy Ilker, Bunyak Filiz, Higgins John M, and Palaniappan Kannappan. Coupled edge profile 
active contours for red blood cell flow analysis. In IEEE Int. Symp. on Biomedical Imaging 
(ISBI), pages 748–751, 2012.

[24]. Ersoy Ilker, Bunyak Filiz, Palaniappan Kannappan, Sun Mingzhai, and Forgacs Gabor. Cell 
spreading analysis with directed edge profile-guided level set active contours. In International 
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 
376–383, 2008.

[25]. Evans Rachel, Patzak Irene, Svensson Lena, De Filippo Katia, Jones Kristian, McDowall Alison, 
and Hogg Nancy. Integrins in immunity. J. Cell Science, 122(2):215–225, 2009. [PubMed: 
19118214] 

[26]. Gao K, AliAkbarpour H, Seetharaman G, and Palaniappan K. DCT-based local descriptor for 
robust matching and feature tracking in wide area motion imagery. IEEE Geoscience and Remote 
Sensing Letters, pages 1–5, 2020.

[27]. Graham Simon, Vu Quoc Dang, Raza Shan E Ahmed, Azam Ayesha, Tsang Yee Wah, Kwak 
Jin Tae, and Rajpoot Nasir. Hover-net: Simultaneous segmentation and classification of nuclei in 
multi-tissue histology images. Medical Image Analysis, 58:101563, 2019. [PubMed: 31561183] 

[28]. Hafiane Adel, Bunyak Filiz, and Palaniappan Kannappan. Level set-based histology image 
segmentation with regionbased comparison. Proceedings Microscopic Image Analysis with 
Applications in Biology, 2008.

[29]. Hafiane Adel, Bunyak Filiz, and Palaniappan Kannappan. Evaluation of level set-based histology 
image segmentation using geometric region criteria. In IEEE Int. Symp. on Biomedical Imaging 
(ISBI), pages 1–4, 2009.

[30]. Henry Katherine M, Pase Luke, Ramos-Lopez Carlos Fernando, Lieschke Graham J, Renshaw 
Stephen A, and Reyes-Aldasoro Constantino Carlos. Phagosight: An open-source matlab® 
package for the analysis of fluorescent neutrophil and macrophage migration in a zebrafish 
model. PLOS One, 8(8):e72636, 2013. [PubMed: 24023630] 

[31]. Kalman RE. A new approach to linear filtering and prediction problems. J. Basic Engineering, 
82(1):35–45, 1960.

[32]. Kassim Yasmin M, Al-Shakarji NoorM, Asante Emilia, Chandrasekhar Anand, and Palaniappan 
Kannappan. Dissecting branchiomotor neuron circuits in zebrafish—toward high-throughput 
automated analysis of jaw movements. In IEEE Int. Symp. on Biomedical Imaging (ISBI), pages 
943–947, 2018.

[33]. Kassim YM, Glinskii OV, Glinsky VV, Huxley VH, Guidoboni G, and Palaniappan K. Deep 
U-Net regression and hand-crafted feature fusion for accurate blood vessel segmentation. In 
IEEE International Conference on Image Processing, pages 1445–1449, Aug 2019.

[34]. Kassim Yasmin M, Palaniappan Kannappan, Yang Feng, Poostchi Mahdieh, Palaniappan Nila, 
Maude Richard J, Antani Sameer, and Jaeger Stefan. Clustering-based dual deep learning 
architecture for detecting red blood cells in malaria diagnostic smears. IEEE Journal of 
Biomedical and Health Informatics, 25(5):1735–1746, 2020.

Bao et al. Page 10

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[35]. KIT-Sch-GE. http://celltrackingchallenge.net/participants/KIT-Sch-GE.

[36]. Kolla Likhitha, Kelly Michael C, Mann Zoe F, et al. Characterization of the development of the 
mouse cochlear epithelium at the single cell level. Nature Communications, 11(1):1–16, 2020.

[37]. Lerner Boaz, Clocksin William F, Dhanjal Seema, Hultén Maj A, and Bishop Christopher M. 
Automatic signal classification in fluorescence in situ hybridization images. Cytometry Part A, 
43(2):87–93, 2001.

[38]. Li Huiying, Zhao Xiaoqing, Su Anyang, Zhang Haitao, Liu Jingxin, and Gu Guiying. Color space 
transformation and multi-class weighted loss for adhesive white blood cell segmentation. IEEE 
Access, 8:24808–24818, 2020.

[39]. Li Jiahui, Hu Zhiqiang, and Yang Shuang. Accurate nuclear segmentation with center vector 
encoding. In International Conference on Information Processing in Medical Imaging, pages 
394–404. Springer, 2019.

[40]. Li Xieli, Wang Yuanyuan, Tang Qisheng, Fan Zhen, and Yu Jinhua. Dual u-net for the 
segmentation of overlapping glioma nuclei. IEEE Access, 7:84040–84052, 2019.

[41]. Lou Xinghua and Hamprecht Fred A. Structured learning for cell tracking. In NIPS, volume 2, 
page 6, 2011.

[42]. Lugagne Jean-Baptiste, Lin Haonan, and Dunlop Mary J. DeLTA: automated cell segmentation, 
tracking, and lineage reconstruction using deep learning. PLoS Computational Biology, 
16(4):e1007673, 2020. [PubMed: 32282792] 

[43]. Magnusson Klas EG, Jaldén Joakim, Gilbert Penney M, and Blau Helen M. Global linking of cell 
tracks using the viterbi algorithm. IEEE Transactions on Medical Imaging, 34(4):911–929, 2014. 
[PubMed: 25415983] 

[44]. Malpica Norberto, De Solórzano Carlos Ortiz, Vaquero Juan José, Santos Andrés, Vallcorba 
Isabel, García-Sagredo José Miguel, and Del Pozo Francisco. Applying watershed algorithms to 
the segmentation of clustered nuclei. Cytometry Part A, 28(4):289–297, 1997.

[45]. Maška Martin, Daněk Ondřej, Garasa Saray, Rouzaut Ana, Munoz-Barrutia Arrate, and Ortiz-de 
Solorzano Carlos. Segmentation and shape tracking of whole fluorescent cells based on the 
Chan-Vese model. IEEE Transactions on Medical Imaging, 32(6):995–1006, 2013. [PubMed: 
23372077] 

[46]. Matula Pavel, Maška Martin, Sorokin Dmitry V, Matula Petr, Ortiz-de Solórzano Carlos, and 
Kozubek Michal. Cell tracking accuracy measurement based on comparison of acyclic oriented 
graphs. PLOS One, 10(12):e0144959, 2015. [PubMed: 26683608] 

[47]. Meijering Erik. Cell segmentation: 50 years down the road [life sciences]. IEEE Signal 
Processing Magazine, 29(5):140–145, 2012.

[48]. Montell Denise J. Morphogenetic cell movements: Diversity from modular mechanical 
properties. Science, 322:1502–1505, 2008. [PubMed: 19056976] 

[49]. Moshkov Nikita, Mathe Botond, Kertesz-Farkas Attila, Hollandi Reka, and Horvath Peter. Test-
time augmentation for deep learning-based cell segmentation on microscopy images. Scientific 
Reports, 10(1):1–7, 2020. [PubMed: 31913322] 

[50]. Munkres J. Algorithms for the assignment and transportation problems. Journal of the Society for 
Industrial and Applied mathematics, 5(1):32–38, 1957.

[51]. de Solorzano C Ortiz, Rodriguez E Garcia, Jones Arthur, Pinkel Dan, Gray Joe W, Sudar Damir, 
and Lockett Stephen J. Segmentation of confocal microscope images of cell nuclei in thick tissue 
sections. Journal of Microscopy, 193(3):212–226, 1999. [PubMed: 10199001] 

[52]. de Solorzano C Ortiz, Malladi R, Lelievre SA, and Lockett SJ. Segmentation of nuclei and cells 
using membrane related protein markers. J. Microscopy, 201(3):404–415, 2001.

[53]. Ortiz-de Solórzano Carlos, Munoz-Barrutia Arrate, Meijering Erik, and Kozubek Michal. Toward 
a morphodynamic model of the cell: Signal processing for cell modeling. IEEE Signal Processing 
Magazine, 32(1):20–29, 2014.

[54]. Palaniappan K, Bunyak F, Nath S, and Goffeney J. Parallel processing strategies for cell motility 
and shape analysis. In High-throughput Image Reconstruction and Analysis, pages 39–87, 2009.

[55]. Parvati K, Rao Prakasa, and Das M Mariya. Image segmentation using gray-scale morphology 
and marker-controlled watershed transformation. Discrete Dynamics in Nature and Society, 2008, 
2008.

Bao et al. Page 11

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://celltrackingchallenge.net/participants/KIT-Sch-GE


[56]. Payer Christian, Štern Darko, Neff Thomas, Bischof Horst, and Urschler Martin. Instance 
segmentation and tracking with cosine embeddings and recurrent hourglass networks. In Int. 
Conf. Medical Image Computing and Computer-Assisted Intervention, pages 3–11. Springer, 
2018.

[57]. Guerrero Pena Fidel A, Fernandez Pedro D Marrero, Tarr Paul T, Ren Tsang Ing, Meyerowitz 
Elliot M, and Cunha Alexandre. J-regularization improves imbalanced multiclass segmentation. 
In IEEE Int. Symp. on Biomedical Imaging (ISBI), pages 1–5, 2020.

[58]. PURD-US. http://celltrackingchallenge.net/participants/PURD-US.

[59]. Rapoport Daniel H, Becker Tim, Mamlouk Amir Madany, Schicktanz Simone, and Kruse Charli. 
A novel validation algorithm allows for automated cell tracking and the extraction of biologically 
meaningful parameters. PLOS One, 6(11):e27315, 2011. [PubMed: 22087288] 

[60]. Rodriguez-Fraticelli Alejo E, Weinreb Caleb, Wang Shou-Wen, Migueles Rosa P, Jankovic 
Maja, Usart Marc, Klein Allon M, Lowell Sally, and Camargo Fernando D. Single-cell lineage 
tracing unveils a role for TCF15 in haematopoiesis. Nature, 583(7817):585–589, 2020. [PubMed: 
32669716] 

[61]. Ronneberger Olaf, Fischer Philipp, and Brox Thomas. U-Net: Convolutional networks for 
biomedical image segmentation. In International Conference on Medical Image Computing and 
Computer-Assisted Intervention, pages 234–241. Springer, 2015.

[62]. Sarti Alessandro, De Solorzano C Ortiz, Lockett Stephen, and Malladi Ravi. A geometric model 
for 3-D confocal image analysis. IEEE Transactions on Biomedical Engineering, 47(12):1600–
1609, 2000. [PubMed: 11125595] 

[63]. Scherr Tim, Bartschat Andreas, Reischl Markus, Stegmaier Johannes, and Mikut Ralf. 
Best Practices in Deep Learning-based Segmentation of Microscopy Images. KIT Scientific 
Publishing, 2018.

[64]. Scherr Tim, Löffler Katharina, Böhland Moritz B, and Mikut Ralf. Cell segmentation and 
tracking using cnn-based distance predictions and a graph-based matching strategy. PLOS One, 
15(12):e0243219, 2020. [PubMed: 33290432] 

[65]. Schiegg Martin, Hanslovsky Philipp, Haubold Carsten, Koethe Ullrich, Hufnagel Lars, and Fred 
A Hamprecht. Graphical model for joint segmentation and tracking of multiple dividing cells. 
Bioinformatics, 31(6):948–956, 2015. [PubMed: 25406328] 

[66]. Sun Ke, Xiao Bin, Liu Dong, and Wang Jingdong. Deep high-resolution representation learning 
for human pose estimation. In IEEE Conf. on Computer Vision and Pattern Recognition, pages 
5693–5703, 2019.

[67]. Todorov Helena and Saeys Yvan. Computational approaches for high-throughput single-cell data 
analysis. The FEBS Journal, 286(8):1451–1467, 2019. [PubMed: 30058136] 

[68]. Türetken Engin, Wang Xinchao, Becker Carlos J, Haubold Carsten, and Fua Pascal. Network 
flow integer programming to track elliptical cells in time-lapse sequences. IEEE Transactions on 
Medical Imaging, 36(4):942–951, 2016. [PubMed: 28029619] 

[69]. Tyson Adam L, Rousseau Charly V, Niedworok Christian J, Keshavarzi Sepiedeh, Tsitoura 
Chryssanthi, Cossell Lee, Strom Molly, and Margrie Troy W. A deep learning algorithm 
for 3D cell detection in whole mouse brain image datasets. PLOS Computational Biology, 
17(5):e1009074, 2021. [PubMed: 34048426] 

[70]. Wählby Carolina, Sintorn I-M, Erlandsson Fredrik, Borgefors Gunilla, and Bengtsson Ewert. 
Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in 
tissue sections. J. Microscopy, 215(1):67–76, 2004.

[71]. Wang Jingdong, Sun Ke, Cheng Tianheng, Jiang Borui, Deng Chaorui, Zhao Yang, Liu Dong, 
Mu Yadong, Tan Mingkui, Wang Xinggang, et al. Deep high-resolution representation learning 
for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[72]. Wang Meng, Zhou Xiaobo, Li Fuhai, Huckins Jeremy, King Randall W, and Wong Stephen 
TC. Novel cell segmentation and online SVM for cell cycle phase identification in automated 
microscopy. Bioinformatics, 24(1):94–101, 2008. [PubMed: 17989093] 

[73]. Zimmer Christophe, Labruyere Elisabeth, Meas-Yedid Vannary, Guillén Nancy, and Olivo-
Marin J-C. Segmentation and tracking of migrating cells in videomicroscopy with parametric 

Bao et al. Page 12

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://celltrackingchallenge.net/participants/PURD-US


active contours: A tool for cell-based drug testing. IEEE Transactions on Medical Imaging, 
21(10):1212–1221, 2002. [PubMed: 12585703] 

[74]. Zimmer Christophe, Zhang Bo, Dufour Alexandre, Thébaud Ayméric, Berlemont Sylvain, Meas-
Yedid Vannary, and Marin J-CO. On the digital trail of mobile cells. IEEE Signal Processing 
Magazine, 23(3):54–62, 2006.

Bao et al. Page 13

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Overall pipeline with two stream DMNet for cell segmentation and M2Track for tracking.
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Figure 2: 
Illustration of intermediate results in the DMNet workflow for cell segmentation: (a) 

Normalized raw input image, (b) Marker Ground-Truth for the supervision of the marker 

detection stream, (c) Distance penalty map in Ldist, (d) Cell segmentation ground-truth 

showing cells with tracking ids (binarized version provides supervision for mask prediction 

stream), (e) Marker prediction output from marker detection stream, (f) Labeled predicted 

markers after thresholding and connected component labeling, (g) Mask prediction output 

from mask prediction stream, and (h) Cell segmentation prediction using mask and marker, 

after splitting cells using marker guided morphological watershed algorithm.
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Figure 3: 
M2Track with intersection-over-union mask overlap matching for multi-cell tracking-by-

detection. The two major modules are: Level 1 for managing frame-to-frame linear 

assignments between detected cells and handles entering and exiting cells, Level 2 for 

tracklet linking and missing or occluded cells.
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Figure 4: 
Visualization of DMNet+M2Track segmentation and tracking results for three cell types 

including Fluo-N2DH-GOWT1, PhC-C2DL-PSC and BF-C2DL-HSC exhibiting a range of 

cell sizes and densities.
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Table 1:

DMNet cell segmentation performance (OPCSB) on CTC-6 of March 2021. All reported results are from the 

CTC Challenge website. The first row is OPCSB and the second row is ranking compared to other submitted 

algorithms. Not all methods reported results for all datasets which are shown as NA. Since CALT-US did not 

report results for Fluo-C2DL-MSC we provide two sets of Rankings – 8 datasets and 7 datasets for equivalent 

comparison. Rank Sum is the sum of all the ranks across cell types. DMNet consistently outperforms other 

methods on 2D cell segmentation.

Dataset

BF-
C2DL-
HSC

BF-
C2DL-
MuSC

DIC-
C2DH-
HeLa

Fluo-
C2DL-
MSC

Fluo-
N2DH-

GOWT1

Fluo-
N2DL-
HeLa

PhC-
C2DH-
U373

PhC-
C2DL-

PSC Avg
Rank 

Sum(8,7)

KIT-Sch-GE 
[35]

0.905 0.878 0.850 0.686 0.895 0.938 0.927 0.859 0.893

1/14 1/14 14/27 6/32 20/42 11/40 15/30 1/33 69,63

PURD-US 
[58]

0.745 0.678 0.703 0.478 0.915 0.943 0.940 0.790 0.816

13/14 14/14 19/27 24/32 14/42 6/40 11/30 13/33 114,90

CALT-US [9] 0.901 0.852 0.925 - 0.948 0.915 0.959 0.703 0.886

2/14 4/14 1/27 - 3/42 18/40 1/30 25/33 NA,54

DMNet 
(Ours)

0.835 0.860 0.864 0.602 0.939 0.954 0.949 0.826 0.890

10/14 3/14 12/27 17/32 5/42 1/40 6/30 6/33 60,43
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Table 2:

DMNet cell tracking performance (OPCTB) on CTC-6 of March 2021. The first row is OPCTB and the second 

row is ranking compared to other submitted algorithms. All reported results are from the CTC Challenge 

website. Unreported results are shown as NA. DMNet consistently outperforms other methods on 2D cell 

tracking.

Dataset

BF-
C2DL-
HSC

BF-
C2DL-
MuSC

DIC-
C2DH-
HeLa

Fluo-
C2DL-
MSC

Fluo-
N2DH-

GOWT1

Fluo-
N2DL-
HeLa

PhC-
C2DH-
U373

PhC-
C2DL-

PSC Avg
Rank 
Sum

KIT-Sch-GE 0.901 0.872 0.848 0.683 0.894 0.938 0.925 0.855 0.865

1/10 1/10 8/20 3/26 13/35 10/33 10/24 1/26 47

PURD-US 0.716 0.670 0.684 0.479 0.914 0.941 0.939 0.783 0.766

9/10 10/10 13/20 18/26 10/35 6/33 8/24 9/26 83

CALT-US NA NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA

DMNet 
(Ours)

0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821 0.848

6/10 2/10 6/20 12/26 2/35 1/33 3/24 4/26 36
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Table 3:

Performance of DMNet segmentation and tracking pipeline on CTC-6 of March 2021. For each performance 

metric, the first row is accuracy and the second row is ranking compared to all other submitted algorithms (as 

of March 2021). Top three performance of DMNet by cell type are bolded.

Dataset
BF-C2DL-

HSC
BF-C2DL-

MuSC
DIC-C2DH-

HeLa
Fluo-C2DL-

MSC
Fluo-N2DH-

GOWT1
Fluo-N2DL-

HeLa
PhC-C2DH-

U373
PhC-C2DL-

PSC

OPCTB 0.828 0.849 0.854 0.591 0.939 0.953 0.947 0.821

6/10 2/10 6/20 12/26 2/35 1/33 3/24 4/26

OPCSB 0.835 0.860 0.864 0.602 0.939 0.954 0.949 0.826

10/14 3/14 12/27 17/32 5/42 1/40 6/30 6/33

DET 0.971 0.979 0.926 0.681 0.946 0.985 0.975 0.945

8/14 2/14 13/27 17/32 10/42 10/40 16/30 9/33

SEG 0.699 0.742 0.802 0.522 0.931 0.923 0.923 0.708

6/10 2/10 6/20 13/26 1/35 1/33 3/24 4/26

TRA 0.957 0.957 0.907 0.661 0.946 0.983 0.972 0.933

4/10 4/10 9/20 12/26 7/35 10/33 11/24 8/26
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