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Abstract
Missing values are common in clinical datasets which bring obstacles for clinical data
analysis. Correctly estimating the missing parts plays a critical role in utilizing these analysis
approaches. However, only limited works focus on the missing value estimation of multi-
variate time series (MTS) clinical data, which is one of the most challenge data types in this
area. We attempt to develop a methodology (MD-MTS) with high accuracy for the missing
value estimation in MTS clinical data. In MD-MTS, temporal and cross-variable informa-
tion are constructed as multi-directional features for an efficient gradient boosting decision
tree (LightGBM). For each patient, temporal information represents the sequential relations
among the values of one variable in different time-stamps, and cross-variable information
refers to the correlations among the values of different variables in a fixed time-stamp. We
evaluated the estimation method performance based on the gap between the true values and
the estimated values on the randomly masked parts. MD-MTS outperformed three baseline
methods (3D-MICE, Amelia II and BRITS) on the ICHI challenge 2019 datasets that
containing 13 time series variables. The root-mean-square error of MD-MTS, 3D-MICE,
Amelia II and BRITS on offline-test dataset are 0.1717, 0.2247, 0.1900, and 0.1862,
respectively. On online-test dataset, the performance for the former three methods is
0.1720, 0.2235, and 0.1927, respectively. Furthermore, MD-MTS got the first in ICHI
challenge 2019 among dozens of competition models. MD-MTS provides an accurate and
robust approach for estimating the missing values in MTS clinical data, which can be easily
used as a preprocessing step for the downstream clinical data analysis.
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1 Introduction

With the development of health informatics in recent years, more and more clinical data
have been accumulated, which paves the way for various clinical data analysis, such as
disease prediction, medication recommendation, decision support, and so on. Data
quality, as revealed in the principle “Garbage In, Garbage Out,” is the foundation of
good analytics. Data with poor quality will significantly affect the performance of
analysis methods. Missing value is one of the most common quality problems in
clinical data. It usually stems from the irregular schedule of the data collection in
clinical scenario [1] (e.g., depends on the patient conditions or administrative require-
ments) or the unexpected accidents. Missing value makes it hard to directly utilize
many data mining and machine learning algorithms on the original dataset.

Although excluding the data with missing values is a simple way to handle the
problem, it may introduce bias and reduce the data volume. The potential bias and
small volume of the remaining data make it hard to get reliable, generalizable, and
valuable findings. Therefore, how to estimate the missing values as accurate as possible
becomes an essential preprocessing for downstream analysis procedures.

According to the clinical data types, different estimation strategies have been
proposed. Multivariate time series (MTS) clinical data is the most challenge one. An
example of MTS clinical data is shown in Fig. 1. Given a patient, there are a set of
variables, and each variable is a time series. The missing parts may be occurred in any
time-stamp for any variables. MTS data type is common in patients’ monitoring data,
treatment data, following up data, and so on. A typical application for MTS data is the
clinical events prediction calculating the risk of different clinical outcomes based on
patients’ historical MTS data [2–4]. Precise estimation for the missing values in MTS
data can improve the availability and accuracy of various prediction methods [5].

The core principle of the strategies for missing value estimation is to make full use of
the available information in the data. The most common way is the use of mean value
and forward/backward value of a time series to filling in the missing parts. However,
the simply statistical values can hardly capture the rich information in MTS for
estimating miss values. Interpolation and imputation are two main technical directions
for addressing the problem. The former one attempts to construct a fitting function for

Fig. 1 An example of MTS clinical data. “T” is the time axis, and red symbol “X” represents missing value
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the time series of each variable. However, it ignores the potential relations between
multiple variables. The latter one, such as MICE [6], Miss Forest [7], and matrix
completion [8], focuses on utilizing correlations between different variables to imputing
the missing values in a fixed time-stamp, while the temporal information in time series
data has been ignored by them.

Recently, a number of deep learning frameworks, such as M-RNN [9], BRITS [10],
and GRUI [11], have been proposed and achieved impressive results on the benchmark
datasets. The success of these methods stems from the high-quality representations
extracted from a large amount of data, which means that it may not get desire
performance with limited training dataset.

In this paper, we proposed a novel method MD-MTS to estimate the missing
values in MTS clinical data. MD-MTS is a tree-based algorithm utilizing multi-
directional information in the available parts in MTS clinical data. We constructed
two kinds of features, temporal and cross variable, as the input of LightGBM, an
effective and efficient gradient boosting tree method. The Intensive-Care-Unit
(ICU) datasets which contains 13 time series variables, provided in Data Analytics
Challenge on Missing Data Imputation (DACMI) of IEEE International Conference
on Healthcare Informatics (ICHI) 20191, is used for our model training and eval-
uation. On the offline-test dataset, MD-MTS achieved significant improvement
compared to three baseline models, 3D-MICE [1], Amelia II [12], and BRITS
[10]. On the online-test dataset, our method got the best performance among the
submitted models.

2 Dataset

The MTS dataset of DACMI of IEEE ICHI 2019 is derived from MIMIC dataset [13],
a real-world ICU data. In total, 13 commonly measured laboratory tests are extracted as
the time series variables, including “PCL,” “PK,” “PLCO2,” “HCT,” “HGB,” “MCV,”
“PLT,” “WBC,” “RDW”, “PBUN,” “PCRE,” and “PGLU.” They reflect the clinical
states of each patient in different time-stamps, which can be used for analysis tasks like
sepsis prediction and mortality prediction. Table 1 shows an example about a patient’s
data.

Bold and italics values represent the real and masked missing values, respectively
As seen in the table, the first column “CHARTTIME” refers to the sampling time-

stamps of the 13 measurements from the patient’s admission (the first row). “NA”
represents the missing values which are marked by two different background colors:
NA in bold are the real missing parts in the original datasets (the true values are
unknown), and NA in italics are the “fake” missing parts whose true values have been
artificially masked. Therefore, the yellow ones are used to evaluate the performance of
missing value estimation methods because we know their labels (true values). As
described by the DACMI challenge, the masked missing values are randomly selected
at varying time points, and for each sample, there are 13 masked missing values (one
for each variable).

In DACMI, two datasets are released:

1 http://www.ieee-ichi.org/challenge.html
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& Dataset A contains 8267 samples (a sample refers to a patient’s data like Table 1),
199,695 time-stamps, and 2,596,035 values. In DACMI, this dataset is used for
model design. There are totally 193,405 missing values (7.45%), which can be
divided into real missing part and masked missing part. The true values of the
masked parts have been provided, so that we name them as offline-test dataset.

& Dataset B contains 8267 samples, 196,936 time-stamps, and 2,560,168 values. The
dataset in DACMI is used for the performance comparison between the submitted
challenge models, including 158,502 missing values (11.58%). Unlike dataset1,
DACMI have not provided the true values of the masked parts, which are used to
evaluate online the accuracy of the estimated values. Thus, we name them as
online-test dataset, which can better demonstrate the generalization of the proposed
methods because it is infeasible to optimize the methods based on the test dataset.

The detailed statistics of the missing rate in the two datasets are listed in Table 2.

3 Method

In this section, we firstly introduce the problem definition formally. Then, we give
a data exploration which determines the design of our method. Finally, we detail
MD-MTS, including the preprocessing, feature engineering, and tree-based
regressor.

3.1 Problem Definition

We define a MTS dataset as D with sample size Dj j. The values in D are denoted as
xti; j∈D, where i, j, and t refer to the jth variable in tth time-stamp of ith sample. We

define the real missing parts and masked missing parts asDR andDM . It means that the
true value of xti; j∈DR is unknown, while the true value of xti; j∈DM is known. Therefore,

the task of estimation missing values in MTS data can be defined as given MTS dataset
D, for each value xti; j∈DM , the goal is to calculate an estimation value exti; j to make the

difference between xti; j and exti; j as small as possible. We use normalized root-mean-

square deviation (nRMSD) of each variable to measure the difference, which is denoted
as follows:

nRMSDj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∑xti; j∈DM

exti; j−xti; j
Maxi; j−Mini; j

 !2

nj

vuuuuut

where Maxi, j and Mini, j is the maximum and minimum values of jth variable of ith
sample, and nj is the number of calculated values of variable j. Methods with less
nRMSD represent better performance. In addition, the average nRMSD of all the
variables, which is denoted as nRMSD ¼ 1

K∑
K
j¼1nRMSDj (K is the count of variables

in D), represents the overall performance of the estimation method.
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For DACMI datasets used in this paper, we define them as DA and DB for dataset A
and dataset B, respectively. According to the rule of DACMI, the estimation methods
can only depend on either DA or DB. It means that if we want to estimate the masked
missing values inDA, the methods can only use the information fromDA (withoutDB),
and vice versa. This rule highlights the generalization of the estimation methods
because there is no other external information can be involved in.

3.2 Data Exploration

Data exploration is an essential procedure for the model design. Following the DACMI
rule, we did a data exploration on DA, and drew inspiration from it.

1. Variable distribution. We analyzed the distribution of each variable across the
time-stamps as shown in Fig. 2. Most of the variables meet the normal distribution,
while 5 variables (PLT, WBC, PBUN, PCRE, PGLU) coincide with long-tail
distribution.

→ Variables with long-tail distribution should be processed by special trans-
formation. In this paper, we adopted a log function on these variables.

2. Time-interval. For each sample, the time-intervals between two consecutive time-
stamps are irregular. Take Table 1 as an example; the time-intervals vary from 225
(row 1 and 2) to 1510 (row 16 and 17) units. Furthermore, the time-interval in
pairwise time-stamps is also different between different samples.

→ The time irregularity in intra/inter samples should be taken into
consideration.

3. Missing pattern. As mentioned before, the masked missing values are selected
randomly. While for real missing parts, we found that HCT, HGB, MCV, PLT,
WBC, and RDW are usually missing together in a time-stamp (as shown in green
color in Table 1). It is common in clinical data because some variables are
extracted from the same laboratory test. If the patient has not received the test in
a time-stamp, none of these variables would be recorded.

→ Solely using imputation methods, which depends on the values in the same
time-stamp, can hardly get good performance due to the high missing rate.

4. Correlations between variables. As shown in Fig. 3, there are few significant
linear correlations among the variables.

→ Non-linear methods are preferred for the estimation.

Although the above explorations are based on DACMI dataset, most of them are
common problems in MTS clinical data. We attempt to tackle these problems by a
unified framework.

3.3 MD-MTS

According to the data exploration, we proposed MD-MTS to estimate the missing
values in MTS clinical data. MD-MTS is a machine learning method that constructs a

Journal of Healthcare Informatics Research (2020) 4:365–382 371



model from training data and then applies the model on testing data. Given D ¼ DA,

the training and testing dataset isDTr ¼ xti; jjxti; j∈Dn DR∪DM� �n o
andDTe ¼ DM . And

it is similar for DB. The pipeline contains three steps: preprocessing, feature engineer-
ing, and tree-based regressor (as shown in Fig. 4).

1. Preprocessing

Besides applied log function on the variables with long-tail distribution (PLT, WBC,
PBUN, PCRE, PGLU) as mentioned above, we then did a normalization on all the
variables of DTr as follows:

norm xti; j
� �

¼ xti; j−Min*; j
Max*; j−Min*; j

where Max∗, j and Min∗, j are the maximum and minimum values of jth variable in DTr.

Fig. 2 Variable distributions in dataset A
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2. Feature engineering

Proper features are of great importance for machine learning methods. The more
information involved in, the better performance of the estimation. As we mentioned
before, both interpolation and imputation methods consider only partial information in
the MTS data. In our method, we took advantages of both temporal and cross-variable
information to construct a multi-directional feature set.

Given a value xti; j∈D to be estimated, the constructed feature set for estimation is
listed as follows:

& F 1: xti;k j 1≤k≤K⋀k≠ j
n o

, the values of the other variables in current time-stamp t,

which provide the information about the correlation between variables. Note that if
xti;k is a missing value (xti;k∈ DR∪DM� �

), we set them to NA for the feature set.

& F 2: The time-stamp t and the charttime cti in current time-stamp t. Take Table 1 as
an example, for the value x2i;3 (2nd row, 3rd column), the two features are “2” and

“225”, respectively. Absolute time information has been taken into account by
these features.

Fig. 3 Correlations between 13 variables in dataset A

Fig. 4 The pipeline of MD-MTS
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& F 3: The charttime interval between the current time-stamp with the pre-time-stamp
(cti−ct−1i ) and post-time-stamp (ctþ1

i −cti). These features are used to handle the time-
irregularity.

& F 4: The values of all the 13 variables in pre- and post-3 time-stamps

xt
0
i;k j t−3≤ t

0 ≤ t þ 3⋀t0≠t; 1≤k≤13
n o

. This is a fusion feature set that combines

the information of temporal and cross variable. Similarly, we set missing values in
the feature set to NA.

& F 5: Sample id i, and the max/min/mean values of all the 13 variables of ith sample.
These features bring the unique information of the sample, because there may exist
relations between the sample and its variable values.

There are totally 134 features in the feature set for DA or DB (F 1:12, F 2:2, F 3:2,
F 4:78, F 5:40). Figure 5 illustrates a brief summarization for the constructed feature
set. As we can see, the temporal and cross-variable information have been captured by
the multiple-directions, including global, vertical, horizontal, and diagonal values.

3. Tree-based regressor

Based on the constructed feature set of each target value xti; j, we need to select a proper
regressor to give an estimation value for it. There are three core requirements for the
regressor: (a) finding non-linear correlations, (b) processing noise and missing values
(because there is NA in the constructed feature set), and (c) good generalization.

LightGBM [7] is a gradient boosting tree algorithm which is widely used for
classification and regression problems. As an ensemble learning approach, many weak
learners are iteratively added in each round of training. It is less prone to overfitting and
more sensitive to outliers. Missing value is acceptable for LightGBM. While for other
regressors, such as logistic regressor and deep learning methods, a coarsely imputation

Fig. 5 A brief summarization for the constructed feature set
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for the missing parts is necessary. It is time-consuming to choose a suitable preliminary
imputation strategy for these methods. Therefore, we adopt LightGBM as our regressor
to estimate the values.

Due to fact that the values of each variable share the same feature space, we will
train K tree-based models for the K variables in dataset. The training and inference
procedures are detailed as follows:

& Training procedure

Given all the values of variable j across all the training samples

xti; jjxti; j∈DTr; 1≤ i≤ DTr
�� ��n o

, constructing the feature set for each value as above de-

scribed. By inputting the feature set to LightGBM, we can get an estimation result exti; j
for xti; j. The label is the true value of xti; j. It is worth mentioning that the values in

feature set, estimation result, and label are the preprocessed ones. Mean squared error
(MSE) is used as the loss metric. After training, we get the tree-based model for
variable j which can be used for the missing value estimation. Similarly, the models
for other variables will be trained following the procedure.

We used the python-package of LightGBM for our experiments2. The parameters
we set for LightGBM includes “learning_rate” = 0.03, “sub_feature” = 0.9,
“max_depth” = 10, “max_data” = 50, “min_data_in_leaf” = 50, “feature_fraction” =
0.9, “bagging_fraction” = 0.9, “bagging_freq” = 3, “lambda_l2” = 0.005,“verbose” = −
1, “num_boost_round” = 30,000, and “early_stopping_rounds” = 200. The other
parameters are default in LightGBM. Although we trained K models for the K variables
in dataset, we adopted the same parameters for different models because of the stable
performance of LightGBM.

& Inference procedure

In the inference procedure, we will apply the trained model on the testing dataset DTe.
Similarly, for each xti; j∈DTe, we input the constructed feature set to the jth trained model

and get the estimation result. Due to the preprocessing in pre-step, we need to transform
the estimation results to original scale to calculate the measurement nRMSD.

4 Experimental results

In this section, we will introduce the experimental results on DACMI datasets, includ-
ing offline-test and online-test dataset.

4.1 Offline-Test Dataset

On the offline-test dataset DTe∈DA, we compared MD-MTS with the following
baseline models to demonstrate the method effectiveness.

2 https://github.com/microsoft/LightGBM/tree/master/python-package
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& 3D-MICE [1]. The method of Gaussian process (GP) can impute single-variate time
series data [14]. For multivariable dataset, multiple imputation with chained equa-
tions (MICE) can build a conditional model for each variable to be imputed while
using the other variables as possible predictors [6]. A new imputation algorithm, 3-
dimensional multiple imputation with chained equations (3D-MICE) was devel-
oped recently [1]. It combines MICE with GP models to impute missing data based
on both cross-sectional and longitudinal information and showed better perfor-
mance than MICE and GP methods.

& Amelia II [12]. The method uses the bootstrap-based EMB algorithm to impute
many variables with many observations. EMB algorithm combines the classic
expectation-maximization algorithm with a bootstrap approach. It utilizes both
timing and multivariable information at one model, implying that Amelia II is
suitable for this task.

& BRITS [10]. The method adopted a bidirectional recurrent neural network (RNN)
for imputing missing values. Missing values were regarded as variables of the RNN
graph, which could get delayed gradients in both forward and backward directions
with consistency constraints.

Table 3 compares the performance of the four missing value estimation methods using
nRMSD. It is observed that Amelia II achieves better performance than 3D-MICE for
all the 13 variables. MD-MTS outperforms the three baseline models. The nRMSD has
been significantly reduced by 23.65%, 9.6%, and 7.7% compared to 3D-MICE, Amelia
II, and BRITS. PCL, “PNA”, “HCT”, HGB, and PBUN are the 5 variables with highest
performance improvement (> 30% to 3D-MICE, > 10% to Amelia II and > 10% to
BRITS).

The values in italics represent the best performance

Table 3 Performance of the missing value estimation methods on offline-test dataset measured by nRMSD

Variable 3D-Mice Amelia II BRITS MD-MTS

PCL 0.2040 0.1554 0.1506 0.1324

PK 0.2628 0.2445 0.2314 0.2238

PLCO2 0.2357 0.2029 0.1957 0.1809

PNA 0.2180 0.1755 0.1708 0.1534

HCT 0.1467 0.1121 0.1156 0.0983

HGB 0.1444 0.1112 0.1054 0.0915

MCV 0.2707 0.2479 0.2345 0.2251

PLT 0.2289 0.1760 0.1794 0.1601

WBC 0.2585 0.2162 0.2164 0.2006

RDW 0.2512 0.2202 0.2133 0.2093

PBUN 0.1905 0.1467 0.1486 0.1308

PCRE 0.2336 0.1943 0.2017 0.1823

PGLU 0.2792 0.2671 0.2568 0.2444

Avg. 0.2249 0.1900 0.1862 0.1718
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The feature importance generated by LightGBM (top 10) for each variable is listed
in Fig. 6. We can find that for different variables, there are different important features
for the estimation. Most of the common features with great importance among the 13
models are included in F 1, F 3, F 4, F 5, which cover the temporal and cross-variable
information. For the variable pairs with high linear correlations, such as “HCT” and
“HGB” and “PCL” and “PNA” (as shown in Fig. 3), they played significantly
important roles for the prediction between each other.

To further investigate the contribution of each part of the constructed features, we
did an ablation study for MD-MTS. In this experiment, we generated the estimation
results, which are shown in Table 4, by systematically removing different kinds of
features. It is observed that each subset of the constructed features is important for the
missing value estimation. From the average of nRMSD in the last row, compared to
MD-MTS with whole feature set, we found that the result will be reduced with 32.89%
by removing F 4, which is composed by the values in pre/post three time-stamps. As a

Fig. 6 Feature importance of the models for 13 variables
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combination of temporal and cross-variable features, F 4 contributes most to the result.
Similarly, as a cross-variable feature subset, F 1 plays a critical role for the estimation.
The removing of F 2, F 3, and F 5, which contain information of temporal and patient
level, would also degrade the final performance by more than 10%.

The values in italics font represent the best performance
We also conducted a series of experiments to demonstrate the sensitivity of regressor

(LightGBM) in MD-MTS. We selected three popular tree-based regressors, Random

Table 4 Ablation study for MD-MTS measured by nRMSD

Variable MD-MTS Without F 1 Without F 2 Without F 3 Without F 4 Without F 5

PCL 0.1324 0.1888 0.1317 0.1326 0.1608 0.1319

PK 0.2238 0.2322 0.2257 0.2269 0.2473 0.2291

PLCO2 0.1809 0.2053 0.1981 0.1981 0.2379 0.1985

PNA 0.1534 0.2107 0.2034 0.2036 0.2412 0.2042

HCT 0.0983 0.2109 0.0998 0.0995 0.1110 0.1014

HGB 0.0915 0.2111 0.1987 0.1988 0.2346 0.2025

MCV 0.2251 0.2458 0.2443 0.2446 0.2713 0.2534

PLT 0.1601 0.1738 0.1659 0.1683 0.2226 0.1686

WBC 0.2006 0.2129 0.2104 0.2127 0.2558 0.2151

RDW 0.2093 0.2100 0.2103 0.2100 0.2527 0.2204

PBUN 0.1308 0.1472 0.1313 0.1329 0.2098 0.1318

PCRE 0.1823 0.2023 0.2033 0.2038 0.2522 0.2062

PGLU 0.2444 0.2506 0.2510 0.2542 0.2713 0.2536

Avg. 0.1718 0.2078 0.1903 0.1912 0.2283 0.1936

Table 5 Sensitivity of regressors with same features on offline-test dataset measured by nRMSD

Variable MD-MTS Random Forest GBDT XGBoost

PCL 0.1324 0.1730 0.1648 0.1382

PK 0.2238 0.2503 0.2356 0.2289

PLCO2 0.1809 0.2158 0.2036 0.1848

PNA 0.1534 0.1945 0.1825 0.1573

HCT 0.0983 0.1717 0.1497 0.1042

HGB 0.0915 0.1358 0.1330 0.0952

MCV 0.2251 0.2659 0.2713 0.2394

PLT 0.1601 0.2086 0.2121 0.1771

WBC 0.2006 0.2751 0.2458 0.2098

RDW 0.2093 0.2550 0.3061 0.2410

PBUN 0.1308 0.2435 0.1758 0.1390

PCRE 0.1823 0.2465 0.2424 0.1893

PGLU 0.2444 0.2689 0.2532 0.2517

Avg. 0.1718 0.2234 0.2135 0.1812
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Forest, GBDT [15], and XGBoost [16], as the comparison. All of these methods took
the same features as the input. Table 5 shows the results. As we can see, XGBoost
achieved competitive performance with our MD-MTS (LightGBM-based). Random
Forest and GBDT performed worse scores than Amelia II. We think that XGBoost and
LightGBM are two similar gradient boosting tree-based classifiers, which can better
process the massive constructed features than Random Forest and GBDT.

The values in italics font represent the best performance
The training time for MD-MTS and all the compared methods are shown in Table 6.

As we can see, MD-MTS (LightGBM-based) is the most efficient approach. Random
forest, GBDT and Amelia II are also trained fast, while 3D-MICE and BRITS would
take several hours for training.

4.1 Online-test dataset

On the online-test dataset DTe∈DB measured by nRMSD, MD-MTS is the top per-
former among all the submitted models of DACMI of ICHI 20193. For the 13 variables,
our method achieved 11 optimal and 2 sub-optimal nRMSD. We demonstrate the
comparison in online-test dataset between MD-MTS, Amelia II, and the official
baseline 3D-MICE in Table 7.

The values in italics font represent the best performance.

5 Discussion

In this paper, we investigated the problem of estimating missing values in MTS clinical
data. The proposed method MD-MTS outperformed other models by a significant
margin in DACMI datasets. According to the method architecture and experiment
performance, we make a conclusion about the advantages of MD-MTS as follows:

1. Accurate. MD-MTS is a machine learning method which is consisted by proper
preprocessing, comprehensive feature engineering, and powerful gradient boosting
tree. The model generated from the training datasets can recognize the core
patterns, including temporal and cross-variable dimensions, for the missing value
estimation. The accuracy of the proposed method has been demonstrated by the
comparison with baseline models and competition models which contains different
deep learning, machine learning, and statistical methods.

Table 6 Training time of different methods on offline-test dataset

Methods Time Methods Time

MD-MTS 12.8 mins Random Forest 28.4 min

3D-MICE 361.3 mins GBDT 26.5 min

Amelia II 23.0 mins XGBoost 64.2 min

BRITS 275.9 mins

3 The leaderboard can be found in http://www.ieee-ichi.org/challenge.html.
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2. Practical. The feature set for MD-MTS is easy to construct. Given a MTS clinical
dataset, all of the features can be found in it, including the multi-directional values
in temporal dimension and cross-variable dimension. Neither complex features nor
initial imputation strategies that need a lot of manual works are essential for MD-
MTS. In addition, LightGBM is an industrial-level algorithm which has been
widely used in various production systems. It makes MD-MTS applicable, stable,
and trustable in clinical scenario.

3. Generalizable. The generalization ability of MD-MTS is represented in three
aspects. Firstly, the parameter space of the proposed method is limited, and only
parts of parameters play important roles in the estimation performance. It brings
convenience for the parameter tuning in different datasets. Secondly, MD-MTS is
insensitive to the minor adjustment of the parameters, which means that only
several parameter combinations may be required for searching. The performance
on online-dataset, whose true values of the masked missing parts are invisible
offline, demonstrated the generalization of MD-MTS. Thirdly, we can easily
involve in other features for the tree-based regressor according to the datasets or
clinical requirements.

Besides the advantages, we also list the limitations of this study.

1. Limitation of the dataset. In this study, we designed and evaluated the proposed
MD-MTS on DCAMI datasets. Although they are extracted from a set of typical
MTS data (ICU laboratory tests) in clinical scenario, there are following
shortcomings:

& Missing rate. As shown in Table 1, the missing rate of DACMI datasets (real and
masked missing parts) is relatively low. The variables with high missing rate, which

Table 7 Performance of the missing value estimation methods on online-test dataset measured by nRMSD

Variable MD-MTS (Rank 1) 3D-MICE Amelia II

PCL 0.1351 0.2000 0.1581

PK 0.2255 0.2632 0.2478

PLCO2 0.1794 0.2314 0.2005

PNA 0.1561 0.2145 0.1775

HCT 0.1002 0.1505 0.1169

HGB 0.0920 0.1488 0.1131

MCV 0.2289 0.2713 0.2518

PLT 0.1580 0.2294 0.1839

WBC 0.1986 0.2560 0.2240

RDW 0.2021 0.2458 0.2192

PBUN 0.1341 0.1846 0.1489

PCRE 0.1827 0.2338 0.1960

PGLU 0.2440 0.2769 0.2673

Avg. 0.1721 0.2235 0.1927
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are common in real-world clinical data, have been excluded from the datasets.
While these variables may reduce the completeness of the feature set (a lot of
“NA”) and result in worse estimation performance.

& Missing pattern. As described in Sect. 2, besides the real missing values, only one
masked missing value was randomly selected for each variable in each sample. The
pattern of the masked missing parts in DACMI datasets cannot cover all the
possibilities in other clinical data. We can only evaluate the estimation performance
on the masked missing parts whose true values are known.

& Number of variables. There are only 13 variables in DACMI datasets. Considering
the way of feature set construction, more variables bring larger feature set for MD-
MTS, and hence a more complex model.

2. Future information. In the temporal dimension, we used both past and future
information in the feature set for a target value. However, in some clinical tasks,
we can only use the past information, such as predicting the sepsis risk on current
time. In these tasks, we need to estimate the missing values based on the features in
current and previous time-stamps.

3. Performance for downstream tasks. One of the core goals of missing value
estimation in MTS data is to improve the performance for the downstream tasks.
In this study, we have not given an example to demonstrate the ability of MD-
MTS.

For all the limitations mentioned above, we will do further studies on them to evaluate
and optimize our method.

6 Conclusion

In this paper, we study the problem of estimating missing values in MTS clinical data.
By exploring the data characteristics, we proposed a novel machine learning method
MD-MTS. It combines the temporal and cross-variable information into the multi-
directional feature set, which is utilized as the input for a tree-based regressor. Exper-
imental results on DACMI datasets demonstrated that our proposed method outper-
forms baseline models and competition models.
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