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Abstract
The absolute abundance of bacterial taxa in human host-associated environ-
ments plays a critical role in reproductive and gastrointestinal health. However,
obtaining the absolute abundance of many bacterial species is typically pro-
hibitively expensive. In contrast, relative abundance data for many species are
comparatively cheap and easy to collect (e.g., with universal primers for the 16S
rRNA gene). In this paper, we propose a method to jointly model relative abun-
dance data for many taxa and absolute abundance data for a subset of taxa. Our
method provides point and interval estimates for the absolute abundance of all
taxa. Crucially, our proposal accounts for differences in the efficiency of taxon
detection in the relative and absolute abundance data. We show that modeling
taxon-specific efficiencies substantially reduces the estimation error for absolute
abundance, and controls the coverage of interval estimators.We demonstrate the
performance of our proposed method via a simulation study, a study of the effect
of HIV acquisition on microbial abundances, and a sensitivity study where we
jackknife the taxa with observed absolute abundances.

KEYWORDS
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1 INTRODUCTION

The microorganisms that inhabit a host-associated envi-
ronment can have a substantial impact on host health (The
Human Microbiome Project Consortium, 2012; Libertucci
and Young, 2018; Lloyd-Price et al., 2019). Each microbial
taxon present in an environment has a bacterial concen-
tration reflecting the absolute abundance of the taxon per
unit volume and the bacterial load on the host. Measur-
ing the concentration of every microbial taxon is resource-
intensive: assays must be designed for each taxon and it
may not be known a priori which taxa are present in an
environment. It is therefore common to use assays that can
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detectmany taxa; for example, assays based on a hypervari-
able region of the 16S rRNA gene or shotgun sequencing of
entiremicrobial communities.While relatively straightfor-
ward and inexpensive to perform, these broad range assays
do not estimate bacterial concentration. However, concen-
tration is a key quantity of interest in many microbiome
studies (Zemanick et al., 2010; Stämmler et al., 2016; Van-
deputte et al., 2017; Contijoch et al., 2019).
While finding the concentration of every microbe in

a highly diverse community is challenging, finding the
concentration of a small number of microbes may be
tractable. For example, bacterium-specific 16S quantitative
PCR (qPCR) assays can be developed on a taxon-by-taxon
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case (see, e.g., Fredricks et al., 2007; Ryu et al., 2013). When
such data are available, the concentration of a small num-
ber of microbes could theoretically be combined with rel-
ative abundance data to estimate the concentration of all
microbial taxa. A method resulting in accurate estimates
of all microbial concentrations based on relative abun-
dance data and a small number of microbial concentra-
tions would greatly reduce the labor- and time-intensity of
finding the concentration of all microbes in a community.
In this paper, we propose and validate a statistical model
for this task.
Our approach is to build a hierarchical model that con-

nects the relative abundance data to the absolute abun-
dance data. The observed concentrations of each taxon in
each sample are modeled as Poisson-distributed random
variables, with taxon- and subject-specific mean parame-
ters that we link to the relative abundances. We observed
that 16S sequencing and qPCR assays detected taxa with
different efficiencies, and so we incorporate taxon-specific
efficiency parameters into our models.
Our paper is structured as follows: the model is defined

in Section 2 and estimation is discussed in Section 3.
The proposed method is validated on simulated data
in Section 4. In Section 5, the proposed estimators are
used to model bacterial concentrations in the vaginal
microbiome in a HIV acquisition study. We provide
concluding remarks in Section 6. Software implementing
our model and estimators is available in the R package
paramedic (Predicting Absolute and Relative Abun-
dance by Modeling Efficiency to Derive Intervals and
Concentrations), available at github.com/statdivlab/
paramedic.

2 AMODEL LINKING ABSOLUTE AND
RELATIVE ABUNDANCES

Suppose that we have samples from 𝑛 microbial commu-
nities. Let the concentration (absolute abundance in, e.g.,
gene copies per unit volume or colony-forming units per
unit volume) of taxon 𝑗 in community 𝑖 be denoted by 𝜇𝑖𝑗 ,
for 𝑖 = 1, … , 𝑛 and 𝑗 = 1,… , 𝑞. We denote by 𝜇 ∈ ℝ

𝑛×𝑞
≥0 the

matrix of all taxon abundances in all samples. Not all taxa
must be present in all communities, and so 𝜇 may be a
sparse matrix.
It is not possible to directly observe 𝜇 for any taxon

because of stochasticity in measuring concentrations
(Bonk et al., 2018). However, we are able to obtain real-
izations from a distribution with expectation 𝜇𝑖𝑗 . Unfor-
tunately, performing a laboratory experiment to sample
taxon concentrations from this distribution for all 𝑗 is not
typically possible or is prohibitively expensive. We there-

fore obtain observed concentrations

𝑉𝑖𝑗 ∣ 𝜇𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) (1)

for all 𝑖 but only 𝑗 = 1,… , 𝑞obs, where 𝑞obs < 𝑞. It is impor-
tant to distinguish between the true concentration 𝜇𝑖𝑗 and
the observed concentration 𝑉𝑖𝑗 . Even if 𝜇 > 0, we may
observe a zero concentration in any given sample. Stated
differently, a zero observed concentration does not imply
that the taxon has zero abundance in the community from
which the sample was drawn. Note that if covariate data
are available, it is straightforward to model 𝜇𝑖𝑗 as a func-
tion of these covariates. We illustrate this with an example
in Section 5.
While we are not able to observe concentration data for

taxa 𝑗 = 𝑞obs + 1,… , 𝑞, we are able to collect relative abun-
dance data for all taxa 𝑗 = 1,… , 𝑞. Let𝑊𝑖𝑗 be the number of
sequencing reads (counts) observed from taxon 𝑗 in sample
𝑖, and𝑀𝑖 =

∑
𝑗
𝑊𝑖𝑗 be the total reads observed from sam-

ple 𝑖. A natural model to connect𝑊𝑖⋅ ∶= (𝑊𝑖1, … ,𝑊𝑖𝑞) to
𝜇𝑖⋅ ∶= (𝜇𝑖1, … , 𝜇𝑖𝑞) is

𝑊𝑖⋅|𝑀𝑖, 𝜇𝑖⋅ ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙
⎛⎜⎜⎝𝑀𝑖,

𝜇𝑖⋅∑𝑞

𝑗=1 𝜇𝑖𝑗

⎞⎟⎟⎠. (2)

A first-order delta method approximation gives us that
under models (1) and (2),

𝑬
⎡⎢⎢⎣

𝑊𝑖𝑗∑𝑞obs

𝑘=1
𝑊𝑖𝑘

⎤⎥⎥⎦ ≈
𝜇𝑖𝑗∑𝑞obs

𝑘=1
𝜇𝑖𝑘

≈ 𝑬
⎡⎢⎢⎣

𝑉𝑖𝑗∑𝑞obs

𝑘=1
𝑉𝑖𝑘

⎤⎥⎥⎦.

If this approximation holds, wewould expect that a scatter-
plot of 𝑉𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑉𝑖𝑘 versus𝑊𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑊𝑖𝑘 for 𝑖 = 1, … , 𝑛

and 𝑗 = 1,… 𝑞obs would show random scatter around the
𝑥 = 𝑦 line for each taxon. We show this scatterplot in
Figure 1 using data described in Section 5 and do
not observe the expected pattern. Instead, we see that
𝑊𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑊𝑖𝑘 is proportional to 𝑉𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑉𝑖𝑘, but each

taxon has a different slope. This suggests that the model
(2) is misspecified in expectation, motivating our proposed
model

𝑊𝑖⋅ ∣ 𝑀𝑖, 𝜇𝑖⋅, 𝑒 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙
⎛⎜⎜⎝𝑀𝑖,

𝑒◦𝜇𝑖⋅∑𝑞

𝑗=1 𝑒𝑗𝜇𝑖𝑗

⎞⎟⎟⎠, (3)

where ◦ denotes the Hadamard product (pointwise multi-
plication), 𝑒 ∶= (𝑒1, … , 𝑒𝑞), and 𝑒𝑗 is the efficiency of taxon
𝑗 for being observed by the relative abundance technol-
ogy compared to the absolute abundance technology. Our
efficiency vector 𝑒 plays the role of the “total protocol
bias” parameter of McLaren et al. (2019). We now discuss
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F IGURE 1 The relative abundance of taxa observed with qPCR versus the relative abundance of the taxa observed by sequencing a
hypervariable region of the 16S gene. Note that the subcompositional relative abundance is shown, where the subcomposition is to taxa
observed by qPCR. Specifically, 𝑉𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑉𝑖𝑘 is plotted against𝑊𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑊𝑖𝑘 . In this data set, 𝑞obs = 13 and 𝑛 = 55. This figure appears in

color in the electronic version of this paper, and any mention of color refers to that version

estimation of the parameters of this model, including the
identifiability of the efficiencies 𝑒.

3 ESTIMATINGMODEL PARAMETERS

Our primary goal is to construct point and interval esti-
mators for the 𝜇𝑖𝑗 for all 𝑖 and 𝑗. A secondary goal is to
construct prediction interval estimators for the unobserved
concentrations 𝑉𝑖𝑗 for all 𝑖 and 𝑗 = 𝑞obs + 1, … , 𝑞. In this
section, we propose three estimation procedures based on
the model described in Section 2.

3.1 A simple, efficiency-naïve estimator

A simple estimator of 𝜇𝑖𝑗 , the concentration of taxon 𝑗 in
sample 𝑖, is 𝜇𝑖𝑗 = 𝑠𝑖𝑊𝑖𝑗 , where 𝑠𝑖 is a sample-specific scal-
ing factor and we have used the fact that 𝑬[𝑊𝑖𝑗] ∝ 𝜇𝑖𝑗 . In
addition, if 𝑒𝑗 for 𝑗 > 𝑞obs is not estimable, assuming that
𝑒𝑗 = 𝑒𝑘 for all taxa 𝑗, 𝑘may be necessary. An estimate of the
scaling factor could then be obtained by considering the
implied scaling factor based on aggregating all observed
taxa: 𝑠̂𝑖 =

∑𝑞obs

𝑗=1
𝑉𝑖𝑗∕

∑𝑞obs

𝑗=1
𝑊𝑖𝑗 , yielding the estimator

𝜇naïve
𝑖𝑗

∶= 𝑠̂𝑖𝑊𝑖𝑗. (4)

While we did not find a reference to estimator (4) in
the literature, it is connected to the proposal of Jian et al.
(2020) (see also Liu et al., 2017; Vandeputte et al., 2017;
Gibson and Gerber, 2018; Kevorkian et al., 2018; Contijoch
et al., 2019; Morton et al., 2019). Jian et al. (2020) consider
the problem where the total concentration of all bacteria,∑𝑞

𝑗=1
𝑉𝑖𝑗 , is observed for all 𝑖, and 𝑊𝑖𝑗 is also observed

for all 𝑖 and 𝑗. They wish to estimate 𝜇𝑖𝑗 for all 𝑖 and 𝑗.
Their proposed estimator is 𝜇𝑖𝑗 = (

∑𝑞

𝑗=1
𝑉𝑖𝑗) × 𝑊𝑖𝑗∕𝑀𝑖 .

Tettamanti Boshier et al. (2020) recently validated this
proposal using taxon-specific qPCR primers and found it
to be “predictive of absolute concentration with certain
key exceptions,” such as certain taxa and low biomass
(low total bacterial concentration:

∑𝑞

𝑗=1
𝜇𝑖𝑗) samples.

Bonk et al. (2018) give an excellent overview of sources of
discrepancies between qPCR and 16S sequencing data.
Previous authors have not proposed methods for quan-

tifying the uncertainty of these naïve estimators. How-
ever, interval estimators for𝜇𝑖𝑗 and prediction interval esti-
mators for {𝑉𝑖𝑗}

𝑞

𝑗=𝑞obs+1
may be constructed by using (1)

and (2), the maximum likelihood estimators of the model
parameters for 𝑗 ∈ {1, … , 𝑞obs}, and the delta method. We
provide a derivation of 𝑉𝑎𝑟(log 𝜇naïve

𝑖𝑗
) in the Supporting

Information (Section SI 1.1). A 100(1 − 𝛼)% confidence
interval for 𝜇𝑖𝑗 may then be constructed as exp{log 𝜇naïve𝑖𝑗

±

𝑞1−𝛼∕2

√
𝑉𝑎𝑟(log 𝜇naïve

𝑖𝑗
)}, where 𝑞𝛾 is the 𝛾-quantile of

the standard normal distribution. We can additionally
form a 100(1 − 𝛼)% prediction interval for {𝑉𝑖𝑗}

𝑞

𝑗=𝑞obs+1
as

exp{log 𝜇naïve
𝑖𝑗

± 𝑞1−𝛼∕2

√
1∕𝜇naïve

𝑖𝑗
+ 𝑉𝑎𝑟(log 𝜇naïve

𝑖𝑗
)}.

We refer to estimator (4) as the naïve estimator because
its simplicity must be traded off with its potential draw-
backs. First, if the efficiencies are truly unequal, then
assuming equal efficiencies will lead to biased estimates of
𝜇𝑖𝑗 . It will also lead to invalid interval estimates, because
the above intervalswere constructed under the assumption
of equal efficiencies. Furthermore, these intervals can only
be constructed if 𝜇naïve

𝑖𝑗
> 0, or equivalently,𝑊𝑖𝑗 > 0. How-

ever, 16S data are typically very sparse, with 𝑊𝑖𝑗 = 0 for
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many 𝑖 and 𝑗, and so the naïve interval estimates cannot be
constructed for a large fraction of taxa and samples (in our
data set analyzed in Section 5,𝑊𝑖𝑗 = 0 for 77% of the obser-
vations). These drawbacks led us to consider more sophis-
ticated estimators, which we now describe.

3.2 A fully Bayesian estimator with
variable efficiency

3.2.1 Point estimation

Bayesian hierarchical modeling is one possible strategy
for modeling 𝑉 and 𝑊 to estimate 𝜇𝑖𝑗 and predict 𝑉𝑖𝑗

for all 𝑖 and 𝑗. A hierarchical modeling procedure has
several desirable statistical properties here: (i) the joint
data model can be customized easily (e.g., to include
covariates or to alter the prior distributions); (ii) sampling
from the posterior distributions can be performed using
freely-available and fast general-purpose software; and
(iii) posterior estimates and prediction intervals obtained
through this procedure are straightforward to interpret in
the context of the generative model. Our goal is to con-
struct valid point and interval estimators in the presence
of potentially unequal efficiencies and when𝑊𝑖𝑗 = 0.
To reflect the differing efficiencies with which taxa are

detected by 16S and qPCR data (see, e.g., Figure 1) we con-
sider the following model:

𝑉𝑖𝑗 ∣ 𝜇𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) and𝑊𝑖⋅ ∣ 𝑀𝑖, 𝜇𝑖⋅,

𝑒 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀𝑖, 𝑝𝑖⋅), where (5)

𝑝𝑖𝑗 =
𝜇𝑖𝑗𝑒𝑗∑𝑞

𝓁=1
𝜇𝑖𝓁𝑒𝓁

for all 𝑖 and 𝑗. If covariate data are available, the model
can be adapted to model 𝜇𝑖𝑗 as a function of these covari-
ates (e.g., see Section 5). Furthermore, if the samples were
obtained in multiple batches, the efficiencies can be mod-
eled as batch-dependent. Examples of how to customize
the model are available in the paramedic package docu-
mentation.
In the absence of covariate or batch information, we

propose the following prior distributions of the param-
eters 𝜇𝑖𝑗 and 𝑒𝑗 . Since there is often substantial right
skew in the observed 𝑉𝑖𝑗 (see Section 5), and to ensure
positivity of the concentration 𝜇𝑖𝑗 , we propose a hierar-
chical lognormal prior on the 𝜇𝑖⋅ with hyperparameters 𝛽
and Σ (a diagonal matrix): log 𝜇𝑖⋅ ∼ 𝑁𝑞(𝛽, Σ), where 𝛽 ∼

𝑁𝑞(0, 𝜎
2
𝛽
) and Σ𝑗𝑗 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2Σ). We model 𝑒𝑗 ∼

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2𝑒 ), where 𝜎2𝑒 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼𝜎, 𝜅𝜎).
This soft-centering approach makes the parameters
𝑒𝑗 and 𝜇𝑖⋅ identifiable. We note that samples from

the posterior distribution of 𝑒𝑗 need not satisfy the

property that
∑𝑞obs

𝑗=1
log 𝑒𝑗 = 0 nor that

∑𝑞

𝑗=1
log 𝑒𝑗 =

0 exactly, though we find that both summations
are close to zero in practice. We also investi-
gated a hard-centering approach using the model
𝑒𝑗 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2𝑒 ), 𝜎2𝑒 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒𝐺𝑎𝑚𝑚𝑎(𝛼𝜎, 𝜅𝜎),

and 𝑒𝑗 = 𝑒𝑗∕ exp(
1

𝑞obs

∑𝑞obs

𝑗′=1
log 𝑒𝑗′ ). However, we found

little difference between the point and interval estimates
obtained from the hard- and soft-centering approaches,
and similarly for hard-centering over all taxa (𝑒𝑗 =

𝑒𝑗∕ exp(
1

𝑞

∑𝑞

𝑗′=1
log 𝑒𝑗′ )). Throughout this manuscript we

show results for the soft-centering approach. An empirical
comparison with the hard-centering approach can be
found in the Supporting Information (Section SI 3.1).
We discuss our default choices of 𝜎2

𝛽
, 𝜎2Σ, 𝛼𝜎, and 𝜅𝜎 in

Section 4. In practice, these hyperparametersmay be based
on independently observed data, numerical experiments,
expert opinion, or a combination of these three. See the
Supporting Information (Section SI 3.3) for an investiga-
tion of the sensitivity of results to the chosen hyperparam-
eters.
We fit hierarchicalmodel (5) using Stan (Carpenter et al.,

2017). Stan is an imperative probabilistic programming lan-
guage that uses assignment and sampling statements to
specify a log-density function. Fully Bayesian inference is
available using Hamiltonian Monte Carlo sampling; point
estimates may additionally be computed using optimiza-
tion. Since our parameter space (𝜇, 𝛽, Σ11, … , Σ𝑞𝑞, 𝜎

2
𝑒 ) is

continuous and the model described above may need to
be customized based on the data-generating mechanism,
Stan is ideal for fitting our model. After fitting the model,
we obtain samples from the joint posterior distribution.

3.2.2 Interval construction

We now discuss obtaining interval estimates for 𝜇𝑖𝑗 and
prediction interval estimates for𝑉𝑖𝑗 using the fittedmodel.
Let 1 − 𝛼 denote the desired level for intervals.
Credible intervals for 𝜇𝑖𝑗 are constructed via the

(𝛼∕2, 1 − 𝛼∕2)-quantiles of the posterior sampling distri-
bution of 𝜇𝑖𝑗 based on our proposed hierarchical model.
Prediction intervals can be computed in two ways. We

incorporate the hierarchical uncertainty of our proposed
model into a Wald-type interval estimate based on 𝑉𝑖𝑗 .
Using the law of iterated variance conditional on the true
𝜇𝑖𝑗 and our model that 𝑉𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗), we estimate
the variance in the prediction 𝑉𝑖𝑗 as 𝑉𝑎𝑟(𝑉𝑖𝑗) ∶= 𝜇𝑖𝑗 +

𝑉𝑎𝑟(𝜇𝑖𝑗), where 𝑉𝑎𝑟(𝜇𝑖𝑗) is the variance of the posterior
sampling distribution of 𝜇𝑖𝑗 and 𝜇𝑖𝑗 is the posterior mean.
Then our prediction intervals for 𝑉𝑖𝑗 are max(0, 𝑉𝑖𝑗 ±
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Φ−1(1 −
𝛼

2
)
√
𝑉𝑎𝑟(𝑉𝑖𝑗)), where Φ−1(𝛾) is the 𝛾-quantile of

the standard normal distribution. We truncate the lower
limit of the prediction interval at zero to reflect that bacte-
rial concentrations are nonnegative. We also investigated a
quantile-based approach for prediction interval construc-
tion, but found its performance to be extremely simi-
lar to the Wald-type prediction intervals. We outline the
quantile-based approach in the Supporting Information
(Section SI 1.2).

3.2.3 An efficiency-naïve estimator

A simplified model may easily be obtained by assuming
that all of the efficiencies are equal:

𝑉𝑖𝑗 ∣ 𝜇𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) and𝑊𝑖⋅ ∣ 𝑀𝑖, 𝜇𝑖⋅,

𝑒 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀𝑖, 𝑝𝑖⋅), where

𝑝𝑖𝑗 =
𝜇𝑖𝑗∑𝑞

𝓁=1
𝜇𝑖𝓁

(6)

for all 𝑖 and 𝑗. We use this model in simulated examples for
simplicity in cases with equal efficiencies and to highlight
the negative consequences of assuming equal efficiencies
when efficiencies are truly unequal.We suggest thatmodel
(5) always be used.

3.2.4 Advantages of the varying-efficiency
model

Before comparing and validating each of these models
and estimators on simulated and observed data, we
briefly note some of the advantages of our proposed
varying-efficiency model compared to existing and naïve
approaches. First, we connect the relative abundance
and absolute abundance via a statistical model. Second,
by modeling the efficiencies explicitly, we account for
the fact that the relative abundances are proportional
to the absolute abundances but with a taxon-specific
slope, as we observed in Figure 1. Our proposal naturally
incorporates the additional uncertainty associated with
the unknown efficiencies into our interval estimators. Our
relative abundance parameters obey the constraint that∑𝑞

𝑗=1
𝑝𝑖𝑗 = 1 for all 𝑖. Finally, by adopting a Bayesian hier-

archical modeling approach, we can obtain the posterior
distribution of 𝜇𝑖𝑗 , 𝑗 = 𝑞obs + 1, … , 𝑞. In other words, we
are able to estimate the concentration of taxa for which
we do not have absolute abundance data, and construct
interval estimators for the concentration of those taxa
even when the observed relative abundance is zero. The
posterior distribution of the concentration of taxon 𝑗 for

𝑗 > 𝑞obs will be driven by 𝑊𝑖𝑗 and 𝑉𝑖𝑗 for 𝑗 ≤ 𝑞obs, and
the prior parameters 𝜎2

𝛽
, 𝜎2Σ, 𝛼𝜎, and 𝜅𝜎. We note that

the interval estimates for 𝜇𝑖𝑗 and 𝑉𝑖𝑗 can be wide for
𝑗 > 𝑞obs.

4 RESULTS UNDER SIMULATION

We now present simulation results on the performance of
the estimators proposed in Section 3. In all cases, we use
Stan to fit hierarchical models (5) and (6) using four chains
per simulated data set, each with 10,000 burn-in iterations
and 10,500 total iterations (2000 total iterations for each of
𝐵 = 50 simulations for each set of parameters to investi-
gate). We describe our process for initializing these chains
in the Supporting Information (Section SI 2). We ran our
simulation study on a high-performance computing clus-
ter of Linux nodes each with at least four cores and 16
GB of memory (each individual simulation replicate may
have been allocated less memory at run-time). Each itera-
tion ran for between approximately 0.4 and 3 s, with vari-
ation due to both memory allocation and data structures.
It was not feasible to confirm convergence for every indi-
vidual simulation via trace plots, and so we confirmed that
the median and interquartile range (IQR) of the Gelman–
Rubin 𝑅 statistic (Gelman and Rubin, 1992) was close to 1
for all parameters of interest.
We assess performance for each Monte Carlo replicate

using root mean squared error (RMSE) for 𝜇𝑖𝑗 and empiri-
cal coverage of nominal 95% credible intervals for 𝜇𝑖𝑗 , both
averaged over all 𝑛 samples and 𝑞 taxa; and root mean
squared prediction error (RMSPE) for 𝑉𝑖𝑗 and empirical
coverage of nominal 95% prediction intervals for 𝑉𝑖𝑗 , both
for 𝑗 = 𝑞obs + 1,… , 𝑞 and averaged over both 𝑛 and 𝑞. The
exact specification of these performance measures is pro-
vided in the Supporting Information (Section SI 3). While
our primary goal is estimation of the true concentration
𝜇, we also investigate the performance of predicting 𝑉 for
the unobserved taxa, as this may be of interest in some
settings (e.g., for assessing correct model specification; see
Section 5.3 and Figure 6).
We report these four summaries for each estimator

under consideration. In each case, we display the aver-
age of the summary measure over Monte Carlo replicates.
In all simulations, we exclude taxa whose mean expected
abundance 𝜇𝑖𝑗 , averaged over all samples, is below 1 unit.
In practice, taxa observed in low abundance across all sam-
ples are typically excluded from analysis (Callahan et al.,
2016), and so this reflects the typical use case of the pro-
posed method. However, in practice 𝜇𝑖𝑗 is unknown, and
thus exclusion may be done based on 𝑊𝑖𝑗 . We provide a
discussion of filtering rules and the rationale behind the
particular rule used here in the Supporting Information
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(Section SI 3.2). Finally, if the naïve estimate for a given
sample and taxon is zero, then we do not include that
sample-taxon pair when computing average coverage of
naïve interval estimates.
Default parameters: We strongly recommend that the

user investigate the sensitivity of results to prior parame-
ters. In addition, the values of prior parameters should be
carefully chosen to match the measurement scale of the
data set. In our data set of Section 5, the sample variances of
the realized log-qPCRdata are near 50. Based on this obser-
vation, we chose 𝜎2

𝛽
= 50 and 𝜎2Σ = 50 as default parame-

ters for our simulation study.We additionally chose 𝛼𝜎 = 2

and 𝜅𝜎 = 1 since these choices led to fast convergence of
our sampling algorithm in our simulated data sets. We
provide an investigation of sensitivity to the prior param-
eters (𝜎2

𝛽
, 𝜎2Σ) and (𝛼𝜎, 𝜅𝜎) in the Supporting Information

(Section SI 3.3).
Simulation settings: Throughout this section, we sim-

ulate data according to 𝑀𝑖 ∼ DiscreteUniform(104, 105),
reflecting the distribution of read depths that we
observed in our data. We also simulate data accord-
ing to log 𝜇𝑖⋅

𝑖𝑖𝑑
∼ 𝑁𝑞(𝛽, Σ) for all subjects 𝑖 = 1, … , 𝑛 where

𝛽𝑗
𝑖𝑖𝑑
∼ 𝑁(0, 𝜎2 = 50) for all 𝑗 and Σ = 𝐈𝑞. In all cases, we

simulate 𝑉𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗) and 𝑊𝑖⋅ ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(𝑀𝑖, 𝑝𝑖⋅), where 𝑝𝑖𝑗 =
𝜇𝑖𝑗𝑒𝑗∑𝑞
𝑗=1 𝜇𝑖𝑗𝑒𝑗

. The specific choices for

the distribution of 𝑒𝑗 and the values of 𝑞 and 𝑞obs vary in
each simulation. We used R version 3.4.3 in all analyses in
this paper.

4.1 Effect of varying the number of taxa

We first investigate the effect of varying 𝑞 and 𝑞obs while
holding other parameters fixed.We simulated data with no
varying efficiency (𝑒𝑗 = 1 for all 𝑗) and fit the efficiency-
naïve model (6) for simplicity. We investigate the varying-
efficiency model in Section 4.2.
We observe {𝑉𝑖𝑗}

𝑞obs

𝑗=1
and {𝑊𝑖𝑗}

𝑞
𝑗=1

for 𝑖 = 1, … , 𝑛, where
𝑛 = 100. We vary 𝑞 ∈ {10, 20, 40, 60}; for each 𝑞, we addi-
tionally vary 𝑞obs ∈ {2, 3, … , 7}. For each unique combina-
tion of 𝑞 and 𝑞obs, we generate data from this population
by: (i) generating 𝛽 and Σ; and (ii) generating independent
Monte Carlo replicates of 𝜇𝑖𝑗 , 𝑉𝑖𝑗 ,𝑀𝑖 , and𝑊𝑖𝑗 .
qPCR data are typically available for only the taxa

that are of most interest to the investigator or are
expected to be most abundant. For this reason, in
our simulations the 𝑞obs most abundant taxa based on
the observed 𝑊𝑖𝑗 , averaged over the 𝑛 samples, are
used to estimate 𝜇 for all taxa and predict the unob-
served qPCR data, {𝑉𝑖𝑗}

𝑞

𝑗=𝑞obs+1
. This means that in our

simulations, as 𝑞 increases we add increasingly rare
taxa.

Figure 2 displays the results of this experiment. In
the top row, we see that nominal 95% intervals for 𝜇

based on the naïve estimator have slightly greater average
coverage than credible intervals based on the proposed
efficiency-naïve Bayesian estimator. However, the average
coverage of the efficiency-naïve credible intervals for 𝜇 is
close to nominal for all (𝑞, 𝑞obs) combinations. We note
that for both estimators, average coverage for 𝜇 decreases
as 𝑞 increases for a fixed 𝑞obs. This is due to poor marginal
coverage for the lowest abundance taxa (see Supporting
Information, Section SI 3.4). We also see that average cov-
erage of prediction intervals for 𝑉 based on the proposed
efficiency-naïve estimator is at the nominal level for all
(𝑞, 𝑞obs) combinations. This is encouraging, especially in
view of the fact that we often have many more relative
abundance measurements than species-specific qPCR
measurements; indeed, the results we present in Section 5
are based on 𝑞obs = 13. In contrast, average coverage
of prediction intervals based on the naïve estimator is
below the nominal level for large 𝑞; this is due in large
part to the fact that a naïve interval does not exist when
the naïve estimator equals zero. The proportion of cases
where the naïve estimator is zero, and thus excluded from
computing performance, is 0.17%, 1.5%, 26%, and 50% of
sample-taxon pairs for 𝑞 = 10, 20, 40, and 60, respectively.
In addition, since we compute intervals based on the
naïve estimator on the log scale, the lower limit of the
backtransformed interval is almost surely greater than
zero, if the interval exists. This leads to undercoverage of
cases where the true qPCR value is exactly zero, which is
increasingly the case as 𝑞 increases. In the bottom row of
Figure 2, we see that the efficiency-naïve estimator has
lower RMSE than the naïve estimator over all (𝑞, 𝑞obs)
combinations, while the RMSPE of the two estimators is
comparable. As 𝑞obs increases for a fixed 𝑞, both RMSE and
RMSPE tend to decrease. We provide evidence in Section
SI 3.5 that the efficiency-naïve estimator has low bias, and
thus the RMSE of this estimator appears to be driven by
its variance.
After averaging overMonte Carlo replicates, themedian

Gelman–Rubin𝑅 for 𝜇 over all samples and taxa for 𝑞 = 60

and 𝑞obs = 7was 0.99, with an IQR of [0.99, 1.00], showing
excellent convergence; convergence was similar in other
pairings of 𝑞 and 𝑞obs and for 𝛽 and Σ for each pairing. We
investigated the trace plots for a small number of Monte
Carlo samples, which showed well-mixed chains after the
burn-in period.
In many experiments, 𝑞 may be much larger than 60.

For example, in our data analysis of Section 5, 𝑞 = 127. We
anticipate that the trends observed in this simulated exper-
iment would hold for larger 𝑞, but did not investigate them
here because the time required to compute our estimator
increases with 𝑞.
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F IGURE 2 Performance of the naïve estimator (circles) and proposed efficiency-naïve Bayesian estimator (triangles) versus 𝑞obs for
𝑞 ∈ {10, 20, 40, 60}. Top row: coverage of nominal 95% intervals based on both estimators. Bottom row: root mean squared error and root mean
squared prediction error for both estimators. In each plot, color denotes 𝑞, while shape denotes the estimator. This figure appears in color in
the electronic version of this paper, and any mention of color refers to that version

4.2 Varying the distribution of
efficiency

In this experiment, we fix 𝑞 = 40 and 𝑞obs = 7. We vary
𝜎𝑒 ∈ {0, 0.1, … , 0.5, 0.6, 0.8, 1}. For each 𝜎𝑒, we generate
data from this population in the same manner as the
previous experiment, resulting in 50 independent Monte
Carlo replicates. We use Stan to fit our proposed variable-
efficiency model (5) and our efficiency-naïve model (6).
As we have described before, the naïve estimator does not
account for varying efficiency.
Figure 3 displays the results of this experiment. In

the top row, we see that as 𝜎𝑒 increases, the prediction
interval average coverage and credible interval average

coverage decline to levels below 95% for the naïve and
efficiency-naïve Bayesian models but are maintained
close to or above 95% for the proposed varying-efficiency
Bayesian model. This coincides with our expectation
that varying efficiency must be modeled if it is truly
present. In the bottom row, we see that as 𝜎𝑒 increases, the
RMSE and RMSPE of all three estimators increases. The
varying-efficiency Bayesian estimator tends to have the
lowest RMSE. While the RMSPE of the varying-efficiency
estimator is highest at small values of 𝜎𝑒, at moderate and
high levels of varying efficiency (𝜎𝑒 > 0.5) the RMSPE
of this estimator is comparable to or below that of the
efficiency-naïve Bayesian and naïve estimators. Since we
observed nearly identical patterns for the same experiment
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F IGURE 3 Performance of the naïve estimator (circles), efficiency-naïve Bayesian estimator (triangles), and varying-efficiency Bayesian
estimator (squares) versus 𝜎𝑒 for 𝑞 = 40 and 𝑞obs = 7. Top row: coverage of nominal 95% intervals based on each estimator. Bottom row: root
mean squared error and root mean squared prediction error for all estimators

with 𝑞obs = 3, we do not show those results here. In the
data we analyze in Section 5, we estimate 𝜎𝑒 = 1.74. This
suggests that interval estimates based on the proposed
varying-efficiency Bayesian estimator will bemore reliable
with respect to interval coverage on this data set.
After averaging overMonte Carlo replicates, themedian

Gelman–Rubin 𝑅 for 𝜇 over all samples and taxa for 𝜎𝑒 =
0.5was 1.00 (IQR [0.99, 1.00]) when varying efficiency was
modeled and 0.99 (IQR [0.99, 1.00]) when efficiency was
not modeled. As we varied 𝜎𝑒, the median 𝑅 for all model
parameters tended to be near one, with a maximum of 1.2
for 𝛽 when 𝜎𝑒 = 0 and varying efficiency was not modeled.
Inspection of trace plots for a small number of samples
showed well-mixed chains after the burn-in period.

In the Supporting Information (Section SI 3.3), we inves-
tigate the effect of the efficiency hyperparameters 𝛼𝜎 and
𝜅𝜎 on coverage and interval width for 𝑉, 𝜇, and 𝑒. In
brief, we found that overconcentrating priors on efficiency
reduces interval width at the expense of coverage.

4.3 Additional empirical results

We also investigated the performance of our proposed
procedure undermodelmisspecification in the Supporting
Information (Section SI 3.6). The coverage of our method
is relatively robust to misspecifying the distribution
of 𝑒, somewhat robust to mild misspecification of the
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distribution of 𝜇, but not robust to significant departures
from the distribution of 𝜇.

5 RESULTS FROMA STUDY OF THE
VAGINALMICROBIOME

5.1 Description of the study sample

These data are from a case-control study of 110 study par-
ticipants from eastern and southern Africa, described in
McClelland et al. (2018). Cases are defined as women who
acquired HIV during the study, while controls are defined
as women without HIV infection.
The data contain observed concentrations from qPCR

(measured in 16S gene copies per swab) on 𝑞obs = 13 taxa:
Aerococcus christensenii, Atopobium vaginae, BVAB2 spp.,
Dialister micraerophilus, Eggerthella spp. type 1, Gard-
nerella vaginalis, Lactobacillus crispatus, Lactobacillus
iners, Lactobacillus jensenii,Mycoplasma hominis, Porphy-
romonas spp. type 1, Porphyromonas bennonis, and Parvi-
monas micra. The 16S sample processing protocols are
described in McClelland et al. (2018), and 𝑞 = 127 after 5%
prevalence filtering (Callahan et al., 2016). To reflect lim-
its on computation time and computing memory (see Sec-
tion SI 4 for details and Section 6 for a discussion), we
uniformly-at-random selected 𝑛 = 55 samples to analyze
using our proposedmethod. The goals of this analysis were
to: (i) estimate the true concentrations𝜇 for all 127 taxa and
each of the 55 samples; (ii) predict the bacterial concentra-
tions for taxa 𝑗 > 𝑞obs in each sample, and (iii) estimate the
expected change in the log concentration of each taxon for
samples from HIV cases compared to control cases.
We fit the model log 𝜇𝑖⋅ ∼ 𝑁𝑞(𝛽0 + 𝛽1𝑋𝑖, Σ), for 𝑖 =

1, … , 𝑛, where 𝛽0 ∈ ℝ𝑞, 𝛽1 ∈ ℝ𝑞, and 𝑋𝑖 = 1 if subject 𝑖 is
HIV-positive and 𝑋𝑖 = 0 otherwise. We chose prior distri-
butions 𝛽0 ∼ 𝑁𝑞(𝟎𝑞, 𝜎

2
𝛽0
𝐈𝑞), and 𝛽1 ∼ 𝑁𝑞(𝟎𝑞, 𝜎

2
𝛽1
𝐈𝑞), where

𝟎𝑞 is a 𝑞-dimensional column vector containing all zeros
and 𝐈𝑞 is the 𝑞 × 𝑞 identity matrix. We use the prior distri-
bution for Σ described in Section 3.2.1. The ease of fitting
this covariate-adjusted model highlights an advantage of
using Stan to estimate the model parameters. We fit our
model using four chains, each with 18,000 burn-in iter-
ations and 20,000 total iterations. We selected hyperpa-
rameters 𝜎𝛽0 = 1.62, 𝜎𝛽1 = 1, and 𝜎Σ =

√
50 based on the

observed data; we additionally selected 𝛼𝜎 = 4 and 𝜅𝜎 = 3.
A sensitivity analysis to the chosen hyperparameters can
be found in the Supporting Information (Section SI 5). In
addition to fitting this covariate-adjustedmodel, we also fit
the unadjustedmodel fromSection 3.2.1 and found that the
estimated 𝜇𝑖𝑗 ’s are extremely similar across the two meth-
ods, with a mean difference of 5.8%. However, the widths
of the interval estimates for 𝜇𝑖𝑗 from the unadjusted model

are on average approximately 6.4% wider than those from
the covariate-adjusted model. Details on this analysis are
given in the Supporting Information (Section SI 5). We ran
our data analyses on a high-performance computing clus-
ter of Linux nodes each with at least six cores and 60 GB
of memory, and each iteration took approximately 1.3 min
to complete.

5.2 Results of the primary analysis

Figure 4 displays the results of our primary analysis. Panel
A (left) shows the posterior means of the log concentra-
tions for 20 taxa (the 13 taxa with observed qPCR data
plus seven randomly-sampled taxa) and all 55 samples. Red
denotes large normalized log concentration, while blue
denotes small normalized log concentration. This figure
appears in color in the electronic version of this paper, and
anymention of color refers to that version.We observe sub-
stantial variability in concentrations both between samples
and between taxa. For example, while L. iners appears to be
a high-abundance taxon on average, some samples (e.g.,
samples 2 and 4) have much smaller concentration. This
pattern appears more striking in the taxa lacking qPCR
measurements: for example, some samples have a large
estimated abundance of Porphyromonas spp. (e.g., samples
3 and 36), while many others have a low estimated abun-
dance of this same taxon. Interval estimates for 𝜇𝑖𝑗 and
prediction intervals for 𝑉𝑖𝑗 are available as Supplementary

Data. Panel B (Figure 4, right) plots 𝑉𝑖𝑗∕
∑𝑞obs

𝑘=1
𝑉𝑖𝑘 against

𝜇𝑖𝑗∕
∑𝑞obs

𝑘=1
𝜇𝑖𝑗 . We see that the model produces reasonable

estimates of 𝜇 on the taxa for which we have qPCR data.
We estimate that 𝜎𝑒 = 1.74, with a 95% credible interval of
(1.00, 2.87). We estimate that the efficiencies of the taxa
with observed qPCR data range between 0.16 and 39.86.
These results together imply that there is substantial varia-
tion in taxon efficiencies, and that modeling this variation
is important.
Finally, Figure 5 shows point estimates and 95% credi-

ble intervals for 𝛽1 for the 10 taxa such that |𝛽1,𝑗| is largest.
For example, we find that the expected concentration of
G. vaginalis for a HIV-positive subject from this cohort is
between 1.02 and 28.6 times higher than the expected con-
centration of G. vaginalis for a HIV-negative subject from
this cohort (95% credible interval). This result is consistent
with the findings of Gosmann et al. (2017).
In the Supporting Information (Section SI 5), we also

present results of a test-set analysis using the estimated
parameters of both the efficiency-naïve and varying-
efficiency Bayesian models based on the 55 women with-
held from the primary analysis. We find that test-set pre-
diction interval coverage varies across taxa, withmean cov-
erage of approximately 73%.
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F IGURE 4 (A) A heatmap showing posterior mean log concentrations for 20 taxa (the 13 taxa with observed qPCR and seven randomly
sampled taxa) and all 55 samples. Red indicates large concentration relative to the maximum in this subsample, while blue indicates small
concentration relative to the maximum in this subsample. (B) The relative abundance of taxa observed with qPCR versus the estimated
relative abundance of the taxa based on the variable-efficiency estimator. Specifically, 𝑉𝑖𝑗∕

∑𝑞obs

𝑘=1
𝑉𝑖𝑘 is plotted against 𝜇𝑖𝑗∕

∑𝑞obs

𝑘=1
𝜇𝑖𝑘 . 𝑞obs = 13

and 𝑛 = 55 in this data set. This figure appears in color in the electronic version of this paper, and any mention of color refers to that version

F IGURE 5 Posterior mean estimates from the proposed
varying-efficiency Bayesian model of the coefficient on HIV-positive
samples in the model for log concentration. The taxa with |𝛽1,𝑗|
ranked in the top 10 among all taxa are shown. A total of 95%
credible intervals are displayed in the horizontal bars

5.3 Leave-one-out analysis to predict
observed qPCR

We performed a jackknife analysis to validate our pro-
posed method on these data. In this analysis, we first
restricted the data set to only those taxa with observed
concentrations, leaving us with 13 taxa with both concen-
tration and relative abundance data. Then we removed
each taxon 𝑘 ∈ {1, 2, … , 13} in turn from the observed

qPCRmatrix, computed the three estimators of 𝜇𝑖𝑘 (naïve;
efficiency-naïve; and varying-efficiency) and predictions
for 𝑉𝑖𝑘, as well as prediction intervals for 𝑉𝑖𝑘. We then
calculated mean squared prediction error and average cov-
erage of prediction intervals (averaging over 𝑖 = 1, … , 55),
comparing the estimates of concentration to the observed
qPCR concentration.
Figure 6 displays the prediction interval coverage and

MSPE for the left-out taxon. Prediction interval coverage
of the proposed varying-efficiency estimator is at or higher
than nominal for 12 of 13 left-out taxa. Furthermore, for
11 of 13 left-out taxa, the RMSPE is comparable across
the three estimators. When either L. crispatus or L. iners
is left out, both hierarchical models have higher RMSPE
than the naïve method, even though the coverage of the
variable-efficiency method is controlled when these taxa
are omitted. In contrast, neither efficiency-naïve approach
controls coverage when these taxa are omitted. L. crispatus
orL. inershave the highest conditionalmean relative abun-
dance in the subcomposition of taxa for which qPCR data
are available (these taxa correspond to the two 𝑗 that max-

imize
∑𝑛
𝑖=1 𝑊𝑖𝑗𝐼{𝑊𝑖𝑗>0}∕𝑀𝑖∑𝑛

𝑖=1 𝐼{𝑊𝑖𝑗>0}
among taxa 𝑗 = 1,… , 𝑞obs), sug-

gesting that having qPCR data for taxa that, when present,
are present in high abundance may particularly improve
the accuracy of 𝑉𝑖𝑗 predictions.
We conclude by investigating the robustness of the

estimators of efficiency to the inclusion of additional
qPCR data. In Figure 7, we contrast the distribution
of the estimated efficiencies in an analysis with all 13
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F IGURE 6 Left: Average coverage of nominal 95% prediction intervals (Wald-type intervals) for the left-out taxon averaged over study
participants. Right: MSPE on the left-out taxon. Circles denote the naïve estimator, triangles denote the efficiency-naïve Bayesian estimator,
and squares denote the proposed varying-efficiency Bayesian estimator

F IGURE 7 Boxplots showing the posterior distribution of estimated efficiencies. Left: estimated efficiencies from the full data analysis
and from an analysis where G. vaginalis was left out. Right: estimated efficiencies from the full data analysis and from an analysis where
BVAB2 spp. was left out

taxa (the full-data analysis) against an analysis with a
taxon left out. In the left-hand panel, we leave out G.
vaginalis; in the right-hand panel, we leave out BVAB2
spp. We see in the left-hand panel that the distributions
of efficiency for all taxa are nearly identical between the
leave-one-out analysis and the full-data analysis, except
that the distribution of G. vaginalis regresses to the mean
and increases in variance when that taxon is left out.
This indicates that G. vaginalis is a low-efficiency taxon.
Note that the median estimated efficiency is close to the
prior mean value in the leave-one-out analysis. We see
the same pattern of regression to the mean and increase

in uncertainty when BVAB2 spp is left out. The inclusion
of BVAB2 spp., which is a high-efficiency taxon, alters
the estimated efficiencies of the remaining taxa, resulting
in increased estimated variance in many cases. These
results indicate that the algorithm learns differently based
on which taxa are observed: if a taxon with an extreme
efficiency (e.g., in these data BVAB2spp. has a very high
efficiency) is observed in both the absolute and relative
abundance data, then the algorithm detects this larger
variance in the efficiencies. This reinforces that even a
model designed to account for the distribution of varying
efficiencies cannot accurately predict the efficiency of an
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individual taxon when only relative abundance data are
available. Note that these findings corroborate existing
literature: Tettamanti Boshier et al. (2020) found that
BVAB2 spp. is a high-efficiency taxon, and McLaren et al.
(2019) found that G. vaginalis is a low-efficiency taxon.

6 DISCUSSION

In this paper, we developed a statistical procedure for
jointly modeling absolute and relative abundance data,
with a specific application to qPCR and 16S data col-
lected on microbial communities. We proposed a hierar-
chical model with the following appealing characteristics:
(i) point and interval estimators for the true and realized
absolute abundances can be constructed for all taxa and all
samples; (ii) average coverage of credible and prediction
intervals is controlled at or above the nominal level; (iii)
the efficiency of taxon detection of the different technolo-
gies is explicitly modeled and allowed to vary; and (iv) the
method is implemented as an open-source R package. To
our knowledge, our proposedhierarchicalmodel is the first
statistical model for this microbial multiview data struc-
ture.
We found strong evidence for differing efficiency of

taxondetection betweenqPCRand 16S technologies.Given
that the collection of qPCR data involves calibration (via
a “standard curve”) and 16S relative abundance data does
not usually involve any calibration, we modeled the effi-
ciency of the 16S data compared to the qPCR data, rather
than the opposite approach. This is consistent with recent
literature (McLaren et al., 2019). Our method can also be
used with other technologies for obtaining absolute and
relative abundance data. For example, data from plate
counting or flow cytometry could replace qPCR data, and a
different taxonomically informative marker could replace
16S sequencing. Regardless of the technologies used, the
default parameters in our software should be adjusted to
reflect the units and scale of the data under study.
Empirically, we found that modeling the efficiency of

the different technologies is critical for obtaining accurate
estimates of microbial abundance. Tettamanti Boshier
et al. (2020) found that a naïve approach consistently over-
estimates the concentration of certain taxa by an order of
magnitude (e.g., BVAB2). In a leave-one-out approach, we
observed that modeling varying efficiency achieves near-
nominal coverage of prediction intervals, while failing to
model varying efficiency does not control coverage (Fig-
ure 6). Variation in efficiency between taxa implies that
while our method controls coverage on average across all
taxa, these properties are not guaranteed for each individ-
ual taxon. Incorporating uncertainty in efficiencies results
in wider intervals for the true microbial concentration, but

because coverage is controlled, it accurately reflects the
level of uncertainty in estimating absolute abundance. We
believe that modeling efficiency is a significant advantage
of our method over other proposals in the literature for
combining relative and absolute abundance data.
One advantage of both the proposed method and choice

of the Stan modeling software is that the hierarchical
model can be easily customized to accommodate differ-
ent experimental designs, prior distributions, and models
for the data. For example, if the analyst prefers a Nega-
tive Binomial distribution for 𝑉𝑖𝑗 over the default choice
of a Poisson distribution, this can be easily substituted;
it is also easy to substitute a different model choice for
𝑊𝑖⋅ (e.g., Dirichlet-multinomial or log-multivariate nor-
mal). Similarly, if the analyst is considering an analysis
of 16S samples obtained from multiple batches, then effi-
ciency parameters could depend on the batch and the
taxon. That is, if 𝑖 indexes the sample, 𝑗 indexes the taxon,
and 𝑘 indexes the batch, the efficiencies could be modeled
as 𝑒𝑗𝑘 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜉𝑗, 𝜎

2
𝜉
) and 𝜉𝑗 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2𝑒 ) in

order that each taxon’s efficiency in each batch can vary
around an overall efficiency for that taxon. We have pro-
vided examples at statdivlab.github.io/paramedic illustrat-
ing how to implement these customizations.
It is possible to integrate the results of our method into

a downstream analysis (e.g., an analysis incorporating 𝑉
and/or 𝜇 along with additional data sources) via multiple
imputation by sampling from the posterior distribution of
𝑉. Alternatively, an inverse-variance weighted analysis of
𝜇 could be performed. That is, while our illustration of the
method in Section 5 reflected the data and focus ofMcClel-
land et al. (2018), the posterior distributions of the param-
eters of our model could be used in a variety of settings.
In the absence of covariate data, our method involves

estimating 𝑛 × 𝑞 concentration parameters 𝜇𝑖𝑗 and 𝑞

efficiency parameters 𝑒𝑗 . The inclusion of additional
samples therefore increases the number of parameters to
estimate [a Neyman-Scott problem (Neyman and Scott,
1948)]. In addition, for small 𝑞obs the prior distribution on
the efficiencies will play a large role in determining the
width of interval estimates for the concentrations 𝜇𝑖𝑗 . For
these two reasons, instead of increasing 𝑛 or 𝑞, 𝑞obs should
be increased where possible to reduce interval width (see
Figure 2). Varying the prior parameters 𝛼𝜎 and 𝜅𝜎 also
alters the width of intervals (see SI Figure 3.3). Future
modeling work could model the correlation structure
between taxa (see Gibson and Gerber, 2018); remove the
restriction that qPCR data must be available for all 𝑞obs
taxa for all samples; and use additional data on the total
bacterial load,

∑𝑞

𝑗=1
𝑉𝑖𝑗 , to improve estimates of 𝜇 and 𝑉

using our proposed varying efficiency model.
The major limitation of our method is its computational

burden. While our method is less time-intensive than
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developing new qPCR primers (which can take months
and thousands of dollars of laboratory equipment and
supplies), our method may run for a week or more,
depending on 𝑛, 𝑞, and 𝑞obs. As a result, the gains in
coverage of credible and prediction intervals come at the
expense of computation time. We also noticed diminished
interval coverage on a test data set. While we may obtain
good posterior estimates of some taxon-level parameters
(e.g., 𝛽0 and 𝛽1) using our procedure, the taxon-specific
efficiency is difficult to transfer to new data; additionally,
the true concentrations 𝜇𝑖𝑗 are inherently difficult to
predict due to the individual-level variation present in
these data. For these reasons, we advocate running the
analysis on all participants in a study in practice.
The proposed method provides a general approach for

jointly modeling absolute and relative abundance data
where each taxon’s detection efficiency differs across the
two data sources. Note that our approach to modeling effi-
ciency canmodel anymultiplicative scaling factor between
the data sources, including gene copy number. However,
our motivating data sources were 16S community profiling
and taxon-specific qPCR targeting the 16S gene. Because
both methods targeted the same gene, our efficiency esti-
mators are not estimating 16S copy number. In the case
that different amplicons are targeted and copy numbers
are known, copy number differences could be explicitly
included with a minor modification to our proposed pro-
cedure.
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