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Abstract
Targeted intervention and resource allocation are essential in effective control of
infectious diseases, particularly those like malaria that tend to occur in remote areas.
Disease prediction models can help support targeted intervention, particularly if they
have fine spatial resolution. But, choosing an appropriate resolution is a difficult
problem since choice of spatial scale can have a significant impact on accuracy of
predictive models. In this paper, we introduce a new approach to spatial clustering for
disease prediction we call complexity-based spatial hierarchical clustering. The tech-
nique seeks to find spatially compact clusters that have time series that can be well
characterized by models of low complexity. We evaluate our approach with 2 years of
malaria case data from Tak Province in northern Thailand. We show that the tech-
nique’s use of reduction in Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC) as clustering criteria leads to rapid improvement in predictability
and significantly better predictability than clustering based only on minimizing spatial
intra-cluster distance for the entire range of cluster sizes over a variety of predictive
models and prediction horizons.

Keywords Malaria prediction . Spatial epidemiology. Spatial clustering . Akaike
information criterion . Bayesian information criterion

1 Introduction

Targeted intervention and resource allocation are essential elements of effective control
strategies for infectious disease. This is particularly the case for diseases like malaria
that are prevalent in less developed and more remote areas in which public health
resources are often scarce. A valuable supporting technology is the ability to predict
disease with sufficient spatial resolution to effectively target the disease. With case data
on infectious disease as well as on related environmental variables now increasingly
available in high spatial resolution [1], the data to build high resolution models is often
not a limiting factor. One is then faced with the choice of a wide range of possible
spatial resolutions to use. This is a complex problem since too fine or too coarse a
resolution can negatively affect model prediction accuracy and at the same time very
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coarse resolutions are not helpful in targeting intervention. While the issue of choice of
spatial resolution for modeling has been recognized and discussed in the epidemiolog-
ical literature [2, 3], previous work has typically chosen spatial resolution for modeling
based on existing government administrative boundaries or on boundaries of respon-
sibility of medical clinics. There is as yet no work that has sought to generate spatial
partitions from fine grained data in such a way as to retain spatial resolution while
maximizing predictability.

In this paper1 we introduce a new approach to spatial clustering for disease predic-
tion we call complexity-based spatial hierarchical clustering. Following the minimum
description length principle (MDL) [4, 5], a formalization of Occam’s Razor, we seek
to find compact clusters that have time series that can be well characterized by models
of low complexity. This is achieved by fitting ARIMA models to the time series and
using Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
as the MDL metrics. We evaluate the effectiveness of the technique using 2 years of
weekly village level malaria case data from Tak Province in northern Thailand. We
show that we can greatly increase the predictability of malaria cases for a variety of
prediction methods with only a relatively small amount of clustering and that inclusion
of AIC and BIC as clustering metrics results in significantly better predictability than
clustering based only on minimizing physical compactness for clusters. Comparison
with hotspot clusters produced by SatScan on this data set shows that our clustering
algorithm discovers some clusters with better predictability than the SatScan clusters of
the same size. Furthermore, the hierarchical clusters produced by our algorithm allow
the user to easily and flexibly explore alternative spatial groupings.

2 Related Work

Appropriate choice of spatial resolution has been recognized as one of the most
important research issues in the field of spatial epidemiology [2, 3]. For example, in
examining the impact of environmental factors on diabetes, Dagliati et al. [6] note that
“one of the main efforts was to define the level of detail through which to derive
meaningful patterns and observe events of interest.” As Meiker and Sloan [3] point out,
resolutions that are too fine can suffer from the small number problem [7] in which
sparsely populated areas can have few disease cases, resulting in unstable rate esti-
mates. A common solution is to apply spatial smoothing of the data, but this changes
the spatial character of the original data and can introduce autocorrelation in the
resulting map [8]. In contrast, the approach in this paper is to cluster regions rather
than smoothing the data. In this way, while precision is lost, accuracy of the data is
maintained. A second problem in working with geographic data is the sensitivity of
statistical results to the definition of spatial units over which the data are collected. This
is known as the modifiable areal unit problem (MAUP) and is applicable to predictive
and spatial statistical models [9, 10]. This problem can be avoided by using the
objectives of the analysis to guide the selection of the spatial resolution. In the current
paper, since the objective is population-level malaria prediction, this is addressed by

1 This paper is an extended version of a previous short workshop paper [35] which presented preliminary
results.
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using MDL applied to the time series of malaria cases as a primary criterion in spatial
aggregation.

While spatial clustering has been extensively studied in epidemiology, most work
has focused on use of spatial scan statistics to perform geographical surveillance of
disease and to test whether a disease is randomly distributed over space, over time, or
over space and time. Kulldorf’s spatial scan statistic [13] is the most widely used
approach and has been implemented in the SatScan package [24]. SatScan moves a
scanning window of variable size across space and/or time, noting the number of
observed and expected observations inside the window at each space/time location. The
scanning window can be a circle or ellipse in space, an interval in time, or a cylinder in
space-time with circular or elliptical base designating the spatial area and the height
designating the time interval. For each location and size of the window, the number of
observed cases is counted and expected cases are calculated assuming an even distri-
bution of cases across the population. A likelihood ratio test is used to compare the
prevalence of disease transmission inside the window to that outside and identify areas
of higher than expected or lower than expected transmission. When an elliptic window
shape is used, there is an option to use a non-compactness penalty to favor more
compact clusters. This is to avoid generating long narrow ellipses.

Spatial scan statistics are commonly used to identify hotspots of disease transmission
[11, 12]. A hotspot is a geographical area with significantly more disease cases than
would be expected by chance. Hotspots are often used for prediction and targeting of
intervention since some studies have shown that they often tend to persist over time
[14]. Indeed, a cluster-randomized control trial of targeting hotspots for intervention
[15] achieved modest reductions inside the hotspots. But, a recent large study in sub-
Saharan Africa [16] has found that hotspots may not be temporally stable and may be
more difficult to identify at high transmission, bringing into question the value of
identifying hotspots as a strategy for targeted intervention.

There is a large body of work on malaria prediction using a variety of techniques
including various types of regression, ARIMA models, SIR-based models, and neural
networks [17]. Models are most commonly built with weekly or monthly temporal
resolution. Spatial resolutions include village, district, province, and catchment, with
district being the most common. But, only a limited amount of work has explored the
direct impact of spatial resolution on malaria prediction. Giardina et al. [18] assess the
effect of the spatial resolution of remotely sensed land cover and elevation on malaria
risk estimation. They investigate three resolutions: 1 km, 500 m, and 100 m and find
that finer resolution models tend to overestimate the number of infections.
Teklehaimanot et al. [19] use data on weekly confirmed malaria cases in ten districts
of Ethiopia as well as temperature and rainfall to produce weekly predictions. Districts
with similar climactic characteristics are grouped to reduce random error and produce
more reliable and precise estimates of weather effects.

Montero and Vilar [20] present a number of model-based, complexity-based, and
prediction-based time series clustering techniques implemented in R. Their model-
based approach fits time series with ARIMA models and measures the similarity
between the fitted models. The complexity-based approach determines similarity
between complexity measures of time series. Their approach is fundamentally different
from our work in that they treat the individual time series separately in fitting the
ARIMA models or computing complexity and follow a standard clustering approach.
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In our work, similarity is determined in terms of a model fitted to a merger of the time
series being considered for clustering. In addition, they do not consider reduction in
complexity as a clustering criterion. Other work on time series abstraction and cluster-
ing comes from the field of granular computing [21]. The work examines how to define
and operate with granulation (aggregation) and de-granulation (disaggregation) opera-
tors within the frameworks of fuzzy sets, interval analysis, and rough sets and how to
reason with granular data [22]. The work on time series analysis is largely concerned
with abstraction of high frequency data. For example, Maciel et al. [23] present a
possibilistic fuzzy modeling approach to prediction with interval time series in which
the time series over an interval of time is characterized by upper and lower bounds.

3 Algorithm

The objective of our clustering algorithm is to support targeted intervention, by
producing geographic regions that are physically compact and have time series of
disease incidence that can be well modeled so that it can be accurately predicted. As a
prelude to presenting our algorithm, we discuss two possible approaches to clustering
and explain why they are not suitable for solving this problem. Throughout the
remainder of the paper, the time series of cases in a cluster will be considered to be
the sum of the time series of cases of its constituent geographic regions.

As discussed, the most widely used approach to spatio-temporal clustering in epide-
miology uses Kulldorf’s spatial scan statistic [13], implemented in the SatScan package
[24]. SatScan examines total disease incidence in a spatial and/or temporal region.While
this approach can be of some help in prediction by indicating areas of higher than normal
(hotspots) or lower than normal (cold spots) disease incidence, it is too abstract and
coarse a measure for our purposes. SatScan can also be used to evaluate spatial variation
in temporal trends, but this is again too abstract a notion, examining only the overall rate
of increase or decrease of a time series over a period of time.We require an approach that
can characterize the predictability of a time series, which requires a finer grained
characterization of the time series. In addition, the SatScan approach is based on
measuring the difference between incidence inside and outside the cluster, while our
purposes need an approach that focuses on similarly within the cluster. An empirical
comparison of our approach with that of SatScan is presented in Sect. 6.

A more direct approach to producing geographic clusters with good time series
predictability is to cluster geographic regions when this produces time series of low
complexity. Three commonly used measures of time series complexity are LZ complexity
[25], approximate entropy [26], and Hurst exponent [27]. The LZ complexity measures
the number of changes in a time series and so gives a high complexity to time series that
have a regular pattern of change and a low value to time series with many constant values.
This is not a suitable measure to characterize predictability since time series with regular
patterns of change are typically easily modeled. The approximate entropy quantifies the
amount of regularity of fluctuations in a time series, and Hurst exponent is a measure of
the long-term memory of a time series. As with LZ complexity, they both indicate low
complexity of time series with many zero values and occasional non-zero values. They
also require that the time series span sufficient time to have repeating patterns, which may
not be the case with many data sets. Empirical investigation of these measures shows that
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they generally indicate low levels of complexity for individual village level time series
and a higher level of complexity for the time series representing larger geographic regions.
This is opposite to predictability, with predictive models tested generally performing
better for larger regions in our data.

Yet a third approach, and the one taken in this paper, is to more directly measure
predictability of the time series by fitting a model to it and to measure the parsimony
and goodness of fit of that model. The modeling approach should take into account
inherent temporal properties such as the variations specific to a particular time frame/
seasonality and the trend. The analysis of such properties is commonly carried out by
using the mixed modeling approaches from the family of auto-regressive moving
average models (ARIMA). ARIMA attempts to describe the movements in a stationary
time series as a function of autoregressive and moving average parameters. Auto-
regressive terms (AR) of the model consider the dependent relationship between an
observation and some number of lagged observations, integration (I) refers to the
process of differencing/subtracting an observation from an observation at the previous
time step in order to make the time series stationary, and the moving average (MA)
terms of the model refer to the dependency between an observation and a residual error
from a moving average model applied to lagged observations.

The transmissibility and seasonality aspects of malaria lead to the wide adoption of
ARIMA models in malaria prediction and studies have shown them to have higher
forecast accuracy than conventional linear models [28]. Moreover, ARIMA models are
reasonably simple and relatively stable even in the absence of detailed data, which
would make it difficult to calculate parameters required in building more complex
prediction models [29].

In characterizing a time series by a model, it is important to guarantee that the model
considers enough parameters to adequately model the underlying relationships among
variables in the data (sensitivity) while ensuring that the model is not overfitting the
data (specificity). In this respect, the performance evaluation measure should consider
of a goodness-of-fit term along with a penalty to control overfitting to provide a way to
balance sensitivity and specificity. Penalized-likelihood information theoretic criteria
such as AIC and BIC are widely used to estimate model parsimony and goodness-of-fit.
These criteria measure whether the model’s description of the observed data is achieved
in the simplest manner. AIC estimates the expected relative Kullback-Leibler (KL)
distance between the fitted likelihood function of the model and unknown true likeli-
hood function of the data, whereas BIC is an estimate of a function of the posterior
probability of a given model [30]. The AIC or BIC for a model can be represented in
the form [− 2logL + kp], where L is the likelihood function, p is the number of
parameters in the model, and k is 2 for AIC and log (n) for BIC. For both measures,
smaller values indicate better models. AIC or BIC can be computed easily once the
maximum likelihood estimators of the parameters of a model are determined. Since
ARIMA models fit well for highly regular univariate time series, finding the best fit
model and using its AIC or BIC value which accounts for fit and model complexity
works well to characterize time series predictability. We implement this measure using
the auto.arima function in R [31] by finding the best-fit ARIMA model in terms of
AICc or BIC and using its AIC or BIC value.

Since we wish to support users in selecting appropriate spatial clusters for prediction,
we use agglomerative hierarchical clustering so that the cluster membership does not
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change dramatically as wemove between clustering levels. The clustering algorithm uses
greedy search. It computes the distance between all pairs of regions, starting with the
smallest and clusters those with highest similarity. The two regions in the cluster are
removed from the set of candidate regions and the clustered region is added. The distance
between the new cluster and all other regions is then computed. The algorithm continues
until there is only one cluster, which forms the top level of the cluster hierarchy.

The distance between a pair of clusters is computed by using any distance function
to combine physical distance and reduction in either AIC or BIC. Each cluster is
associated with a time series of disease cases, and when two clusters are merged, their
time series are combined by summing them so that the new time series represents the
number of cases in the cluster region at each time point. The complexity of each time
series is computed by finding the best fit ARIMA model and computing its AIC or BIC
value. The reduction in time series complexity that results from clustering two regions
(C1 and C2) is computed by taking the difference between the complexity of the time
series for the cluster and the average complexity of the time series for the two regions
being merged: IC (C1 ∪ C2) − (IC (C1) + IC (C2))/2, where IC is the information
criterion AIC or BIC. The flow diagram of the clustering algorithm is shown in Fig. 1.

An example of the functioning of the algorithm is given in Fig. 2. For simplicity, we
leave physical distance out and work only with complexity of the time series.
Figure 2a–c shows the three village-level time series with their corresponding AIC
and BIC values. Figure 2d–f shows the three possible pairwise clusters that can be
formed and their corresponding AIC and BIC values as well as their reductions in AIC
and BIC. Since the cluster (V1 ∪ V2) results in the largest reduction in AIC of − 35.23,
when using AIC for clustering, this cluster would be chosen among the three. Figure 2g
shows the time series for the cluster formed by adding village V3 to the previous cluster
and the corresponding values for AIC, BIC, and reduction in AIC and BIC. It can be
seen from these values that this larger cluster results in yet a further improvement in
time series complexity as measured by AIC and BIC reduction.

4 Data

We demonstrate our approach with the problem of weekly malaria prediction in Tak
Province of Thailand, shown in the map in Fig. 3. Tak is in the northwest of the country
and has a long border with Myanmar. Tak comprises 333 villages, from among which
279 in which malaria is prevalent were selected for analysis. The villages left out of the
analysis are those with fewer than two cases in 2 years. All of these except 12 are
beyond longitude 99° east, i.e., the portion of Tak farthest from the Myanmar border.
The case data for our experiments consists of weekly microscopically confirmed
malaria cases obtained from Thailand’s national E-Malaria Information System [1].
The data covers each of the villages for the years 2012 and 2013 (99 weeks), providing
a total of 27,621 weekly village reports with 23,201 total cases (Plasmodium
falciparum, Plasmodium vivax) over all reports. The number of cases per village per
week ranges from 0 to 97 with a mean of 0.84. Predictive models for malaria typically
make use of environmental factors as determinants of mosquito vector density and
infectivity. So, in addition to the case data, we make use of land surface temperature
(LST) and slope in constructing the predictive models. Previous studies [32, 33] found
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Fig. 1 Flow diagram of the
clustering algorithm
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LST to be the most influential temporal environmental variable for this data set and
slope to be among the most influential non-temporal environmental variables. LST is

(a) Time series of village V1

(b) Time series of village V2

AIC:-84.77, BIC:-74.55

AIC:-91.49, BIC:-83.86

(c)Time series of village V3

AIC:-101.73, BIC:-96. 64

Fig. 2 Village and cluster level time series
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(d)Time series of the cluster with villages V1 and V2

AIC:-123.36, BIC:-115.69

Reduction in AIC: -35.23

Reduction in BIC:-36.49

(e) Time series of the cluster with villages V1 and V3

(f) Time series of the cluster with village V2 and V3

AIC:-105.92, BIC:-95.70

Reduction in AIC: -12.67

Reduction in BIC:-10.01

AIC:-118.38, BIC:-110.75

Reduction in AIC: -21.77

Reduction in BIC:-20.5

Fig. 2 (continued)
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taken from monthly satellite data at 5 km resolution from MOD11C3, and slope is
calculated as the average in a 1 km buffer around each village, computed from
elevation data.

5 Experimental Setup

Five different cluster hierarchies were generated using five similarity measures: phys-
ical distance alone as a baseline, AIC and BIC alone, and each of AIC and BIC
combined with physical distance with weight 5. This weight was empirically deter-
mined to yield compact clusters and retain good influence of the information criterion.
Euclidean distance was used for the similarity measure.

The impact of clustering on prediction accuracy was evaluated using 10-fold cross
validation. A cluster hierarchy was generated using the training data for each fold, and a
predictive model was generated for each cluster in the hierarchy. The same hierarchy
was then applied to the test data and predictive models were tested on the clusters there.
For malaria prediction, we selected three of the most commonly used techniques: linear
regression, ARIMA, and ARIMAX. The predictor variables for ARIMA and ARIMAX
were the previous week’s cases and LST lagged by 5 weeks. For linear regression,
slope was additionally used. It could not be used for the ARIMA and ARIMAXmodels
since it is constant over time. For each predictive model, we evaluated the effect of
clustering on short-term (1-week) and long-term (4-week) prediction accuracy. The
horizon of 1 week was chosen as representative of short-term prediction because this is
the shortest horizon supported by the temporal granularity of the data. The horizon of
4 weeks was chosen to represent longer range prediction since a previous study of
malaria prediction in Tha Song Yang District of Tak Province showed a marked
difference in accuracy between models used for short-term predictions of 1–3 weeks
and the same types of models used for longer-term predictions of 4–6 weeks [32]. Since
the incidence values generally increase with cluster size, to compare prediction accu-
racy of clusters of varying size, we need an evaluation metric that is independent of

(g) Time series of the cluster with village V1, V2 and V3

AIC:-134.67, BIC:-127. 01

Reduction in AIC: -22.13

Reduction in BIC:-20.84

Fig. 2 (continued)
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magnitude. We thus use the Symmetric Mean Absolute Percentage Error (SMAPE)
[34] which has a range of 0 to 100 (Tables 4, 5, 6, and 7).

6 Results and Discussion

Initial experimentation showed much higher prediction accuracy in terms of SMAPE at
the province level than at the individual village level for all three prediction models. We
thus expect the prediction accuracy to roughly increase as a function of cluster size.
Figure 4a, b shows the cumulative moving average of SMAPE as a function of cluster
size for 1-week and 4-week ARIMA predictions for clusters created using AIC-based
and BIC-based clustering, respectively. They show SMAPE reduction using AIC/BIC
and using physical distance with weighted AIC/BIC against physical distance alone as
a baseline. The graphs start with individual villages and go up to a cluster size of 30
since they are quite flat for the remaining portion. Each point on the graph shows the
average SMAPE for all clusters of that size or smaller. Note that the curves for 1-week
and 4-week prediction are indistinguishable because they are almost identical.
Figure 4a shows an initial rapid reduction in SMAPE for all three similarity measures.
But, while the curve for physical distance alone begins to flatten already at cluster size
4, those for the AIC-based similarity measures continue to decline, with the two AIC-
based similarity measures outperforming physical distance alone. Overall, AIC alone

Fig. 3 Map showing the study area of Tak Province generated with ArcGIS software
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(a) Using AIC as the measure of the complexity of the time series

(b) Using BIC as the measure of the complexity of the time series

Fig. 4 Cumulative moving average of SMAPE for 1- and 4-week ARIMA predictions using the AIC- and
BIC-based cluster results compared to physical distance alone
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has the best performance, followed by AIC with physical distance. The exact values for
the points in the graph are shown in Table 1. The last row in the table represents the
average SMAPE for all clusters generated by the clustering algorithm, i.e., for the entire

Table 1 Cumulative moving average of SMAPE for 1- and 4-week ARIMA predictions using AIC alone,
AIC with physical distance, and physical distance alone. Repeated entries indicate that there were no clusters
of that size, and so, the cumulative average value remains unchanged

Physical distance only Physical distance with AIC AI C only

Cluster size Cum_ moving avg. Cum_ moving avg. Cum_ moving avg.

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

1 89.0 88.9 89.0 88.9 89.0 88.9

2 77.5 77.5 76.6 77.1 76.6 76.2

3 74.1 75.5 71.6 73.6 71.6 71.1

4 72.0 72.7 68.7 71.5 68.7 68.1

5 70.0 71.9 66.2 69.5 66.2 65.6

6 68.5 70.4 64.2 68.0 64.2 63.5

7 67.4 69.6 62.7 66.8 62.7 62.1

8 66.4 69.1 61.5 65.8 61.5 60.9

9 65.6 68.5 60.5 65.1 60.5 59.8

10 64.9 68.3 59.7 64.3 59.7 59.0

11 64.3 67.8 59.0 63.7 59.0 58.3

12 63.7 67.2 58.4 63.1 58.4 57.6

13 63.2 66.8 57.9 62.7 57.9 57.1

14 62.9 66.0 57.4 62.3 57.4 56.7

15 62.5 65.8 57.0 61.9 57.0 56.3

16 62.1 65.8 56.6 61.5 56.6 55.9

17 61.8 65.4 56.3 61.3 56.3 55.5

18 61.6 65.2 56.0 61.0 56.0 55.2

19 61.3 65.0 55.6 60.7 55.6 54.9

20 61.1 64.7 55.4 60.5 55.4 54.7

21 60.9 64.5 55.2 60.3 55.2 54.5

22 60.7 64.4 55.0 60.1 55.0 54.3

23 60.6 64.4 54.9 60.0 54.9 54.1

24 60.3 64.4 54.7 59.7 54.7 54.0

25 60.2 64.4 54.6 59.6 54.6 53.9

26 60.1 64.4 54.5 59.5 54.5 53.7

27 60.0 64.4 54.4 59.3 54.4 53.7

28 64.8 64.3 59.8 59.2 54.3 53.5

29 64.8 64.3 597 59.1 54.2 53.4

30 64.7 64.2 59.6 59.0 54.1 53.4

... ... ... ... .... ... ...

279 62.0 61.5 55.5 54.8 50.6 49.9
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cluster hierarchy. It shows that AIC with physical distance outperforms physical
distance by 10.5% and AIC alone outperforms it by 18.4% over all clusters. The results
for BIC-based clustering shown in Fig. 4b and Table 2 are similar.

Table 2 Cumulative moving average of SMAPE for 1- and 4-week ARIMA predictions using BIC alone, BIC
with physical distance, and physical distance alone. Repeated entries indicate that there were no clusters of that
size, and so, the cumulative average value remains unchanged

Physical distance only Physical distance with BIC BIC only

Cluster Size Cum. moving avg. Cum. moving avg. Cum. moving avg.

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

1 89.0 88.9 89.0 88.9 89.0 88.9

2 78.0 77.5 77.2 76.8 75.4 74.9

3 76.0 75.5 74.2 73.7 71.3 70.8

4 73.1 72.7 71.8 71.3 68.5 67.9

5 72.4 71.9 69.8 69.3 66.2 65.6

6 70.9 70.4 68.3 67.7 64.3 63.7

7 70.1 69.6 66.8 66.2 62.4 61.8

8 69.6 69.1 65.9 65.3 61.2 60.6

9 69.0 68.5 65.0 64.4 60.1 59.4

10 68.8 68.3 64.3 63.7 59.3 58.6

11 68.3 67.8 63.7 63.2 58.6 57.9

12 67.7 67.2. 63.1 62.6 57.9 57.2

13 67.3 66.8 62.7 62.1 57.2 56.5

14 66.5 66.0 62.4 61.8 56.7 56.0

15 66.3 65.8 62.2 61.6 56.2 55.5

16 66.3 65.8 61.8 61.3 55.8 55.1

17 65.9 65.4 61.6 61.0 55.5 54.8

18 65.7 65.2 61.3 60.7 55.2 54.4

19 65.5 65.0 61.1 60.5 54.9 54.2

20 65.2 64.7 60.9 60.3 54.7 53.9

21 65.0 64.5 60.7 60.1 54.4 53.6

22 64.9 64.4 60.5 59.9 54.1 53.4

23 64.9 64.4 60.5 59.9 53.9 53.1

24 64.9 64A 60.3 59.7 53.8 53.0

25 64.9 64A 60.2 59.6 53.7 52.9

26 64.9 64.4 60.1 59.5 53.5 52.8

27 64.9 64.4 59.9 59.3 53.4 52.7

28 64.8 64.3 59.8 59.2 53.3 52.6

29 64.8 64.3 59.7 59.1 53.2 52.5

30 64.7 64.2 59.6 59.0 53.1 52.4

... ... ... ... ... ... ...

279 62.0 61.5 55.2 54.5 49.6 48.9
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Figure 5a, b shows the cumulative moving average of SMAPE for AIC- and
BIC-based clustering versus physical distance alone for ARIMAX predictions,
while Fig. 6a, b shows the same graphs for linear regression prediction. The
results are similar to those for ARIMA prediction except that in the case of
linear regression, 1-week prediction benefits from the AIC- and BIC-based
clustering slightly more than 4-week prediction. The tables showing exact
values appear in the appendix. The fact that we obtain similar benefits from
the clustering with three different prediction models suggests that our clustering
technique is an effective general means of improving prediction.

We also examined the average SMAPE values, which contain significantly
more noise than the cumulative moving average values. We compared the average
SMAPE for each cluster size between all pairs of the similarity measures for AIC-
based clustering and BIC-based clustering for the three prediction models. While
the statistical significance differs among the sets, the results are consistent with the
cumulative moving average graphs and are consistently statistically significant for
cluster sizes 3, 4, 5, 7–10, 19, 52, 53, 66, and 160 for both 1-week and 4-week
predictions (two-tailed paired t test p < 0.05). For 4-week predictions for AIC vs
physical distance, the t test statistic cannot be computed due to zero standard
deviation.

In addition to accurate prediction, targeted intervention requires clusters to be
spatially compact. Figure 7a shows the cumulative moving average of intra-
cluster distance as a function of cluster size for clusters based on AIC alone
and AIC with physical distance against a baseline of physical distance alone.
Not surprisingly, use of physical distance alone yields the tightest clusters. Use
of AIC alone results in rather high intra-cluster distances, while AIC with
weighted physical distance results in intra-cluster distances very close to those
of physical distance alone. The results for BIC-based clustering shown in Fig.
7b are similar.

Putting together the various results, we can see that the average prediction accuracy
of AIC/BIC with weighted physical distance is significantly better than that of physical
distance alone, and the intra-cluster distance is almost as good as that of physical
distance, while the intra-cluster distance of AIC and BIC alone is significantly worse.
This makes AIC/BIC with physical distance the clear best choice of similarity
measures.

Since SatScan is the most commonly used technique for discovering clusters
for malaria prediction, we compare the effectiveness of our clustering algorithm
against SatScan in terms of effectiveness of the clusters in improving prediction
accuracy. Running SatScan on our data set produces six clusters of villages
identified as hotspots, with clusters of sizes 3, 4, 5, 8, 9, and 13. We compare
the SMAPE of 1-week ARIMA predictions for these clusters with that of clusters
of the same size when using AIC + physical distance (weight 5). The results are
shown in Table 3. Our algorithm generates several clusters of sizes 3, 4, 5, 8, 9,
and 13, so we show the range of SMAPE for all these clusters as well as the
mean. Since SatScan generates only best clusters in terms of its optimization
criterion, it is most reasonable to compare the minimum SMAPE for our
algorithm’s clusters of the same size. The prediction accuracy of our algorithm’s
clusters is better for clusters of sizes 3, 8, and 13. The SMAPE values for cluster
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(a) Using AIC as the measure of the complexity of the time series

(b) Using BIC as the measure of the complexity of the time series

Fig. 5 Cumulative moving average of SMAPE for 1- and 4-week ARIMAX predictions using the AIC- and
BIC-based cluster results compared to physical distance alone
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(a) Using AIC as the measure of the complexity of the time series

(b) Using BIC as the measure of the complexity of the time series

Fig. 6 Cumulative moving average of SMAPE for 1- and 4-week linear regression predictions using the AIC-
and BIC-based cluster results compared to physical distance alone
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size 4 are similar, while those for the SatScan clusters are better for cluster sizes
5 and 9. So, while SatScan discovers some clusters that result in better predictive
accuracy than those of the same size discovered by our algorithm, our algorithm
also discovers some that perform better than the SatScan clusters. It should be
emphasized that SatScan is discovering only a few clusters, so it is not a
technique for improving predictability for an entire geographic region. Thus,

(a) AIC-based

(b) BIC-based
Fig. 7 Cumulative moving average of intra-cluster distance as a function of cluster size for AIC-based
clustering (a) and BIC-based clustering (b) against physical distance alone as a baseline. Intra-cluster distance
is taken as the maximum distance between points in the cluster
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the two algorithms should not be viewed as competing but rather as
complementary.

7 Conclusion

This paper has introduced an approach to spatial hierarchical clustering that
finds compact geographic regions with good time series predictability. This is
done by clustering based on physical distance and reduction in time series
complexity as measured by AIC and BIC. Using malaria data from northern
Thailand, we have shown that use of the technique can yield rapid returns,
greatly improving prediction accuracy with only a small amount of clustering.
Furthermore, use of AIC and BIC reduction as clustering criteria provides
significantly better results than use of physical distance alone for all tested
prediction models over a range of prediction horizons. We plan to apply the
technique to malaria prediction in other regions to further verify our results as
well as to apply the technique to prediction of other diseases such as dengue.

The predictive models in this study used previous malaria incidence, land surface
temperature, and slope to predict future incidence. In practice, predictive models
often also make use of a wide variety of environmental variables [17, 32]. A next
step in this work is to verify the value of our clustering technique with more
complex prediction models as well as to investigate its applicability to prediction of
other diseases such as dengue.
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Table 3 Comparison of SMAPE for hotspot clusters formed with SatScan vs clusters of same size formed
using AIC + physical distance (weight 5) for 1 week ARIMA predictions

SatScan AIC + physical distance (weight 5)

Cluster size SMAPE Min SMAPE Max SMAPE Mean SMAPE

3 85.76 59.0 67.7 65.1

4 54.23 55.3 64.6 59.7

5 15.82 39.9 66.7 50.5

8 41.36 28.9 54.2 41.1

9 17.64 31.2 51.5 41.0

13 74.5 12.4 48.1 32.4
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Appendix A

Table 4 Cumulative moving average of SMAPE for 1- and 4-week ARIMAX predictions using AIC alone,
AIC with physical distance, and physical distance alone. Repeated entries indicate that there were no clusters
of that size, and so, the cumulative average value remains unchanged

Physical distance only Physical distance with AIC AIC only

Cluster size Cum. moving avg. Cum. moving avg. Cum. moving avg_

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

1 87.7 87.7 87.7 87.7 87.7 87.7

2 79.8 79.8 79.2 79.2 77.4 77.4

3 78.3 78.3 76.7 76.7 73.8 73.8

4 75.7 75.7 74.5 74.5 71.1 71.1

5 75.1 75.1 72.7 72.7 69.0 69.0

6 73.7 73.7 71.3 71.3 67.3 67.3

7 72.9 72.9 69.9 69..9 65.7 65.7

8 72.5 72.5 69.1 69.1 64.7 64.7

9 72.0 72.0 68.3 68.3 63.7 63.7

10 71.8 71.8 67.8 67.8 63.1 63.1

11 71.3 71.3 67.3 67.3 62.4 62.4

12 70.7 70.7 66.8 66.8 61.9 61.9

13 70.5 70.5 66.4 66.4 61.3 61.3

14 69.9 69.9 66.2 66.2 60.9 60..9

15 64.7 69.7 66.0 66.0 60.4 60.4

16 69.7 69.7 65.7 65.7 60.1 60.1

17 69.5 69.5 65.5 65.5 59.9 59.9

18 69.3 69.7 65.3 65.3 59.6 59.6

19 69.2 69.2 65.1 65.1 59.4 59.4

20 68.9 68.9 64.9 64.9 59.1 59.1

21 68.7 68.7 64.8 64.8 58.9 58.9

22 68.6 68.6 64.7 64.7 58.7 58.7

23 68.6 68.6 64.6 64.6 585 58.5

24 68.6 68.6 64.5 64.5 58.4 58.4

25 68.6 68.6 64.5 64.5 58.3 58.3

26 68.6 68.6 64.4 64.4 58.2 58.2

27 68.6 68.6 64.3 64.3 58.1 58.1

28 68.5 68.5 64.2 64.2 58.0 58.0

29 68.5 68.5 64.1 64.1 57.9 57.9

30 68.5 615 64.0 64.0 57.8 57.8

... ... ... ... ... ... ...

279 66.3 66.3 60.6 60.6 54.4 54.4

442 Journal of Healthcare Informatics Research (2018) 2:423–447



Table 5 Cumulative moving average of SMAPE for 1- and 4-week linear regression predictions using AIC
alone, AIC with physical distance, and physical distance alone. Repeated entries indicate that there were no
clusters of that size, and so, the cumulative average value remains unchanged

Physical distance only Physical distance with AIC AIC only

Cluster size Cum. moving avg. Cum. moving avg. Cum. moving avg.

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

1 88.8 89.8 88.8 89.8 88.8 89.8

2 80.4 81.0 80.6 81.8 79.7 81.5

3 78.7 76.7 77.6 79.0 75.1 79.9

4 76.4 74.2 75.7 77.3 72.4 78.0

5 75.8 71.9 74.0 75.6 70.0 77.3

6 74.5 70.1 72.5 74.3 68.1 76.2

7 73.8 68.8 71.5 73.3 66.8 75.6

8 73.4 67.8 70.5 72.4 65.6 75.1

9 72.9 66.8 69.8 71.8 64.6 74.6

10 72.7 66.2 69.2 71.2 63.9 74.4

11 72.2 65.6 68.6 70.7 63.2 74.0

12 71.7 65.0 68.0 70.2 62.6 73.4

13 71.3 64.5 67.6 69.8 62.2 73.1

14 70.6 64.1 67.3 69.5 61.7 72.5

15 70.4 63.8 67.0 69.2 61.3 72.3

16 70.4 63.4 66.6 68.9 60.9 72.3

17 70.1 63.1 66.4 68.7 60.6 72.0

18 69.9 62.8 66.1 68.5 60.3 71.9

19 69.7 62.4 65.9 68.3 59.9 71.7

20 69.5 62.3 65.7 68.1 59.8 71.4

21 69.3 62.1 65.5 67.9 59.6 71.2

22 69.1 61.9 65.4 67.8 59.4 71.1

23 69.1 61.8 65.3 67.7 59.2 71.1

24 69.1 61.3 65.1 67.6 59.1 71.1

25 69.1 61.6 65.0 67.5 59.0 71.1

26 69.1 61.4 64.8 67.4 58.9 71.1

27 69.1 64.3 64.7 67.3 58.8 71.1

28 69.0 61.2 64.6 67.2 58.6 71.0

29 69.0 61.1 64.5 67.1 58.5 71.0

30 69.0 61.1 64.4 67.0 58.5 71.0

... ... ... ... ... ... ...

279 66.4 68.7 60.3 63.2 54.9 57.6
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Table 6 Cumulative moving average of SMAPE for 1- and 4-week ARIMAX predictions using BIC alone,
BIC with physical distance, and physical distance alone. Repeated entries indicate that there were no clusters
of that size, and so, the cumulative average value remains unchanged

Physical distance only Physical distance with BIC BIC only

Cluster size Cum. moving avg. Cum. moving avg. Cum. moving avg.

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

1 87.7 87.7 87.7 87.7 87.7 87.7

2 79.8 79.8 79.2 79.2 77.4 77.4

3 78.3 78.3 76.7 76.7 73.8 73.8

4 75.7 75.7 74.5 74.5 71.1 71.1

5 75.1 75.1 72.7 72.7 69.0 69.0

6 73.7 7307 71.3 71.3 67.3 67.3

7 72.9 72.9 69.9 69.9 65.7 65.7

8 72.5 72.5 69.1 69.1 64.7 64.7

9 72.0 72.0 68.3 68.3 63.7 63.7

10 71.8 71.8 67.8 67.8 63.1 63.1

11 71.3 7103 67.3 67.3 62.4 62.4

12 70.7 70.7 66.8 66.8 61.9 61.9

13 70.5 70.5 66.4 66.4 61.3 61.3

14 69.9 69.9 66.2 66.2 60.9 60.9

15 69.7 69.7 66.0 66.0 60.4 60.4

16 69.7 69.7 65.7 65.7 60.1 60.1

17 69.5 69.5 65.5 65.5 59.9 59.9

18 69.3 69.3 65.3 65.3 59.6 59.6

19 69.2 69.2 65.1 65.1 59.4 59.4

20 68.9 68.9 64.9 64.9 59.1 59.1

21 68.7 68.7 64.8 64.8 58.9 58.9

22 68.6 68.6 64.7 64.7 58.7 58.7

23 68.6 68.6 64.6 64.6 58.5 58.5

24 68.6 68.6 64.5 64.5 58.4 58.4

25 68.6 68.6 64.5 64.5 58.3 58.3

26 68.6 68.6 64.4 64.4 58.2 58.2

27 68.6 68.6 64.3 64.3 58.1 58.1

28 68.5 68.5 64.2 64.2 58.0 58.0

29 68.5 68.5 64.1 64.1 57.9 57.9

30 68.5 68.5 64.0 64.0 57.8 57.8

... ... ... ... ... ... ...

279 66.3 66.3 60.6 60.6 54.4 54.4
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Table 7 Cumulative moving average of SMAPE for 1- and 4-week linear regression predictions using BIC
alone, BIC with physical distance, and physical distance alone. Repeated entries indicate that there were no
clusters of that size, and so, the cumulative average value remains unchanged

Physical distance only Physical distance with BIC BIC only

Cluster size Cum. moving avg. Cum. moving avg. Cum. moving avg.

1 week 4 weeks 1 week 4 weeks 1 week 4 weeks

1 87.7 87.7 87.7 87.7 87.7 87.7

2 79.8 79.8 79.2 79.2 77.4 77.4

3 78.3 78.3 76.7 76.7 73.8 73.8

4 75.7 75.7 74.5 74.5 71.1 71.1

3 75.1 75.1 72.7 72.7 69.0 69.0

6 73.7 73.7 71.3 71.3 67.3 67.3

7 72.9 72.9 69.9 69.9 65.7 65.7

8 72.5 72.5 69.1 69.1 64.7 64.7

9 72.0 72.0 68.3 68.3 63.7 63.7

10 71.8 71.8 67.8 67.8 63.1 63.1

11 71.3 71.3 67.3 67.3 62.4 62.4

12 70.7 70.7 66.8 66.8 61.9 61.9

13 70.5 70.5 66.4 66.4 61.3 61.3

14 69.9 69.9 66.2 66.2 60.9 60.9

15 69.7 69.7 66.0 66.0 60.4 60.4

16 69.7 69.7 65.7 65.7 60.1 60.1

17 69.5 69.5 65.5 65.5 59.9 59.9

18 69.3 69.3 65.3 65.3 59.6 59.6

19 69.2 69.2 65.1 65.1 59.4 59.4

20 68.9 68.9 64.9 64.9 59.1 59.1

21 68.7 68.7 64.8 64.8 58.9 58.9

22 68.6 68.6 64.7 64.7 58.7 58.7

23 68.6 68.6 64.6 64.6 58.5 58.5

24 68.6 68.6 64.5 64.5 58.4 58.4

25 68.6 68.6 64.5 64.5 58.3 58.3

26 68.6 68.6 64.4 64.4 58.2 58.2

27 68.6 68.6 64.3 64.3 58.1 58.1

28 68.5 68.5 64.2 64.2 58.0 58.0

29 68.5 68.5 64.1 64.1 57.9 57.9

30 68.5 68.5 64.0 64.0 57.8 57.8

... ... ... ... ... ... ...

279 66.3 66.3 60.6 60.6 54.4 54.4
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