Skip to main content
. 2022 Jan 3;6(1):1–47. doi: 10.1007/s41666-021-00109-4

Table 6.

Performance measures using different classifiers

Disease Class Classifier Accuracy Sensitivity Specificity Precision Kappa
Flu YES BUM k-NN 91.45 83 87 0.912 0.61
NB 91.73 85 91 0.934 0.63
DT 91.80 85 91.5 0.923 0.66
LR 93.57 86 93.7 0.941 0.74
SVM 94.27 86.01 94 0.948 0.82
MLPNN 95.70 88.25 95 0.951 0.83
AUM k-NN 92.32 84 89.5 0.923 0.64
NB 93.21 86 92.1 0.947 0.65
DT 94.10 86 92.9 0.953 0.68
LR 94.53 87.9 93 0.951 0.8
SVM 96.32 88.01 94.5 0.958 0.88
MLPNN 97.21 89.30 95.6 0.961 0.90
Lung congestion YES BUM k-NN 89.31 80.01 82 0.894 0.54
NB 91.89 81.04 84 0.901 0.61
DT 91.76 82.04 84 0.910 0.64
LR 92.92 84.08 86.04 0.921 0.69
SVM 93.48 86.43 87.09 0.93 0.78
MLPNN 94.35 88.34 88.56 0.93 0.80
AUM k-NN 89.45 81.45 82.65 0.905 0.57
NB 93.46 82.13 85.1 0.91 0.64
DT 94.10 82.65 85.3 0.92 0.66
LR 94.82 85.43 87.02 0.92 0.74
SVM 96.12 87.05 88.48 0.94 0.84
MLPNN 97.10 89.55 90.10 0.94 0.86
Diarrhea YES BUM k-NN 89.34 81.5 83.08 0.9 0.51
NB 92.01 81.4 82.37 0.91 0.62
DT 92.50 82.32 82.55 0.92 0.66
LR 92.95 84.31 84.12 0.908 0.76
SVM 93.5 86.52 86.39 0.935 0.85
MLPNN 94.5 88.75 88.40 0.950 0.87
AUM k-NN 89.5 81.7 83.2 0.905 0.55
NB 93.5 82.52 85.5 0.91 0.69
DT 94.1 83.25 86.2 0.91 0.70
LR 94.9 86.01 87.1 0.923 0.84
SVM 95.5 87.15 87.8 0.94 0.91
MLPNN 97.1 88.05 89.1 0.95 0.93
Anemia YES BUM k-NN 92.31 83.41 87.65 0.92 0.65
NB 92.73 85.05 91.87 0.94 0.66
DT 93.10 85.54 91.90 0.94 0.68
LR 93.87 86.18 93.98 0.95 0.78
SVM 95.01 87.12 94.41 0.96 0.82
MLPNN 96.21 87.50 94.51 0.96 0.84
AUM k-NN 92.4 84.05 90.15 0.93 0.7
NB 93.62 86.24 92.7 0.95 0.75
DT 94.10 86.34 93.1 0.95 0.79
LR 94.8 88.05 93.4 0.96 0.85
SVM 96.4 88.01 94.8 0.965 0.88
MLPNN 97.4 90.08 95.7 0.971 0.89
Gastrointestinal YES BUM k-NN 89.04 80.5 81.8 0.91 0.60
NB 90.92 81.70 81.7 0.91 0.64
DT 92.50 82.54 84.01 0.92 0.68
LR 92.10 84.10 85.25 0.93 0.74
SVM 93.85 86.28 86.95 0.935 0.82
MLPNN 94.75 89.75 87.40 0.950 0.86
AUM k-NN 91.5 82.7 82.2 0.91 0.59
NB 92.6 82.8 84.5 0.91 0.70
DT 93.5 83.45 86.3 0.92 0.75
LR 94.5 85.01 87.1 0.923 0.85
SVM 95.1 87.50 88.8 0.94 0.92
MLPNN 96.6 89.50 90.1 0.96 0.94
Flu NO BUM k-NN 86.65 81.2 85.1 0.9 0.71
NB 86.7 81.8 86.4 0.91 0.74
DT 87.1 82.4 86.9 0.92 0.75
LR 88.5 83 88.3 0.94 0.82
SVM 89.3 83.8 89.3 0.95 0.88
MLPNN 92.3 84.3 91.3 0.96 0.90
AUM k-NN 88.5 84.8 87.5 0.92 0.75
NB 89.1 85.2 88.3 0.92 0.78
DT 89.5 86.9 89.9 0.93 0.81
LR 91.3 87.2 90.1 0.94 0.85
SVM 94.6 88.6 91.5 0.94 0.93
MLPNN 95.6 91.5 92.8 0.95 0.95
Lung congestion NO BUM k-NN 86.54 82.3 80.0 0.85 0.64
NB 87.2 82.9 81.0 0.85 0.68
DT 88.6 83.8 82.0 0.87 0.69
LR 89.2 84.5 82.1 0.89 0.74
SVM 89.5 85.2 84.5 0.91 0.82
MLPNN 90.5 88.4 85.6 0.93 0.84
AUM k-NN 87.8 84.9 82.2 0.90 0.66
NB 88.5 85.7 83.1 0.91 0.72
DT 89.1 86.8 84.2 0.92 0.75
LR 89.3 87 85.2 0.92 0.78
SVM 93.1 87.8 86.8 0.93 0.92
MLPNN 94.7 89.8 88.1 0.95 0.94
Diarrhea NO BUM k-NN 85.2 79.5 82.8 0.88 0.54
NB 87.1 80.2 82.3 0.90 0.63
DT 88.4 81.3 83.7 0.91 0.68
LR 90.3 82.2 84.6 0.91 0.72
SVM 91.5 83.5 86.9 0.92 0.84
MLPNN 93.5 86.5 88.9 0.94 0.86
AUM k-NN 86.2 80.9 84.2 0.90 0.62
NB 86.8 81.5 85.8 0.92 0.69
DT 87.4 83.2 86.1 0.92 0.72
LR 89.9 84 87.4 0.93 0.77
SVM 92.3 84.15 88.8 0.94 0.84
MLPNN 94.1 87.70 90.8 0.95 0.86
Anemia NO BUM k-NN 86.7 80.4 80.5 0.89 0.58
NB 86.3 82.1 81.7 0.91 0.66
DT 87.1 82.9 84.1 0.92 0.68
LR 88.3 84.8 83.8 0.92 0.71
SVM 88.1 83.1 84.4 0.93 0.83
MLPNN 90.2 85.4 86.3 0.95 0.85
AUM k-NN 87.4 84.8 80.9 0.93 0.64
NB 88.1 85.2 81.7 0.93 0.74
DT 89.3 86.4 83.5 0.94 0.77
LR 90.8 87.05 84.4 0.94 0.83
SVM 92.8 88.01 84.8 0.95 0.92
MLPNN 95.1 90.21 86.6 0.96 0.93
Gastrointestinal NO BUM k-NN 84.7 80.5 81.3 0.89 0.61
NB 86.5 81.3 83.3 0.92 0.64
DT 87.3 82.5 84.1 0.93 0.72
LR 90.3 83.7 84.6 0.93 0.74
SVM 91.5 84.1 87.9 0.93 0.85
MLPNN 92.7 86.2 89.7 0.94 0.88
AUM k-NN 86.5 81.9 84.2 0.90 0.62
NB 87.9 82.5 86.8 0.92 0.66
DT 88.4 83.7 87.9 0.93 0.75
LR 89.1 84.7 88.4 0.93 0.86
SVM 92.3 85.6 89.8 0.94 0.93
MLPNN 94.6 88.7 92.8 0.95 0.95

k-NN k-nearest neighbor, NB Naive Bayes, DT decision tree, SVM support vector machine, LR logistic regression, MLPNN multi-layer perceptron neural network. Bold denotes better performance.