Skip to main content
. 2021 Dec 4;4(4):271–286. doi: 10.1093/pcmedi/pbab026

Table 2.

Clinical application of radiomics in molecular and pathological analysis.

Study Number of patients Tumor characteristic Imaging modality Function and Prediction results Segmentation and feature selection method/model Machine learning algorithm
Yang et al.39 467 lung adenocarcinoma (LADC) CT Predicting EGFR mutationAUC 0.789 Nodule segmentation 3D U-net model and pyradiomics RF
Feng et al.40 300 Breast cancer CT Predicting triple negative breast cancerAUC 0.851 Manual segmentation and LASSO logistic method Statistics
Ma et al.41 140 Solid Lung Adenocarcinoma CT Predicting AnaplasticLymphoma Kinase Gene RearrangementAUC 0.801 Pearson correlation coefficient and ANOVA or RFE SVM
Marentakis et al.22 102 Lung cancer CT Histological classificationAUC 0.78 Joint FDG-PET and MRI prediction of lung metastases LSTM + Inception
Zhang et al.42 420 lung adenocarcinoma CT Predicting EGFR mutation statusAUC 0.835 LASSO and Wilcoxon test, DT, logistic regression SVM
Wu et al.43 74 hepatocellular carcinoma CT Predicting the Ki-67 marker index Statistics Logistic regression
Zhao et al.27 579 pulmonary adenocarcinoma CT Predicting EGFR mutation statusAUC 0.75 Manual delineate 3D DenseNets
Li et al.44 207 colon cancer CT Predicting perineural invasion and KRAS mutationAUC 0.793 and 0.862 Manual delineate SVM
Wang et al.28 844 lung adenocarcinoma CT Predicting EGFR mutation statusAUC 0.81 A cubic ROI containing the entire tumour manual select Deep learning model
Sutton et al.45 273 breast cancer MRI Classifying pathologic response post-neoadjuvant chemotherapyAUC 0.83 GMMGLMNet-RF-RFE Statistics
Fan et al.46 144 Breast Cancer MRI Predicting histological grade and Ki-67 expression levelAUC 0.814 and 0.810 Spatial fuzzy C-means algorithm refined by a Markov random field Multitask learning method
Shofty et al.47 47 low-grade gliomas MRI 1p/19q codeletion status predictionAUC 0.87 AnalyzeDirect software segmentation Ensemble Bagged Trees
Park et al.48 121 low-grade gliomas MRI Predicting molecular features of glioblastoma in Isocitrate Dehydrogenase Wild-TypeAUC 0.863 Clinical feature + VASARI + radiomics feature RFESVM
Yan et al.29 357 glioma MRI Predicting IDH and TERT statusAUC 0.884 and 0.669 WaveletLASSO Bayesian-regularization neural networks
Wu et al.49 126 diffuse gliomas MRI Predicting isocitrate dehydrogenase genotypeAUC 0.931 Automated segmentation RF
Braman et al.50 117 Breast cancer MRI Predicting pathological complete response to neoadjuvant chemotherapyAUC 0.74 A combined intratumoral and peritumoral radiomics approach Cluster
Niu et al.51 182 High-Grade Gliomas MRI Estimating the IDH1 GenotypeAUC 0.86 Statistics LASSO
Umutlu et al.52 124 Breast cancer PET/MRI Breast Cancer Phenotyping and Tumor Decoding Statistics LASSO
Zheng et al.26 584 Breast cancer US Predicting axillary lymphnode statusAUC 0.902 Deep learning radiomics model Deep learning radiomics model

ANOVA, analysis of variance; DT, decision tree; RF, random forest; LASSO, least absolute shrinkage and selection operator; RFE, recursive feature elimination; SVM, support vector machine.