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Abstract
Using electronic health records (EHR) as the source of data for mining and analysis
of different health conditions has become an increasingly common approach. How-
ever, due to irregular observation times and other uncertainties inherent in medical
settings, the EHR data sets suffer from a large number of missing values. Most of the
traditional data mining and machine learning approaches are designed to operate on
complete data. In this paper, we propose a novel imputation method for missing data
to facilitate using these approaches for the analysis of EHR data. The imputation is
based on a set of interpatient, multivariate similarities among patients. For a missing
data point in a patient’s lab results during his/her intensive care unit stay, the method
ranks other patients based on their similarities with the ego patient in terms of lab
values, then the missing value is estimated as a weighted average of the known val-
ues of the same laboratory test from other patients, considering their similarities as
weights. A comparison of the estimated values by the proposed method with values
estimated by several common and state-of-the-are methods, such as MICE and 3D-
MICE, shows that the proposed method outperforms them and produces promising
results.

Keywords Missing data imputation · Electronic health records · Similarity-based
imputation

1 Introduction

In the past few years, the development of information systems for patient data in the
form of electronic health records (EHR) has progressed substantially. However, the
main objective of generating EHR data is not research or analytical studies [15, 16]
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and adopting this data for research purposes has its own challenges. The EHR data
show the trend of patients’ health trajectories through a set of features including lab
results and vital signs. Other data collected include patients’ demographic, the med-
ications administered for them, and their medical history [1, 13]. They are generally
heterogeneous, temporal (and sometimes spatial), sparse, incomplete, noisy, irregu-
lar, and inaccurate [7]. In addition, occurrences of missing data in the EHR are very
common. It can be attributed to the irregular ordering of lab tests and collection of
vital signs or the fact that not all data are collected at regular intervals. Furthermore,
the factors contributing to missing data are not necessarily known in advance. In [19],
a classification of missing data in the EHR is provided and it is discussed that one of
the reasons for missing data is the lack of documentation. This lack of documentation
further complicates the analysis of missing data in EHR as it is difficult to ascer-
tain whether the absence of data is intentional. For example, a clinician may deem
the continued monitoring of a clinical analyte unnecessary because the patient’s lab
values have stabilized in acceptable ranges. The researchers also categorize the miss-
ing data into three categories: the data “missing completely at random,” “missing at
random,” and “not missing at random” [6]. The difference between the two first cat-
egories is that in “data missing completely at random,” all the data points have the
same probability to be missing. However, in the second category, the missingness of
the data is attributable to, for example, patients’ conditions, which makes the miss-
ingness of the data independent from the value of data. The last category includes
missing data which completely depends on the value of the data. The level of bias
introduced by each category is different and they may be differently treated.

Because most of the analytical methods developed for data-driven prediction and
modeling in different disciplines assume that the input data set has no missing data,
there have been extensive efforts both in the health care community and other fields
to find the best method for treating missing data. The most basic and common method
is complete case (or listwise) deletion, in which the entire records including missing
data (for at least one feature) are removed. In [18], it is discussed that this method
works very well in data sets with less than 15% missing data. However, [19] states
that this method only works well for the “missing completely at random” category,
which is not necessarily the case in missing data in the EHR. In addition, removing
the whole record because of one missing data point results in information loss for all
other features in the record. Therefore, other methods have been proposed in the lit-
erature that instead of removing the entire record with the missing value, the missing
value should be imputed.

2 RelatedWork

The methods for imputation can be categorized into two main categories: univariate
and multivariate. In the univariate category, the value of the missing data is estimated
using the values of the same feature in the data set. In the case of multivariate impu-
tation, the values of missing data are estimated using the values of other features in
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addition to the same feature in the data set. The univariate imputation of missing data
can be performed in multiple ways. The imputeTS [14] is a R package specifically
developed for univariate imputation, covering the most common methods in this cat-
egory such as the mean (median, mode) imputation which replaces a missing data
point with the mean (median, mode) value of the same feature. Another technique is
using the closest available data point for the missing data points. It can be the most
recent available data (also called last observation carried forward, LOCF) or the first
next available data point (also called next observation carried backward, NOCB).
Other methods in univariate missing data imputation are linear interpolation (linear
interpolation of the value of missing data point using the previous and next available
data points), spline interpolation (using polynomial interpolation of values of miss-
ing data point using the closest data points), and Kalman smoothing (using Kalman
filter to predict the value of missing data).

Considering the richness of the literature on multivariate data analysis, data min-
ing, and machine learning, it is not surprising that numerous techniques have been
proposed for the estimation of missing data points. In [5], the said methods are cate-
gorized into statistical techniques, such as hot and cold deck imputation (estimating
the missing data point in a record using other similar records, found based on the
features that both records have), and machine learning techniques, such as decision
tree imputation (estimating the value of the missing data using decision trees cre-
ated by the feature of missing data as target variable, and other features of the data
set as predictors, the records with no missing data are used for creating the decision
tree). In [8], multiple statistical and machine learning techniques are compared with
listwise deletion and it is shown that machine learning techniques outperform statis-
tical techniques, and both are better than the listwise deletion technique in terms of
the prognosis accuracy in patients with breast cancer. In [6], a generalized regres-
sion neural network-based approach is developed for multiple and single imputations
of missing data. They compare the results of their methods with 25 different impu-
tation techniques proposed in the literature on 98 data sets at different rates of data
missingness and show that although computationally expensive, their proposed tech-
niques have been able to outperform many of the methods in the literature. Another
approach to missing data is to mine and learn from the patterns of missingness and
their occurrences and use these patterns as a feature (informative missingness) for
prediction of target feature [4, 11].

In many of the previously developed techniques for imputation, it is assumed that
the outcomes of patients are known, and the accuracy or other prediction evaluation
metrics are used to compare the performance of different imputation techniques. In
addition, in most of the proposed techniques, the individual features are used to esti-
mate the values for missing data points. Given that the changes in lab results and vital
signs for a patient are not independent events, considering the dynamics among the
features as a set might improve the performance of imputation techniques.

In this study, we focus on interpatient similarities and propose a novel method of
imputation for data points missing at irregular time intervals. The similarity of two
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patients is defined as a function of their patterns of changes in their lab results. Then,
ranking patients based on their similarities to the patient with missing data, the value
corresponding to a missing data point in one patient is estimated from other similar
patients which have a known value for the lab test (hereafter analyte) with missing
data.

3 Materials andMethods

3.1 Data Set

In the following sections, the method used to impute missing data points and the
function used to evaluate the performance of the proposed method are described.

The data set is derived from the MIMIC-III (Medical Information Mart for Inten-
sive Care III) database of patients admitted to the intensive care units (ICU) at the
Beth Israel Deaconess Medical Center between 2001 and 2012 [9]. It includes 13
clinical analytes, for which lab results were recorded at irregular time intervals start-
ing from the beginning of the care (chart time t = 0). As part of the Data Analytics
Challenge at the 2019 International Conference on Healthcare Informatics (ICHI
2019), the given data set has 8267 patients with 10–260 (mean, 24) lab records each.
The ground truth for evaluation is established by randomly masking existing data
points in the sets. In the following sections, we discuss our proposed method to
impute the missing data points and the evaluation function.

3.2 Interpatient Similarity-Based Imputation

The methods proposed in the literature are mainly model-driven. They propose to
create models based on the relationships among variables. In some of these methods,
a response variable is used and the performance of imputation process is evaluated
based on the impacts of the estimated values for missing data on the prediction of the
response variables. In others, the variable with the missing value is considered as the
target variable and other variables are used as predictors of this variable. It is shown
that these approaches can perform very well. However, once a model is developed, it
is used for the estimation of missing values without referring back to the source data
for verification.

We propose an interpatient similarity-based imputation method for missing data,
which is data-driven. For a patient with missing data, it identifies similar patients
and uses their known values for estimation of missing data points. In the absence of
patient diagnoses, we take into account all 13 analytes to represent a patient’s state
of health, and we calculate the Euclidean distance to gauge the similarity between
the lab records. In addition, we assume two patients at chart time t = 0 have dif-
ferent baseline states of health and may progress differently during their ICU stays.
Therefore, a patient’s record with missing data at ti needs to be compared with all
available lab records taken at t1:n for other patients to improve the chance of iden-
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tifying patients with a similar health state. To reduce the impact of randomness, we
also compare the similarity of previous and next rows of the row with the missing
value. In other words, for two patients to be considered similar, they should exhibit
similar states of health at the present moment as well as similar trajectories. To incor-
porate the temporal information entailed in the data, we weigh the similarity by the
differences in time elapsed between two lab records among patients. In this study, we
consider the very recent and very next lab records for comparing the trends. However,
the approach can be broadened to a wider time window. Last, assuming that patients
with similar states of health share similar lab values, we use the known values of
other patients to estimate the missing value of interest.

Figure 1 shows a schematic diagram of the similarity calculation for two patients,
pi and pj . In this example, the analyte a1 has a missing value at t4 for pi . Since the
health state of pi at t4 is not necessarily identical to that of pj at t4, all the rows of pj

should be examined. For instance, we calculate the similarity between the lab record
of pi at t4 and pj at t2. We designate these two rows as baseline rows and denote them
as r0

i and r0
j respectively. Similarly, the Euclidean distances between adjacent rows

of pi at t3 and pj at t1 (denoted by r−1
i and r−1

j ), and of pi at t5 and pj at t3 (denoted

by r+1
i and r+1

j ) are calculated. In addition, we factor in the difference in the time
elapsed between two lab orders for two patients (i.e., (t4 − t3) of pi and (t2 − t1) of
pj represented as δt−1

i and δt−1
j respectively for the previous rows, and (t5 − t4) of

pi and (t3 − t2) of pj represented as δt+1
i and δt+1

j respectively for the next rows). In
other words, two patients might have similar states of health, but their lab results may
come out differently if ordered at different time intervals. To modify the said effect,
we use a generalized bell-shaped function which operates on the differences of time
elapsed �t−1 = δt−1

i − δt−1
j and �t+1 = δt+1

i − δt+1
j and produces a weight in the

Fig. 1 The row at time t4 for patient pi with missing data point for analyte a1 and its previous and next
rows are considered for evaluation of similarity with patient pj at time t2
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range of [0, 1]. This function (1) has three parameters: a, b, and c. The parameter c

of the function is considered to be 0 because we assume a symmetrical distribution of
equal probability for when �t−1 or �t+1 have opposite signs with the same absolute
value. Parameters a and b are experimentally estimated.

f (x) = 1

1 + | x−c
a

|2b
(1)

The distances between the patient with missing data and each of the other patients
are calculated in (2):

dist = dist (r0
i , r0

j ) + dist (r−1
i , r−1

j ) ∗ wt−1 + dist (r+1
i , r+1

j ) ∗ wt+1 (2)

where, wt−1 = f (�t−1) and wt+1 = f (�t+1).
With the interpatient similarities computed, the known lab value of the patient

with the minimum dist serves as a good estimate for the missing value of interest.
However, to reduce the effect of uncertainties in the data, we use a weighted aver-
age of the known values from all the patients as an estimate for the missing analyte
value. To give more credit to patients’ lab records with higher similarities, we use a
weighted average function (

∑
wtd · known values/

∑
wtd ), in which weight (wtd )

is computed using a second generalized bell-shaped function operating on the values
computed for dist in (2). The parameter c of the function would be the minimum dis-
tance, meaning that the row with the maximum similarity has the highest weight, and
parameters a and b are experimentally estimated. The range given in (3) is considered
as acceptance range for estimated values:

[min(a−2→+2
k,i ) − 0.25 · IQR, max(a−2→+2

k,i ) + 0.25 · IQR] (3)

where a−2→+2
k,i represents the list of values of desired analyte k of pi from two rows

before to two rows after the row with the missing value, and IQR computes the
interquartile range of the same list. If the weighted average obtained falls outside of
this range, it is considered that there are not enough data or similar patients in the data
set, based on the assumption that the base values for imputation should be somewhat
near the values of the adjacent records to the missing analyte. In that scenario, we
resolve to univariate linear interpolation using the zoo library developed for R soft-
ware [20] to estimate the missing values. This is because the correlation analysis of
observations of inter- and intrapatient features showed that the pairwise correlations,
except for HCT-HGB and PCL-PNA pairs, are relatively weak as seen in Figs. 2 and
3. The pseudocode of the method is shown in Algorithm 1.

The method is developed in R and the corresponding codes are publicly available
at https://github.com/alijazayeri/similarity based imputation.
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3.3 Evaluation

To evaluate the performance of the proposed methods, different metrics are used in
the literature. For example, in [6], three interval- and point-based approaches are
adopted to compare multiple imputation methods. These metrics are either used to
compare the accuracy of algorithms based on the differences between the estimated
values and the actual values or based on the impacts of the values estimated on the
performance of algorithms adopted to predict some response variables as a func-
tion of variables with missing values. Here, we use the normalized root-mean-square
deviation (nRMSD) metric as follows:

nRMSD(a) =

√
√
√
√�Ip,a,i(

xp,a,i−Yp,a,i

max(Yp,a)−min(Yp,a)
)2

�p,iIp,a,i

(4)

Where I is a vector of 0’s and 1’s, and Ip,a,i is 1 if patient p has a missing value at
time index i for analyte a and 0 otherwise. And, considering Yp,a and Xp,a as vectors
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Fig. 2 The population level correlations among pairs of analytes (PCL, chloride; PK, potassium; PLCO2,
bicarb; PNA, sodium; HCT, hematocrit; HGB, hemoglobin; PLT, platelets; WBC, WBC count; PBUN,
BUN; PCRE, creatinine; PGLU, glucose)

representing actual and estimated values for analyte a of patient p, then Yp,a,i and
xp,a,i would be numeric actual and estimated values of analyte a at time index i.

We assume that the imputation is performed without relying on any response
variables; therefore, the performance should be evaluated based on the deviation of
estimated values from actual values. The root-mean-square deviation is a common
metric for evaluation of the performance of different methods following the same
approach. We use the normalized version of the root-mean-square deviation because

Fig. 3 The patient level correlations among pairs of analytes (PCL, chloride; PK, potassium; PLCO2,
bicarb; PNA, sodium; HCT, hematocrit; HGB, hemoglobin; PLT, platelets; WBC, WBC count; PBUN,
BUN; PCRE, creatinine; PGLU, glucose)
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it would be possible to compare the performance of the proposed method for different
analyates [12].

4 Results

We compared the performance of our algorithm with four baseline algorithms applied
on the the same data set. These baseline algorithms are mean, multiple imputation
with chained equations (MICE) [2, 3], Gaussian processes (GP), and 3-dimensional
MICE (3D-MICE) [12]. The mean imputation is one of the most common approaches
adopted in the literature. In this method, the missing values are imputed with mean
of the known values for the same variable. The MICE algorithm creates different
models (e.g., linear regression models) for imputing the missing values of one vari-
able based on the known and imputed values of other variables in the data set. This
process is iteratively repeated with updated estimations of missing values. A Gaus-
sian process is defined as a collection of random variables where any subset of this
collection has a joint Gaussian distribution with known mean and co-variance func-
tions [17]. In this method, Gaussian processes are trained for each patient and using
co-variance relations among variables, the missing values for variables are estimated.
The 3D-MICE is a combination of MICE and GP. In 3D-MICE, the data is flattened
and MICE is employed for cross-sectional imputation. Then, the GP is used for lon-
gitudinal estimation of missing values. Considering the variance of estimated values,
a weighted average of estimations is calculated [12].

Table 1 shows the results obtained for the evaluation metric computed based on
the imputed values estimated by the proposed method for 2000 random patients (≈

Table 1 The metric values for different methods and analytes (lowest nRMSD value for each analyte is
shown in bold)

Analyte Mean MICE GP 3D-MICE Similarity-based

Chloride 0.785 0.326 0.374 0.325 0.284

Potassium 0.601 0.386 0.391 0.378 0.230

Bicarb 0.798 0.375 0.377 0.364 0.249

Sodium 0.734 0.332 0.379 0.333 0.223

Hematocrit 1.493 0.261 0.380 0.272 0.245

Hemoglobin 1.542 0.262 0.376 0.272 0.261

MCV 3.402 0.379 0.389 0.369 0.389

Platelets 2.968 0.385 0.363 0.351 0.281

WBC count 4.186 0.384 0.369 0.358 0.343

RDW 5.047 0.395 0.353 0.348 0.257

BUN 2.361 0.367 0.324 0.313 0.272

Creatinine 3.451 0.362 0.360 0.340 0.319

Glucose 1.030 0.402 0.405 0.394 0.304

Overall 2.612 0.358 0.373 0.342 0.279
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Fig. 4 The visualization of results for 13 analytes. The ideal estimation is to have all the points on the
diagonal line

25% of the population) using other patients’ data in the data set. The data set was
composed of 199,695 rows related to 8267 patients. There were 8267 missing values
for each analyte in total and each patient had one missing value for each analyte on
average. The data for the first four methods in this table are from [12]. As can be seen
in this table, the proposed method in this paper outperformed all other methods for
all the variables except the MCV, for which the proposed method has similar perfor-
mance as others. Overall, estimated values by our method are about eight times more
accurate than the mean imputation, and it has been able to outperform MICE, GP,
and 3D-MICE respectively with 27%, 33%, and 22% more accuracy. In the proposed
method, except for generalized bell-shaped functions for which we experimentally
find the parameters, it estimates the missing value in a data-driven fashion without
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relying on any specific mathematical formulation among variables and the variable
with missing data. Finally, among these four methods, the 3D-MICE has the closest
performance. It can be attributed to the utilization of this method from the advantages
of both MICE and GP methods.

Figure 4 shows the estimated values for missing data points in comparison with
actual values. The ideal case is to have all the points over the diagonal in each sub-
plot, meaning that the estimated and actual values are equal.

5 Conclusion

In this paper, we proposed a novel similarity-based missing data imputation method.
The comparison of the performance of the proposed method with some of the state-
of-the-art methods developed for the imputation of missing values in time series data
shows that it produces more accurate results. This method is completely data-driven
rather than model-driven, in the sense that it searches in the whole data set to rank
patients (and their corresponding measurements) based on their similarities to the
measurements of the patient with missing data, rather than estimates the missing
value using a pre-developed model. In other words, the proposed method not only
takes advantage of the cross-sectional and longitudinal information of the ego patient
as proposed by 3D-MICE, but also factors in information from similar patients by
way of calculating interpatient similarity. Then, using similarities, a weighted aver-
age is computed based on the known values of other patients to estimate the value
of the missing data point. The performance of the method can be attributed to the
adopted search strategy for the selection of similar patients. If similar enough patients
can be found in the data set based on their current status and their health trajec-
tories for multiple analytes, then the method assumes that the value missing in the
patient of interest should be similar to the known values of similar patients as well.
A similar assumption has been made in a previous study [10] and it is shown that
a similarity-based method can outperform “one-size-fits-all” models for ICU mor-
tality prediction. Considering the dependency of the proposed method to the prior
observations of the same patient or other patients, this method shows its best perfor-
mance when larger data sets are available. As the proposed method is data-driven and
searches the whole data set for finding similar patients, this method can work very
well in situations where real-time imputation of missing data is needed. On the other
hand, the time-consuming step in our method is the calculation of pairwise similar-
ities and prioritization of patients and their observations based on their similarity to
the patient with the missing value. Similar to the similarity-based prediction approach
proposed in [10], the performance of the proposed method in this paper is obtained
at the expense of computational resources required to find similar patients. There-
fore, developing more appropriate data structures or indexing of the data set for fast
retrieval of similar patients can improve the efficiency of the method. Furthermore,
because the proposed method evaluates analytes and each of the missing values inde-
pendently, this method offers a remarkable potential for parallelization which can be
considered a future direction for the current study. Here, we estimated the parame-
ters of the functions experimentally. Using a more systematic approach for parameter
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optimization of bell-shaped functions might improve the results. In addition, for esti-
mation of missing values when there are not enough similar patients in the data set,
we applied linear imputation. Using other techniques might improve performance.
Another avenue of further research is considering more adjacent rows (a wider time
span) to the row with the missing value. This increases the chance of finding more
similar patients with respect to trajectories of their lab results and vital signs, and
consequently improves the accuracy of the proposed method.
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