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Abstract
As more data is generated from medical attendances and as Artificial Neural Net-
works gain momentum in research and industry, computer-aided medical prognosis
has become a promising technology. A common approach to perform automated
prognoses relies on textual clinical notes extracted from Electronic Health Records
(EHRs). Data from EHRs are fed to neural networks that produce a set with the most
probable medical problems to which a patient is subject in her/his clinical future,
including clinical conditions, mortality, and readmission. Following this research
line, we introduce a methodology that takes advantage of the unstructured text found
in clinical notes by applying preprocessing, concepts extraction, and fine-tuned neu-
ral networks to predict the most probable medical problems to follow in a patient’s
clinical trajectory. Different from former works that focus on word embeddings and
raw sets of extracted concepts, we generate a refined set of Unified Medical Lan-
guage System (UMLS) concepts by applying a similarity threshold filter and a list of
acceptable concept types. In our prediction experiments, our method demonstrated
AUC-ROC performance of 0.91 for diagnosis codes, 0.93 for mortality, and 0.72 for
readmission, determining an efficacy that rivals state-of-the-art works. Our findings
contribute to the development of automated prognosis systems in hospitals where text
is the main source of clinical history.
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1 Introduction

The use of Electronic Health Records (EHRs) [1] to register the patients’ clini-
cal history has increased in medical systems all over the world. EHRs carry many
kinds of information including diagnosis, procedures, symptoms, exams, and textual
notes written by various professionals involved in the healthcare activity. Such data
describes the clinical trajectory of a given patient, that is, her/his sequence of clin-
ical events (admissions) along time, also known as longitudinal medical data [2].
Many works have explored these different kinds of information, but since EHRs are
complex, there is room for further investigation. At the same time, the last decade
was a turning point for methods based on Artificial Neural Networks whose appli-
cability remarkably advanced with the advent of more processing power, improved
algorithms, large data availability, and powerful programming frameworks, which
led to the set of techniques widely known as Deep Learning [3]. While supervised
Deep Learning leverages the use of data features, such as recurrent combinations of
diagnoses or procedures associated with a specific disease, it has become an efficient
approach in tasks related to clinical prediction [4].

A promising way of exploring the latent information that lies within EHRs is to
use free-text clinical notes [5] written by healthcare professionals. This kind of infor-
mation is more challenging than the structured information found in EHRs, like those
based on standard diagnosis codes: free text is unstructured and highly granular; it
carries ambiguities, redundancies, and non-obvious semantics; a set of impreciseness
that does not favor computational approaches. The length of clinical notes varies —
they can be very long or very short, they can follow a standard structure or be in
the form of informal snippets; they can have a number of common sections or result
from erratic writing. Furthermore, it is noisy since written text may contain typos and
grammatical errors. Yet, previous works have exploited the use of free text in tasks
such as predicting the patients’ mortality [6], and readmission [7]. In a similar line
of investigation, we use Machine Learning techniques to predict facts related to the
patients’ clinical future, including the most probable diagnosis codes, the chances of
mortality, and the probability of readmission based on what was annotated in her/his
EHR. We tackle the issues of free-text clinical notes by using Natural Language
Processing techniques coupled with Deep Learning pattern-recognition capabilities.

Given a sequence of hospital admissions each one comprised of a set of struc-
tured diagnosis codes, existing works have proposed computer-aided systems that
are able to predict the most probable clinical conditions that a patient is subject to
in her/his future. Such systems have achieved good results in terms of anticipating
the conditions of patients — refer to Section 3; the drawback, though, is that many
hospital systems do not rely on well-curated coding systems, but rather on the free
text generated by professionals. This gap asks for computer-aided systems able to
digest hundreds, even thousands, of lines of text. This inference has straight applica-
tions including preventive medicine, facilitated learning of years of patient history,
confirmatory diagnosis, and clinical recommendation.

More specifically, our goal is to use free text to predict the clinical trajectory of
a patient, that is, her/his future conditions which could occur following her/his last
admission. We work with three modalities of prediction: diagnosis codes prediction,
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mortality prediction, and readmission prediction. We describe a three-step method-
ology: (i) we employ Natural Language Processing techniques to preprocess a large
set of real-world clinical notes, making them more adequate for a systematic extrac-
tion of concepts — explained in Section 4.3; (ii) we extract medical concepts from
the notes by using the Unified Medical Language System (UMLS) [8] — details
presented in Section 4.4; and (iii) we use the extracted clinical concepts to feed a
Neural Network architecture whose output is a set of probabilities indicating the
most likely clinical conditions that a given patient will pass through — presented in
Section 4.5. We achieve results that compare to the state of the art with respect to met-
ric Area Under the Receiver Operating Characteristic Curve (AUC-ROC) concerning
the prediction of diagnosis codes, mortality chances, and readmission likelihood, as
we discuss in Sections 3 and 5. Our results demonstrate the feasibility of computer-
aided prognosis based on textual notes reaching prediction capabilities that, arguably,
approach the needs of real-world applications. At the same time, we elucidate the
required steps to use the notes not only for prediction, but for medical-based Machine
Learning in general with insights into why our protocol works.

We summarize our contributions as follows:

– Method: we introduce a methodology that departs from the preprocessing of
clinical notes, evolving to the use of the Unified Medical Language System to
transform complex textual snippets into structured sets of encoded concepts —
we advance in comparison to the state of the art by using a more elaborated NLP
process able to capture a refined set of medical concepts;

– Broad experimentation: by using a real-world dataset, we experiment on dif-
ferent concept-extraction settings and neural-network architectures discussing
the traits that favored our results — we compare to previous works tracing
explanations and suggestions for future work;

– Principles: we provide background and formalisms that could assist future researchers
in improving data representation based on clinical notes for computer-aided
prognosis — for our allegations, we discuss learned lessons about what drove
our decisions, raising hypotheses worthy to follow in future works.

2 Background

We consider a sequence of admissions (or trajectory) of a patient to a hospital, as
stored in her/his EHR. From a structural point of view, the patients’ trajectories
refer to sequences of chronologically ordered admissions. Each admission consists
of information such as medications, diagnoses, procedures, the three of which repre-
sented by means of standard coding systems (such as the International Classification
of Diseases (ICD) [9]); they come along with clinical notes that explain or extend
the concepts provided in a coded format. In this work, given the clinical notes (text)
found in a patient’s trajectory, the goal is to predict what are the most probable
clinical conditions in the future, as illustrated in Fig. 1.
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Fig. 1 Illustration of the clinical data prediction problem. Given a set of hospital admissions (Electronic
Health Records), each one composed of admission date, death date, ICD-9 codes and textual clinical notes,
we use neural network techniques to predict the patient’s clinical conditions including diagnosis, mortality,
and readmission

2.1 Clinical Notes Representation

To go beyond the traditional Bag-of-Words approach [10], we propose to build a
conceptual representation of the patients’ trajectories. The representation is built
by annotating the clinical textual notes with medical entities obtained from the
knowledge base called Unified Medical Language System (UMLS)[8]. UMLS is a
Metathesaurus maintained by the US National Library of Medicine; it contains infor-
mation about health-related concepts, their different names, and the relationships
among them. UMLS was created in 1986 and is organized as a broad compendium
of many controlled vocabularies in the biomedical sciences; it also comprises a set
of tools whose main purpose is to promote the creation of effective and interoper-
able biomedical information systems and services, including EHRs [11]. By means
of automatic labeling tools and UMLS, a given medical sentence, like the ones
found in the clinical annotations, can be associated with canonical medical concepts
previously cataloged in the Metathesaurus. Each concept, in turn, is systemically
associated with a Concept Unique Identifier (CUI) [12]. For instance, the concept
“headache”, whose CUI is C0018681, is related to the strings “headache”, “cranial
pain”, and many others that already appear in the medical literature and in the clinical
practice. In addition, each concept has a type to indicate its role; the type is encoded
as a Type Unique Identifier (TUI). In the case of the concept headache, for example,
the type is “Sign or Symptom”, code T 184.

Given a medical textual sentence, software tools based on UMLS and on string-
matching algorithms — such as MetaMap or QuickUMLS (our choice) — can
retrieve a set of CUIs, each one categorized as a specific TUI. This possibility
addresses the problem of using unstructured medical text in computing systems. By
converting the notes of a patient’s hospital admission to sets of codes, the information
becomes discretely numerical making it ideal for use by Machine Learning methods.
In our work, given a corpus of free textual notes originated from a database of EHRs
related to a number of patients’ admissions, the set union of all the corresponding
CUIs produces an ordered set C with n = |C| elements. From this set, we are able
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to represent one given admission as a binary vector of length |C|, in which the i-th
entry has value 1 if the i-th CUI is present in the textual note, or 0 otherwise.

Formally, let C be the set of all the detected CUI codes. Each admission is repre-
sented as a one-hot encoding vector of size n = |C|. That is, by having ci as the ith

element of the vector, we have:

∀i ∈ [[0; n − 1]], ci =
{

1 if the i-th CUI code is found in the textual note

0 otherwise
(1)

As illustrated in Fig. 2.

2.2 Diagnoses Representation

The International Classification of Diseases (ICD) is a coding system used by medi-
cal institutions; it is held by the World Health Organization. Although ICD is highly
structured and precise, its 10th version, for instance, comprises over 70,000 codes,
which poses challenges for statistical and computing purposes — many times the
encoded information is not registered to reflect the actual details, being specific just
as much as to maximize reimbursement purposes; in other situations, a specific code
might carry details way too specific for an analytical purpose; not to mention the
numerical issues that arise from such a large cardinality. For Machine Learning, the
problem comes from the fact that the statistical distribution of the codes’ usage might
be sparse or imbalanced, which does not favor a robust learning. As these problems
are recurrent, they motivated the creation of initiative Clinical Classification Soft-
ware (CCS) [13], which maps the ICD codes to a less granular set. If we take breast
cancer as an example, there are more than a hundred different ICD-9 codes referring
to the several manifestations of this disease, each one with just a few different details;
on the contrary, there is only one CCS code to describe it. As a result, the ICD-9 stan-
dard, originally with nearly 15,000 codes is mapped to only 283 unique CCS codes.
Despite the loss of details, the diagnosis information provided by the CCS standard
has been used with good results in several works [14–16].

Fig. 2 Hot vector CUI-based representation of the textual notes found in an EHR

478 Journal of Healthcare Informatics Research  (2021) 5:474–496



3 RelatedWorks

Previous works have demonstrated efficacy in using free-text clinical notes to per-
form Machine Learning tasks. Sushil et al. [17] created unsupervised dense patient
representations from clinical notes over dataset MIMIC-III [18]. They focus on
different techniques to learn dense patient representations using only textual data,
exploring the usage of two neural representation-learning architectures — a Stacked
Denoising Autoencoder (SDAE), and the paragraph vector architecture doc2vec.
They also employ two independent representations; the first one is based on the
doc2vec architecture to get an embedding dense vector; the other one uses the UMLS
concept recognizer CLAMP toolkit [19], which maps a given note to a set of UMLS
CUI codes (refer to Section 2.1). Next, they transferred the representations from the
complete patient space to different supervised tasks with the aim to generalize on the
tasks for which they had limited labeled data. By using either one of the represen-
tations, or the concatenation of the two, the authors managed to perform four tasks:
mortality prediction, primary diagnostic, procedural category, and gender classifica-
tion. They did so by using a simple fully connected architecture. The work of Sushil et
al. provides valuable experimentation on the usage of different combinations of dense
and sparse data representations to which we compare and discuss demonstrating
superior results with respect to mortality prediction, and primary diagnostic.

Grnarova et al. [6] use a document embedding layer to encode the clinical notes,
obtaining a vector that is semantically machine-readable. Their goal is, given a patient
record, to predict the mortality probability in three scenarios: (1) during the hospital
stay, (2) within 30 days after discharge, or, (3) within 1 year after discharge. They
use a two-layer convolutional neural network (CNN) architecture; the first layer cre-
ates vector representations of the sentences in the clinical note, and the second layer
combines the sentence vectors into one single vector that represents the entire note.
For optimization, they replicate the classification loss at the sentence level, improv-
ing the regularization of the first layer. For this task, we adapted our codes prediction
method to a classification problem concerning the three possible mortality scenarios;
our results significantly outperformed those of Grnarova et al.

Dubois et al. [16] map clinical notes to CUI concepts that are reduced to a Bag-of-
Words (BoW) vector. The vectors are used as input to create patient representations
by employing two different techniques. The first one, called embed-and-aggregate,
embeds the BoW vectors using method GloVe [20] and then aggregates the resulting
representations using operators min, max, or mean. The other one uses a Recurrent
Neural Network (RNN) to process the BoW vectors in supervised fashion using CCS
diagnosis codes; the final hidden state of the network is used as a representation of the
patients. The two representations are used with L2 logistic regression for predicting
mortality, inpatient admission, and emergency room visits. These tasks are simpler
than predicting the diagnosis codes for a patient; yet, we obtained results significantly
superior for similar metrics and, specifically, for the task of mortality prediction.

ClinicalBERT by Huang et al. [7] uses bidirectional encoder representations from
transformers (BERT) [21]. BERT achieved state-of-the-art performance for a wide
range of tasks in Natural Language Processing such as Question Answering, or
Named Entity Recognition. ClinicalBERT was experimented over the MIMIC-III
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clinical notes with improvements in transposing BERT to the clinical domain. This
model, which is remarkably more complex than ours, uses contextualized word
embeddings based on tokens; such embeddings are input to the attention mechanism
of BERT, which is trained to predict the readmission probability of a given patient.
The method outperformed models such as the bidirectional Long Short-Term Mem-
ory (BiLSTM), and Logistic Regression using a Bag-of-Words representation in the
task of 30-day patient readmission prediction. We achieved results comparable to the
work of Huang et al. with a more versatile, yet simpler, architecture.

In Section 6, we compare our method to these related works considering met-
rics Precision@, Recall@ and, particularly, metric AUC-ROC — for details on the
metrics, refer to Section 5.1. In Table 1, for quick reference, we present the character-
istics of each work considered hereafter. In comparison to previous works, we further
elaborate on the concepts-extraction step, which produced a set of medical concepts
arguably with higher potential for trajectory prediction.

4 Materials andMethods

4.1 Methodology Overview

In this section, we introduce our methodology which consists of the following steps,
illustrated in Fig. 3:

– First, we perform text preprocessing on the clinical notes to clean the textual
information, making it denser in terms of cardinality and meaning of words, as
detailed in Section 4.3;

– Then, we extract clinical concepts from the notes using a UMLS concept
recognizer — presented in Section 4.4;

– Finally, we use the detected concepts, represented as one-hot vectors, to experi-
ment on different neural network architectures for patient trajectory prediction,
as discussed in Section 4.5.

As illustrated in Fig. 3, the output of our neural network is a vector of probabilities.
The cardinality depends on the target task — for instance, in the case of diagnoses
prediction, it is equal to the number of possible CCS codes found in the database.
For each code, the vector holds a probability value indicating the likelihood of the
corresponding clinical condition to manifest in the patient’s future.

In turn, predicting mortality corresponds to computing the likelihood of the patient
dying in one of three circumstances: (i) during the hospital stay; (ii) within up to
30 days after discharge; and (iii) within 1 year after discharge. This computation is
useful to estimate the severity of a patient’s condition, and to decide the amount of
attention required [17]. To achieve this task, the output of our prediction architecture
was set to a vector with three values, each one corresponding to one of the three
mortality circumstances.

Predicting the readmission corresponds to computing the single probability of the
patient returning to the hospital within 30 days after discharge, having an output set
to one single value.
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Table 1 Related works summary

Work Prediction Task(s) Methodology AUC-ROC

Sushil et al. [17] Primary SDAE + 0.94

diagnostic Doc2Vec then FFN (Hospital)

Mortality 0.81

(30 days)

0.83

(1 year)

Grnarova et al. [6] Mortality CNN (supervised) 0.963

(Hospital)

0.858

(30 days)

0.853

(1 year)

Dubois et al. [16] Emergency room Embed-and-aggregate ER Visit

(GloVe;min/max/mean) GloVe: 0.775

Inpatient admission or RNN RNN: 0.76

Mortality L2 regularized Inpatient

logistic regression admission

GloVe: 0.80

RNN: 0.81

Mortality

GloVe: 0.9

RNN: 0.86

Huang et al. [7] Readmission Fine-tune pre-trained 0.768

BERT using (30-day readmission)

clinical data

(ClinicalBERT) 0.673

(24h-48h readmission)

0.674

(48h-72h

readmission)

Following, we explain the architectures tested for our problems. We used the same
architecture for all the three tasks, adapting the output accordingly and carrying out
the network re-training for each task. The complete code for reproducing our work is
available at https://github.com/JamilProg/patient trajectory prediction.
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Fig. 3 Process flow of our methodology

4.2 Dataset

We work with the open-access dataset Medical Information Mart for Intensive Care
III (MIMIC-III) [22], a large critical care database released by the Massachusetts
Institute of Technology. This dataset integrates deidentified, comprehensive clinical
data of patients admitted to the critical care unit of the Beth Israel Deaconess Medical
Center in Boston, MA, USA. It contains data from approximately 48,520 patients
collected from 2001 through 2012. For each patient, there is a set of admissions, each
one consisting of textual clinical notes, and a sequence of diagnoses given in ICD-9
codes (on average 13 diagnoses per admission) — refer to Fig. 4a. In this work, the
clinical notes and diagnosis codes are employed to predict the patients’ trajectories.
Figure 1 illustrates this structure. We use only the admissions that carry clinical notes
and the patients with at least two admissions; as a result, we worked with 7,314

Fig. 4 Basic distributions related to dataset MIMIC-III
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patients — refer to Fig. 4b. Because of privacy, the data is anonymized — dates are
fictitious and names are tossed off. We chose MIMIC-III because it is a high-quality
public available dataset, allowing for direct comparison to other works.

4.3 Notes Preprocessing

Medical notes are often unstructured and noisy, demanding the use of Natural
Language Processing techniques to reduce the unusable information. The first pre-
processing was to remove the anonymized information that, in MIMIC, is unreadable
but kept in the notes. We continued by converting the text to lowercase, tossing off
special characters, stop-words, rare words (which are often erroneous, such as typos),
multiple spaces in a row, and duplicated, special or noisy characters, segmenting free-
text to paragraphs, converting numbers to text and so on. The paragraph segmentation
is important to the concepts extraction stage; this is because most UMLS concepts-
extraction tools work on a paragraph-by-paragraph basis and the concepts extraction
depends on the input quality.

4.4 Concepts Extraction

We use the software QuickUMLS, by Soldaini et al.’s [23], for concepts extraction,
available at software repository GitHub [24]. We chose this extractor because it offers
computation speed and high accuracy based on algorithm SimString to evaluate the
clinical concepts from a given text. Given two strings to compare, it computes a
score between 1 (perfect match) and 0 (no match at all). We retrieve the concepts
by defining a threshold value with respect to the similarity of the sentences in the
text and the cataloged concepts. We reduced the number of candidate concepts by
increasing the threshold and restricting concepts to a selected list of semantic Type
Unique Identifiers (TUIs).

For experimentation, we defined two TUI lists named α and β — the lists are
available in the GitHub repository of this project. The TUI identifiers were selected
considering types more related to the clinical domain in contrast to those related to,
for example, non-medical concepts, or non-chemical substances.

– Semantic type list α consists of 47 types related to chemicals, disorders, clinical
phenomena, and physiology — for example, we kept TUI T109 for “Organic
Chemical”;

– Semantic type list β consists of 85 types; an extension of α, with additional
types related to living beings, temporal concepts, anatomy, and procedures; for
example, we added TUI T030 for “Body Space or Junction”.

Our lists were approved by two medical professionals (radiology and visceral
surgery) affiliated with the Centre Hospitalier Emile Roux, in the city of Le Puy-
en-Velay, France. They provided opinions on the set of TUIs with respect to their
adequacy in summarizing the clinical past of the patients; their feedback allowed us
to formulate our two sets.
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4.5 Clinical Future Prediction

After running QuickUMLS, each admission is represented as a set of concepts rep-
resented in the form of CUI codes. As explained in Section 2, each set of codes
becomes a one-hot encoding vector, ideal for Machine Learning — after our con-
cepts extraction, we ended up with vectors whose length could go from 16,000 to
39,000, that is, the number of unique concepts detected. The next step is to build arti-
ficial neural network models to predict the most probable future clinical conditions
of a given patient, including the most probable diagnoses, mortality risk, and 30-day
readmission expectation. These problems can be treated in the form of a multi-label
classification to which we propose two different strategies, discussed next. We report
on strategies that passed through many rounds of experimentation for fine-tuning
of hyper-parameters, including number of epochs (50, 100, 500, 1500, 3000, 5000,
8000, and 10 iterations without improvement), learning rate (10−1, 10−2, and 10−3),
batch size (10, 50, 100, and 200), optimizers (Adam, Adadelta and Stochastic Gradi-
ent Descent) [25, 26], number of neurons in the hidden layer (10, 50, 100, 200, 1000,
5000, 10000, and 15000), dropout (0, 0.2, 0.5), and including or not Xavier initial-
ization for weights [27]. We found out that the simpler configuration, detailed in the
next sections, yielded the best results; probably because, given the limited size of
the dataset, we achieved the balance between size, information richness, and model
complexity. We also tried configurations with 1, 2, and 3 hidden layers, but the more
layers the worse the performance. Empirically, we verified that more layers increased
the number of weights, which demanded more iterations to converge, but always with
a performance decay in comparison to configurations with fewer layers.

The first solution we employed was a fully connected Feed-Forward architec-
ture; Fig. 5 illustrates this architecture for the task of diagnoses prediction, for the
other tasks, only the output layer is altered, which demands re-training. This solu-
tion answers for a clinical prediction that takes into account only the patient’s last
admission, instead of her/his entire history of admissions. The corresponding net-
work contains an input layer, one single fully connected hidden layer, and one output
layer whose cardinality of neurons is 269 (number of CCS codes) for diagnoses, 3
for mortality, and 1 for readmission. The output logits pass through a sigmoid acti-
vation (squeezing) to produce numbers between 0 and 1, as for setting a probability
distribution. During training, the network evaluation comes from the supervised com-
parison of the predicted probabilities and the actual values at time t+1; the evaluation
is expressed by a Binary Cross-Entropy loss function that guides the backpropagation
feedback to the network. The loss function is given by:

Loss = 1

N

N∑
i=1

yi ∗ log(p(yi)) + (1 − yi) ∗ log(1 − p(yi)) (2)

where N is the number of output probabilities, yi is 1 if the i-th condition is true
for a specific training sample, and p(yi) is the output probability computed with the
sigmoid operation. Notice that the number of output probabilities depends on the
task, either diagnoses, mortality, or readmission, as explained in Section 4.1.
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Fig. 5 Fully connected Feed-Forward network to predict the future diagnoses of a patient considering
her/his last admission only. The same architecture is used for the tasks of mortality and readmission, but
each one with its specific output layer, and training/testing sessions

The second solution was to use a Recurrent Neural Network (RNN), whose
underlying mechanism is illustrated in Fig. 6. It uses a recurrent neuron capable of
benefiting from the whole history of admissions. This strategy is interesting because
it allowed us to evaluate the importance of the history of the patient with respect
to her/his clinical future. The corresponding network comprises one input layer, one
hidden RNN layer, and one output layer. For a given patient, we use the first admis-
sion to predict the clinical condition of the second admission. Then, given the first
and second admissions, we predict the condition of the third one, and so on; so, for
n admissions, we perform n − 1 experimental predictions — thus, admission n, the
last one, is never used for training. Obviously, each task (diagnoses, mortality, or
readmission) demanded a specific training/testing. The strength of this architecture
comes from the fact that if there is any temporal dependency between admissions,
then it will learn it. However, since MIMIC is an intensive care database, the temporal
dependencies are not strong, which impacted our results for RNNs.
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Fig. 6 Recurrent neuron unfolding mechanism to predict the future clinical condition of a patient
considering her/his entire admissions history

5 Experiments and Results

As explained in Section 4.4, two factors define our material for experimentation: the
threshold similarity and the TUI list. Accordingly, using QuickUMLS, we produced
four datasets by combining TUI lists α and β and thresholds 0.7 and 0.9 (the higher
the threshold, the more restrictive it is), as presented in Table 2. The similarity thresh-
old of QuickUMLS has a default value, which is 0.7. When the threshold is smaller
than this value, we capture too many UMLS concepts per admission, which leads
to memory issues. On the other hand, increasing the threshold reduces the number
of captured concepts per admission. Hence, we made experiments with 0.7, 0.8, and
0.9 as threshold values. Using a threshold of 1 (perfect match) does not make sense
because we would miss too many concepts.

We experimented with other parameters, like thresholds smaller than 0.7 and more
comprehensive TUI lists. The resulting datasets were excessively large without, nec-
essarily, providing prediction improvements. Accordingly, we report results related
only to datasets A, B, C, and D. Furthermore, in Sections 5.2, 5.3, and 5.4, we experi-
ment only over the task of diagnoses prediction, the more complex of the three tasks,
whose results are, arguably, generalizable to the other tasks regarding architectural
definitions. In Section 5.5, we report on the experiments of the three tasks diagnoses,
mortality, and readmission.

Table 2 The dataset
configurations used in our
experiments

Dataset Threshold TUI list Number of CUI codes

A 0.7 α (47 types) 33,752

B 0.7 β (85 types) 39,049

C 0.9 α (47 types) 16,723

D 0.9 β (85 types) 22,820
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Our networks were implemented over framework PyTorch (https://pytorch.org/).
For each task, diagnoses, mortality, or readmission, the training step occurred during
5,000 epochs for the FFN, and 1,500 epochs for the RNN; we had batches of size
100 for the FFN, and 10 for the RNN. We used hardware NVIDIA Quadro P6000
GPU. In every case, we split the dataset using 80% for training and 20% for testing,
averaging the results after a 5-fold cross-validation. For the network based on the
Feed-Forward architecture, we used optimizer Adam for mortality prediction, and
optimizer Stochastic Gradient Descent (SGD) [26] for diagnoses and readmission.
When experimenting with Recurrent Neural Networks, we used optimizer Adam.

5.1 EvaluationMetrics

Due to the characteristics of the problem, two metrics commonly used for recommen-
dation systems are employed: Precision and Recall at the top-k recommendations.
In our case, the top k recommendations refer to the k diagnosis codes that received
the highest probabilities of appearing in the next admission. Precision@k refers to
the percentage of all the actual codes that appear in the top-k recommendations,
expressed by:

Precision@k = #correctly recommended codes in the top-k

k
(3)

Recall@k refers to the percentage of recommended codes that are correct with
respect to the entire set of correct codes, expressed by:

Recall@k = #correctly recommended codes in the top-k

#correct codes
(4)

Notice from the very equations (3) and (4) that when the value of k increases,
the value of Precision decreases, while the value of Recall increases. So, a good
performance is indicated by a slowly decaying Precision, and by a steadily increasing
Recall.

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is also
computed; it refers to a metric based on the concepts of Sensitivity and Specificity
designed to measure the ability of a binary classifier along the spectrum of its dis-
criminative threshold. We consider a given prediction as truly positive if it belongs to
the actual answer set; and truly negative otherwise. This procedure allows the con-
struction of a confusion matrix for different thresholds over the probability scores.
For non-binary classification, we compute the AUC-ROC in one-versus-the-rest
fashion, then average.

5.2 Experiments on the Parameters for CUI Selection

Our first round of experiments aimed at elucidating the impact of the CUI selection
in the prediction performance. For this initial experiment, we relied on the task of
diagnoses prediction only, the aim was to identify the most appropriate set of CUI
codes to be used in the other tasks of mortality and readmission. Accordingly, the
input was the set of clinical text notes converted to a TUI-filtered set of CUI codes;
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and the output was a set of predicted CCS codes — as discussed in Section 2. This
course of action summarizes our problem setting, which holds for all the experiments.

For these first experiments, we used the Feed-Forward neural network architecture
described in Section 4.5. The protocol was to compute the average of 5-fold cross-
validation experiments having the dataset shuffled for each run.

Table 3 presents the metrics computed over the four dataset configurations — the
higher the better for all of them. From the table, one can see that dataset D had the
best performance, followed by dataset B, dataset C, and dataset A, in order of higher
performance. The results indicate that the TUI list had the highest impact — the more
comprehensive list β produced the best results (datasets D and B). Next, the threshold
made a significant difference as the highest threshold of 0.9 produced the best results
for both lists β and α.

Although our first results are significant, with metric marks ranging from 40% to
more than 70%, in the next section, we explore the possibility of using additional
information to aid in the prediction task, as suggested by Pham et. al. [28].

5.3 Experiments on Combining Text and Diagnosis Codes

Since neural networks learn patterns from data, they can benefit from additional
information, provided this aid is non-redundant and non-noisy. Accordingly, in this
round of experiments, we used the diagnosis codes that constitute the EHRs together
with the textual notes to perform the diagnoses prediction task. The 269 CCS codes,
in the form of one-hot vectors, were concatenated to the CUI-coded vectors derived
from the textual notes. Now, the input to the problem was a set of clinical text notes
(CUI codes) and of diagnosis codes (CCS codes), and the output was a set of CCS
codes. We used the same Feed-Forward network as of Section 5.2, altering only the
cardinality of the first two layers. The CUI codes were generated using the best
parameters (threshold 0.9 and TUI list β) detected in the first round of experiments.

Table 4 presents the results of using CUI-only, CUI+CCS, and CCS-only as input.
By comparison, one can see that the use of the diagnosis CCS codes combined with
the CUI codes significantly improved the prediction performance. The Precision@
increased by over 4%, while the Recall@ increased by over 3%. The improvement
is even higher when compared to the use of CCS codes only — the worst result, dis-
carding the hypothesis that the structured CCS data would be enough for prediction.

Table 3 Diagnoses prediction metrics Precision@, Recall@, and AUC-ROC computed over the four
dataset configurations using a Feed-Forward network

Dataset P@1 P@2 P@3 R@10 R@20 R@30 AUC-ROC

A (0.7 & α) 0.732 0.671 0.624 0.382 0.563 0.677 0.901

B (0.7 & β) 0.742 0.679 0.631 0.387 0.570 0.683 0.905

C (0.9 & α) 0.729 0.672 0.627 0.385 0.567 0.681 0.903

D (0.9 & β) 0.750 0.688 0.638 0.392 0.576 0.689 0.911

Highest marks in boldface
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Table 4 Diagnoses prediction performance comparison regarding inputs CUI codes only, CUI codes com-
bined to CCS codes, and CCS codes only, using the best QuickUMLS settings threshold 0.9 and TUI list
β

Input P@1 P@2 P@3 R@10 R@20 R@30 AUC-ROC

CUI-only 0.750 0.688 0.638 0.392 0.576 0.689 0.911

CUI + CCS 0.778 0.723 0.677 0.414 0.597 0.706 0.913

CCS-only 0.728 0.679 0.640 0.390 0.561 0.668 0.905

Highest marks in boldface

These results directly state that the first-ranked probabilities predicted by our net-
work agreed to the actual diseases observed in time t+1 with a high precision. They
indicate the feasible use of our method in a real-world scenario; the Precision@1
metric states that in 77.8% of the cases, the code with the highest probability was
an actual CCS code to manifest in the next admission. Meanwhile, the Recall@30
metric indicates that among the 30-top ranked probabilities, the system was able to
foresee 70.6% of all the CCS codes to appear in the next admission. A tool with such
accuracy has the potential to make recommendations to the physician, who will be
able to digest the clinical history of the patient in less time.

Table 5 presents the results of the McNemar test [29] to verify the null hypothesis
that the probability of CUI+CCS being incorrect is the same as that of the CUI-
only being incorrect. In other words, we test whether using the CCS data had an
actual influence on the results. With a χ2 value of 47.44, the null hypothesis can be
discarded with strong evidence (p-value of 0.000001). Numerically, one can see that
CUI+CCS makes fewer mistakes than CUI-only; the McNemar test states that this
difference is significant.

Table 6 presents the results of comparing the use of inputs CUI-only and CCS-
only for the three tasks. From the numbers, it becomes evident that the use of CUI
codes results in a prediction performance more accurate than using CCS codes only.
In addition, the conclusions obtained by experimenting over the task of diagnoses
prediction also applied to the tasks of mortality and readmission.

5.4 Experiments on Recurrent Neural Networks

In the next set of experiments, we proceeded to answer whether our diagnoses pre-
diction problem could benefit from the long-term clinical history of the patients by

Table 5 Statistical significance of the results presented in Table 4: McNemar test with Yates correction of
1.0 for diagnosis codes prediction

Contingency matrix p-value χ2

CUI+CCS (correct) CUI+CCS (incorrect) 0.000001 47.44

CUI-only (correct) 51,898 45,646

CUI-only (incorrect) 47,752 220,044
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Table 6 Direct comparison between the use of CUI codes and the use of CCS codes for each of the three
tasks

Task Metric CUI-only input CCS-only input

Diagnoses Prediction (FFN) P@1 0.751 0.728

P@2 0.688 0.679

P@3 0.638 0.64

R@10 0.392 0.39

R@20 0.576 0.561

R@30 0.689 0.668

AUC-ROC 0.911 0.9046

Readmission Prediction (FFN) 0.717 0.5961

Mortality Prediction (GRU) 0.9223 0.7993

using the memory capabilities of Recurrent Neural Networks. In the experiments
using a Feed-Forward network, the prediction was based only on the last visit; by
using RNNs, the network can exploit the whole sequence of hospital admissions.
In case the admissions result from a series of chained events that tend to manifest
throughout the clinical practice, the prediction is supposed to be more precise with
RNNs. We test this hypothesis using RNNs based on two kinds of neuron units: Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs).

Table 7 points out that the Feed-Forward Network had a remarkably superior per-
formance if compared to LSTM and GRU. This is evidence that MIMIC-III has weak
temporal dependencies in between admissions, presenting shorter clinical events —
this is not a surprise for an intensive care unit. While this is not a definitive con-
clusion, these weak temporal dependencies are worthy investigating; this is because
other works [14, 15, 28] have explored MIMIC-III by means of RNNs rather than by
using FFNs, although Rodrigues-Jr et al. [15] has discussed the use of FFNs.

5.5 Summary of Results

We present the best results for the three prediction tasks, considering the differ-
ent architectures and data inputs — see Table 8. Notice that the diagnosis codes
prediction simply reproduces the results presented in the previous sections.

Table 7 Diagnoses prediction comparison of RNNs Long Short-Term Memory and Gated Recurrent Unit
against a classic Feed-Forward Network (FFN)

Architecture P@1 P@2 P@3 R@10 R@20 R@30

LSTM 0.5874 0.5483 0.5142 0.3117 0.4687 0.5764

GRU 0.5404 0.5085 0.4798 0.3001 0.4584 0.5712

FFN 0.750 0.688 0.638 0.392 0.576 0.689

Numbers computed using 5-fold cross validation over the CUI dataset produced with TUI list β and
similarity threshold 0.9

Highest marks in boldface
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Table 8 Summary of results for
tasks diagnosis codes prediction,
mortality prediction, and
readmission prediction. We
report on FFN and GRU
networks, and on data input CUI
only and CUI+CCS, where
applicable

Task Architecture AUC-ROC

Diagnosis codes prediction FFN 0.911 (CUI only)

0.913 (CUI+CCS)

GRU 0.8721 (CUI+CCS)

Mortality prediction FFN 0.8709 (CUI+CCS)

GRU 0.9247 (CUI+CCS)

30-day readmission prediction FFN 0.717 (CUI only)

0.719 (CUI+CCS)

GRU 0.5335 (CUI+CCS)

For task mortality prediction, we present the results obtained with data input
CUI+CCS only, this is because previous experiments had already demonstrated that
the use of CCS codes could improve results.

For task readmission prediction, we had results similar to what we obtained in the
task of diagnosis codes prediction, in which the best results came with FFN architec-
ture and data input CUI+CCS. This task had the smallest performance compared to
the other tasks; possibly because it was modeled similar to the related works for pre-
cise comparison (refer to Section 4.1), with one single time frame of 30 days, which,
if not satisfied, issued a negative result.

5.6 Statistical Validation

Following, we test the null hypothesis that our methodology, for the three tasks and
considering metric AUC-ROC, is just as good as random guessing. This is a basic
sanity check to provide confidence in our findings. We use a Two-sample Unpaired
t-Test, whose results in Table 9 demonstrate that for all the cases, our marks largely
refute the null hypothesis.

6 Comparison to RelatedWorks

Following, we compare our results to the related works discussed in Section 3 con-
sidering the tasks of diagnoses, mortality, and readmission prediction — Section 4.1.

The work of Sushil et al. [17] experiments on six different architectural config-
urations over MIMIC-III for the task of mortality prediction; and for the task of
predicting the primary diagnostic category, which is similar to our Precision@1 met-
ric. Their work considers variations of methods Bag-of-Words (BoW) [10], doc2vec
[30], and CUI-based, similar to our work but using toolkit CLAMP [31]. They exper-
iment using a regular Feed-Forward network and a stacked denoising autoencoder
(SDAE) network [32]. For the task of mortality prediction, Sushil et al. achieved
AUC-ROC of 0.95 for in-hospital death, 0.81 for death within up to 30 days, and 0.83
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Table 9 AUC-ROC statistical significance Two-sample Unpaired t-Test for tasks diagnosis codes predic-
tion, mortality prediction, and readmission prediction

Diagnosis codes Mortality Readmission

Random Our work Random Our work Random Our work

AUC-ROC Fold 1 0.5850 0.9097 0.5753 0.9321 0.5363 0.7238

AUC-ROC Fold 2 0.6068 0.9101 0.6184 0.8959 0.4826 0.7142

AUC-ROC Fold 3 0.5939 0.9054 0.6874 0.9124 0.4601 0.7166

AUC-ROC Fold 4 0.6066 0.9185 0.5184 0.9421 0.4844 0.7285

AUC-ROC Fold 5 0.5930 0.9124 0.4038 0.9410 0.4478 0.7115

Mean difference 0.3142 0.3640 0.2367

95% confidence interval [0.3032; 0.3251] [0.2515; 0.4765] [0.2009; 0.2724]

p-value <0.0001 <0.0001 <0.0001

for death within up to 1 year — an average of 0.86 for the three cases. We achieved
AUC-ROC of 0.9247 considering the three possible outcomes modeled as a 3-class
problem; nearly 7.5% of improvement over the average of Sushil et al. but, yet, not
as good as their in-hospital death prediction. As a last remark, dataset MIMIC-III
is imbalanced as the number of deaths is much smaller than the number of survival
cases. This fact is discussed in the work of Li and Liu [33] who explain how to
improve the mortality prediction performance by taking the imbalance into account,
that is, by augmenting the importance of the death cases during the learning process.

For the task of predicting the primary diagnostic category, Table 10 demonstrates
that our methodology achieved results superior to all the competing configurations
of Sushil et al. by nearly 10% (compared to BoCUI). The possible reasons for this
superior results in both tasks are: (i) we explored different configurations for gener-
ating our CUI-based representation, while Sushil et al. used standard parameters; (ii)
we used a TUI list for selecting the most relevant clinical concepts, while Sushil et
al. used the whole set of retrieved concepts; (iii) we directly encoded the CUI codes
as input to the network, while Sushil et al. used a Bag-of-Words over the CUI codes
(BoCUI); (iv) we combined CCS codes to the input. Since we used a very similar

Table 10 Direct comparison to
the work of Sushil et al. [17]
considering methods
Bag-of-Words (BoW) [10],
doc2vec [30], and CUI-based;
using a regular Feed-Forward
network and a stacked denoising
autoencoder (SDAE) [32]
network

Architecture P@1

FFN (CUI + CCS) 0.778

BoW 0.701

SDAE-BoW 0.650

doc2vec 0.681

[doc2vec, SDAE-BoW] 0.679

BoCUI 0.710

SDAE-BoCUI 0.665
Highest marks in boldface
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network architecture, but for the cardinalities, the network architecture is not sup-
posed to have influenced the results.

The work of Grnarova et al. [6] achieved state-of-the-art results for mortality pre-
diction. They achieved AUC-ROC of 0.963 for in-hospital death, 0.858 for death
within up to 30 days, and 0.853 for death within up to 1 year — an average of 0.891
for the three cases. We achieved AUC-ROC of 0.9247 considering the three possible
outcomes modeled as a classification problem, over 3.5% improvement. Further-
more, Grnarova et al. did not achieve the functionality of diagnoses prediction, a
more demanding task in terms of preprocessing, modeling, representation, and neural
network fine-tuning.

Considering the work of Dubois et al. [16], for task mortality prediction, their best
performance refers to an AUC-ROC of 0.9 using the GloVe word embedding. This
is the best performance of the related works but, still, 2.7% below our mark for the
same task. We cannot directly compare to the other two tasks carried out by Dubois et
al., as they diverge from our problem setting. Yet, for diagnosis codes prediction — a
much more complex task, we achieved an AUC-ROC higher than what they achieved
for simpler tasks patient admission, and emergency room visits. These comparisons
suggest that our methodology is similar or superior to theirs since we are dealing
with the same input, domain, and underlying principles. From a methodological per-
spective, our work learns patient representations from the full text of notes, which
the very authors indicate as a promising approach.

In comparison to the work of Huang et al. [7], our prediction for 30-day read-
mission achieved an AUC-ROC of 0.719, which is superior to methods Logistic
Regression based on Bag-of-Words with performance of 0.684, and method Bi-
directional LSTM with 0.694; in comparison to method ClinicalBERT, whose mark
was of 0.768, we stand 6% behind. This performance comes from a Transformer-
based architecture much more complex than our FFN. Since our contribution focuses
on the UMLS-based extraction of concepts, rather than on the network architecture,
it is expected that ClinicalBERT could have an even superior performance by using
our protocol, which, we indicate as a promising future work. Notwithstanding, the
work of Huang et al. is not as versatile as our methodology, which reports on diagno-
sis, mortality, and readmission prediction; the last of those cannot perform over the
BERT architecture.

7 Conclusions

We described a Machine Learning process based on Natural Language Processing
and Artificial Neural Networks. The goal was to predict the clinical trajectory facts
(diagnosis, mortality, and readmission) to occur in the future of a patient by inspect-
ing the clinical notes in her/his Electronic Health Record. We started with data
pre-processing and advanced until the stage of neural network fine-tuning to achieve
a performance comparable to state-of-the-art works, which produced lessons that
might guide future works in the field.

The strong point of our research is that we evaluated different strategies on
using UMLS-based concepts extraction to represent the clinical notes. Our results
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demonstrated that the choice of a list of concept types and of a similarity threshold
can narrow the scope of CUI codes to a more dense representation. By comparison to
previous works, we verified that this course of action is more effective than using the
entire set of retrieved concepts, and also more effective than using word-embedding
techniques without first extracting concepts. The drawback of our approach was the
more intricate preprocessing stage, and the size of our input, which demanded days
of processing due to its order of magnitude, around dozens of thousand elements.

Still, in comparison to previous works, we did not follow a strict methodology
from the beginning. As we experimented on different models and neural network
architectures, we verified that by using a Feed-Forward architecture, fed by the last
admission only, worked better than using the entire history of admissions over Recur-
rent Neural Networks. We also learned that by combining the diagnosis codes with
the clinical notes, it was possible to significantly improve the results, achieving a per-
formance suitable for real-world applications. Our Precision@1 metric indicated that
the code with the highest probability was an actual CCS code to manifest in the next
admission in 77.8% of the cases. In turn, the Recall@30 metric indicated that among
the 30-top ranked probabilities, the system was able to foresee 70.6% of all the CCS
codes to appear in the next admission.

Although we experimented with the real-world dataset MIMIC-III, it is desirable
to test our methodology on a private dataset. This is because the culture of differ-
ent hospitals leads to clinical notes with particular structures, which shall demand
adaptations on our preprocessing and concepts extraction steps. Furthermore, despite
achieving results comparable to the related works, we did not use negation detection,
available in concept recognizers such as cTAKES (based on algorithm Negex [34]).
Nevertheless, negation has potential to improve the data representation even more by
counting on a finer semantic analysis — we suggest the use of negation as a straight
prominent future work. Either, we did not explore the imbalance of the classes in
MIMIC-III; just as discussed, the work of Li and Liu [33] has benefited from this
characteristic to reach even better results. This is an open issue here that, together
with negation, could produce a more advanced investigation. It is also desirable to
test word-embedding techniques over our extracted concepts; a more concise repre-
sentation has potential for shorter fine-tuning cycles and, consequently, for improved
network configurations. Finally, we focused on the process of concepts extraction
more than on the neural network techniques; there is room for experimenting with
the more advanced neural network techniques that appear every day in the fast-paced
field of Machine Learning.
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