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Abstract
The presence of missing data is a common problem that affects almost all clin-
ical datasets. Since most available data mining and machine learning algorithms
require complete datasets, accurately imputing (i.e. “filling in”) the missing data is
an essential step. This paper presents a methodology for the missing data impu-
tation of longitudinal clinical data based on the integration of linear interpolation
and a weighted K-Nearest Neighbours (KNN) algorithm. The Maximal Information
Coefficient (MIC) values among features are employed as weights for the distance
computation in the KNN algorithm in order to integrate intra- and inter-patient infor-
mation. An interpolation-based imputation approach was also employed and tested
both independently and in combination with the KNN algorithm. The final impu-
tation is carried out by applying the best performing method for each feature. The
methodology was validated on a dataset of clinical laboratory test results of 13
commonly measured analytes of patients in an intensive care unit (ICU) setting.
The performance results are compared with those of 3D-MICE, a state-of-the-art
imputation method for cross-sectional and longitudinal patient data. This work was
presented in the context of the 2019 ICHI Data Analytics Challenge on Missing data
Imputation (DACMI).
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1 Introduction

A typical issue when working with real-world datasets in the clinical as well as in
other domains is the presence of missing values. This fact limits the use of many sta-
tistical methods and machine learning approaches, since most of these procedures are
designed for complete data [20]. Furthermore, missing data can introduce potential
bias in parameter estimation and weaken the generalisability of the results [2, 21].
For these reasons, a preliminary imputation step is often required.

1.1 PreviousWork

Several methods for handling missing data are available to date [3]. The simplest
approach is to consider only non-missing values in the analysis, by completely drop-
ping all cases where at least one variable is missing (listwise deletion), or by only
deleting cases having missing values in one of the variables being considered in the
specific evaluated model (pairwise deletion). This causes loss of information, which
in turn decreases statistical power and increases standard errors [14]. Simple statisti-
cal approaches, such as mean/median filling or value propagation (Last Observation
Carried Backward or Next Observation Carried Forward), are often applied. These
methods are fast and easily interpretable, but they can lead to low accuracy and biased
estimates of the investigated associations [7].

More advanced methods which take into account the cross-sectional relationships
among the data have been proposed. Regression approaches estimate missing values
by regressing them from other related variables [22]. While deterministic regression
limits the imputation to the exact prediction of the regression model, often producing
an overestimation of the correlation among the variables, stochastic regression adds
a random error term to the predicted value in order to recover a part of the data
variability [17].

In [19], a non-parametric method based on a random forest, called missForest, was
introduced. This method is based on the idea that a random forest intrinsically consti-
tutes a multiple imputation scheme by averaging over many unpruned classification
or regression trees, and can cope with categorical and continuous variables simul-
taneously. Multivariate imputation by chained equations (MICE) is another popular
method of dealing with missing data [5]. This imputation procedure builds a con-
ditional model for each variable to be imputed, with the other variables as possible
predictors.

Since most imputation methods do not adequately handle longitudinal data (i.e.
time series, a fundamental characteristic of clinical data), the 3D-MICE method has
been recently introduced [12]. 3D-MICE imputes missing data based on both cross-
sectional and longitudinal patient information by combining MICE with Gaussian
process (GP) [9, 16] predictions. MICE is used to carry out cross-sectional imputation
of the missing values, while a single-task GP is used to perform longitudinal imputa-
tion. The estimates obtained by the two methods are then combined by computing a
variance-informed weighted average.
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1.2 Aim of this Work

In the framework of the 2019 ICHI Data Analytics Challenge on Missing data Impu-
tation (DACMI – http://www.ieee-ichi.org/challenge.html), an imputation task for
longitudinal ICU laboratory test data was shared. This work describes the method-
ology we developed for the challenge, which is based on the combination of linear
interpolation and a weighted K-Nearest Neighbours (KNN) procedure (briefly intro-
duced in [6]). Both the methods were built up as intra-patient approaches, i.e. the
values of the missing data are inferred by looking at the previous/following visits
of the same patient. With the intent to integrate some inter-patient information in
the KNN implementation, we first calculated the Maximal Information Coefficient
(MIC) [18] values among pairs of features. Then, we used these values as weights
when computing the distance between different time samples of the same patient. The
MIC is a statistical measure that captures the strength of both linear and nonlinear
relationships among analytes. First, we tested the linear interpolation and weighted
KNN imputation approaches independently. Then, we combined them by selecting
the best performing approach for each feature. The selected model was validated on
an independent test set against 3D-MICE, i.e. the baseline proposed by the DACMI
organisers. Our method demonstrated statistically significant improvements in 11 out
of 13 analytes, with an average performance gain of 8.1%, as well as a considerably
reduced computational time.

2 Materials andMethods

2.1 Dataset

The datasets [11] provided by the DACMI organisers to the challenge participants
were derived from MIMIC-III [8, 10], a large real-world database containing de-
identified information regarding the clinical care of patients who stayed within the
intensive care units (ICU) at Beth Israel Deaconess Medical Centre. Both a train-
ing and a test set were provided in order to develop and validate the imputation
methodology on two independent sets of data, each one consisting of inpatient test
results for 13 analytes (laboratory tests): Chloride (PCL), Potassium (PK), Bicarbon-
ate (PLCO2), Sodium (PNA), Hematocrit (HCT), Hemoglobin (HGB), Mean Cell
Volume (MCV), Platelets (PLT), White Blood Cell count (WBC), Red blood cells
Distribution Width (RDW), Blood Urea Nitrogen (PBUN), Creatinine (PCRE), and
Glucose (PGLU). Each visit is composed of 13 analyte measurements and is identi-
fied by the time in minutes from the first visit (which is identified by timestamp 0).
The training set consists of the test results of 8267 subjects for a total of 199 695 vis-
its, while the test set consists of the test results of 8267 other subjects for a total of
199 936 visits.

A version of each dataset with randomly masked results was also provided by the
challenge organisers in order to evaluate the performance of the developed imputa-
tion algorithms (see Tables 1 and 2); one result per analyte per patient-admission was

Journal of Healthcare Informatics Research (2020) 4:174–188176

http://www.ieee-ichi.org/challenge.html


Table 1 Characteristics of the training set

Analyte Units Interquartile Native missing Missing rate after

range rate (%) masking (%)

Chloride mmol/L 100–108 1.18 5.32

Potassium mmol/L 3.7–4.4 1.34 5.48

Bicarb. mmol/L 22–28 1.39 5.53

Sodium mmol/L 135–142 1.26 5.4

Hematocrit % 26.8–32.7 12.51 16.65

Hemoglobin g/dL 8.9–11 15.09 19.23

MCV fL 86–94 15.23 19.37

Platelets k/μL 130–330 14.55 18.69

WBC count k/μL 7.1–14.1 14.8 18.94

RDW % 14.5–17.4 15.34 19.48

BUN mg/dL 16–43 0.74 4.88

Creatinine mg/dL 0.7–1.9 0.7 4.84

Glucose mg/dL 100–148 2.7 6.84

randomly removed, i.e. each patient had 13 results masked across the various vis-
its (time points), thus creating cases with known ground truth results. In this work,
we imputed both natively missing and masked data together, and compared imputed
with measured values for masked data elements to evaluate the performance of the
imputation method.

Table 2 Characteristics of the test set

Analyte Units Interquartile Native missing Missing rate after

range rate (%) masking (%)

Chloride mmol/L 100–108 1.20 5.40

Potassium mmol/L 3.7–4.4 1.28 5.48

Bicarb. mmol/L 22–28 1.41 5.60

Sodium mmol/L 136–142 1.26 5.45

Hematocrit % 26.8–32.6 12.45 16.64

Hemoglobin g/dL 8.9–11 14.93 19.13

MCV fL 87–94 15.04 19.24

Platelets k/μL 133–332 14.42 18.62

WBC count k/μL 7.1–14.1 14.69 18.89

RDW % 14.4–17.3 15.16 19.36

BUN mg/dL 15–42 0.77 4.97

Creatinine mg/dL 0.7–1.8 0.75 4.94

Glucose mg/dL 100–147 2.63 6.83
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2.2 Imputation EvaluationMetrics

The DACMI task required us to employ the normalised root-mean-square deviation
(nRMSD) metric to evaluate the performance of the developed imputation methods
and compare them with the performance of 3D-MICE. Let Xp,a,i be the test result
prediction for analyte a of patient p at time i and let Yp,a,i be the true measured value
for that analyte. Also, let Ip,a,i be 1 if the value of analyte a for patient p at time i is
missing, and 0 otherwise. The nRMSD of analyte a is calculated as:

nRMSD(a) =

√
√
√
√
√

∑

p,i Ip,a,i

( |Xp,a,i−Yp,a,i |
max(Yp,a)−min(Yp,a)

)2

∑

p,i Ip,a,i

. (1)

The nRMSD is frequently used to measure the differences between values predicted
by a model and the ones observed [12]. The normalisation at the patient level facil-
itates the performance comparisons on analytes with different scales and dynamic
ranges.

In order to better analyse and compare the distribution of the error, we also com-
puted the normalised absolute error (nAE) of each imputed value. The nAE for
analyte a of patient p at time i is given by:

nAE(p, a, i) = |Xp,a,i − Yp,a,i |
max(Yp,a) − min(Yp,a)

. (2)

Analysing the nAE distribution for each analyte allows us to gain more insight on the
quality of the imputation.

2.3 Linear Interpolation Imputation

We first implemented a simple imputation algorithm based on linear interpolation,
described as follows. Given an analyte value to be imputed in a certain visit , we
inspect the other visits from the same patient. If the missing data are located between
known measurements, they are estimated by linear interpolation in the specific time
points. Otherwise, if the missing data correspond to the first or last visits of a given
patient, then, these values are imputed by simply carrying the next observation back-
ward or the last observation forward. When the values of an analyte are missing in
all the visits of a given patient, they are imputed with the corresponding average over
the population.

2.4 Weighted K-Nearest Neighbours Imputation

We also implemented an intra-patient imputation procedure based on a weighted
KNN algorithm, described as follows. Given a missing value in a patient visit, the
algorithm uses the other visits from the same patient as neighbours. The KNN algo-
rithm can be used for imputing missing data by finding the K neighbours closest to
the observation with missing data, and then imputing them using the non-missing
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values from the neighbours [4]. The algorithm substitutes the missing data with plau-
sible values that are close to the true ones. It is a similarity-based method that relies
on distance metrics to determine the similarity among feature vectors. In this work,
a weighted and normalised Euclidean distance metric was employed as a similarity
measure.

In our implementation, the values of the 13 analytes are first normalised to the
[0, 1] interval for each patient, in order to account for the differences among the
analyte ranges. Let Yp,a,i be the measured value for analyte a of patient p at time i,
and let Yp,a be the set of all known values for analyte a of patient p. The normalised
value is given by:

nYp,a,i = Yp,a,i − min(Yp,a)

max(Yp,a) − min(Yp,a)
. (3)

The missing data in a given patient visit are then imputed by selecting the most
similar visits among the others from the same patient; once the distances to all the
remaining visits of the current patient have been computed, the nearest K candidates
are selected and the missing value is imputed using the average of the corresponding
values in the K candidate visits, each weighted by the corresponding distance.

2.4.1 Maximal Information Coefficient

In order to exploit the inter-patient analyte dependencies, we integrated the cross-
information over analytes in the KNN procedure by using the MIC. When trying
to discover associations among pairs of variables, the statistic used to measure the
dependence should exhibit two heuristic properties: generality and equitability [18].
Generality is the ability of a given statistic to capture a wide range of interesting
associations, not limited to specific function types (such as linear, exponential, or
periodic) or to functional relationships, provided that the sample size is sufficiently
large. This property is essential because many important relationships are not well
modelled by a specific function. Equitability, on the other hand, is the property
of a given statistic to give similar scores to equally noisy relationships of differ-
ent types. The MIC was shown to outperform several other methods in terms of
generality and equitability, including mutual information estimation, distance corre-
lation, Spearman’s rank correlation coefficient, principal curve-based methods, and
maximal correlation [18].

The MIC measures the strength of the association (even if nonlinear) between
two analytes in the [0, 1] range. High MIC values correspond to strongly associated
variables, while low ones correspond to weak associations. The MIC uses binning
in order to compute the mutual information of continuous random variables; the
optimal number of bins that maximises the mutual information between variables is
selected. We computed the MIC among all pairs of analytes on the whole dataset
using the minerva R package v1.5.8 [1]. By using the MIC values as weights in the
distance metric, we ensure that intra- and inter-patient information are integrated in
the imputation procedure. A heatmap of the cross-sectional MIC among analytes on
the training dataset is shown in Fig. 1.
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Fig. 1 Heatmap and dendrogram of the cross-sectional MIC among analytes computed on the training set

2.4.2 Distance Metric

For a given patient visit composed of the measurements of its 13 analytes v =
(v1, v2, . . . , v13) with missing data to be imputed in index i ∈ {1, . . . , 13}, the algo-
rithm computes the weighted Euclidean distance with the other visits of the current
patient that do not have missing data in position i:

d(v,u) =
√

∑

j∈NMICi,j · (

vj − uj

)2

∑

j∈NMICi,j

, (4)

where N is the set of indices corresponding to non-missing values in both visits v
and u, and MICi,j is the maximal information coefficient between analytes i and
j computed on the whole dataset. By dividing the numerator in (4) by the quantity
∑

j∈N MICi,j , we are normalising the distance in order to account for other possible
missing values (other than the one being currently imputed) and their importance.
This favours candidate neighbouring visits that have many analytes highly associated
with the one being currently imputed, and penalises candidate neighbouring visits
that have missing values instead (a visit can have several missing values).

If a visit has multiple missing values to be imputed, the KNN procedure is repeated
for each one of them separately, as the MIC weights (and consequently the distance
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values, see (4)) depend on the specific analyte being imputed. In our implementa-
tion, values previously imputed by the KNN are not used in distance computations
and subsequent imputations. Again, if the values of an analyte for a given patient
are missing in all his or her visits, the average over the population is used for the
imputation of that analyte.

2.4.3 Selection of the Optimal K Parameter

To select the optimal number of neighbours K , we performed a 10-fold cross-
validation (CV) at patient level on the training set. The 8267 subjects of the training
dataset were randomly split into 10 disjoint folds. In turn, the visits of the subjects in
a given fold were imputed using the MIC computed over the remaining 9 folds. In this
framework, we tested different K values for the KNN algorithm, ranging from 1 to
15. The results are shown in Table 3: the best average nRMSD values were obtained
for K ∈ {3, 4}.

2.5 Combined ImputationMethod

The performances of the linear interpolation and weighted KNN imputation methods
on the training set are reported in Table 4. We noticed that the interpolation-based
imputation performed better than the KNN-based one in 7 out of 13 analytes, namely
for Bicarbonate, MCV, Platelets, WBC count, RDW, BUN, and Creatinine. For this
reason, we imputed these analytes using linear interpolation, and the remaining ones
with the KNN-based approach.

The interpolation is run on each feature separately; thus, its results do not depend
on the KNN step. On the other hand, the KNN could use the imputed values from
the interpolation step during the distance computation. For this reason, we tested the
imputation by combining the methods in both directions: by running the KNN first
and the interpolation second (KNN+Interp.), and vice versa (Interp.+KNN). In the
latter case, we tested a few values for K in cross-validation to confirm the optimality
of the previously selected values:K = 3 was selected as the optimal value (the results
are shown in Table 4).

3 Results

The developed imputation procedures were assessed on the training set using the
nRMSD. The results in Table 4 show that the combined methods outperform 3D-
MICE on 11–12 analytes out of 13. The average nRMSD values are equal to 0.2055
for KNN+Interp. K = 3 and 0.2043 for Interp.+KNN K = 3, which corresponds to
an improvement of 7.4% and 7.9% respectively, compared with the baseline (0.2219).

The best performing method Interp.+KNN was validated on the independent test
set using the selected optimal K = 3 value, the MIC, and the population average
values computed on the training set. Figure 2 schematically depicts the Interp.+KNN
imputation procedure for a given subject. Performances are presented in the last two
columns of Table 4. The average nRMSD value obtained for Interp.+KNN K = 3
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Fig. 2 Interp.+KNN imputation procedure. For each subject with missing values, 7 out of 13 analytes
are first imputed with linear interpolation. The remaining missing values on the other analytes are then
imputed with the KNN algorithm using the MIC values computed on the training set as weights for the
distance metric

on the test set, equal to 0.2055, is 8.1% lower than the 3D-MICE baseline (0.2235).
Similarly to the training set, the combined method Interp.+KNN outperforms the
baseline on average and on 12 out of 13 analytes, although reversing the sign of the
improvement for the features Hematocrit and Hemoglobin.

To assess the statistical significance of the improvement, we performed a one-
tailed paired Wilcoxon signed-rank test on the nAEs obtained on the test set with 3D-
MICE and Interp.+KNN for each analyte. Since the nRMSD can be directly derived
from the nAE values (see (1) and (2)), the performed statistical tests can be used to
assess the significance of the improvement in terms of both error measures. The test
results in p values < 0.001 for 11 out of 13 analytes, while the features Hematocrit
and Hemoglobin, whose p values are equal to 0.787 and 0.095 respectively, show no
statistically significant improvement in terms of imputation error. This result is also
confirmed by both the exiguous difference in the nRMSD values (less than 1% on the
test set) obtained by our method compared with those of 3D-MICE for Hematocrit
and Hemoglobin, and the reversal of the sign of the improvement on these analytes
between training and test set. Figure 3 compares the nAE distributions, showing the
shift to lower error values for the Interp.+KNN method with respect to the baseline.

4 Discussion

Both the interpolation-based and the KNN-based approaches always yield imputed
values in the range of the existing data; more specifically, the intra-patient implemen-
tation preserves the analyte dynamic range of each patient.

The integration of the MIC in the weighted KNN approach adds some data-driven
knowledge to the procedure. In the MIC computation (see Fig. 1), a few relationships
that can be expected from the clinical literature emerge. Hematocrit and Hemoglobin,
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Fig. 3 Normalised absolute error distributions obtained with 3D-MICE and Interp.+KNN with K = 3 on
the test set

that present a normal ratio of 1:3 in healthy subjects and possibly altered values in
the pathological ones [15], have the highest MIC value; similarly, the MIC value for
Blood Urea Nitrogen and Creatinine is also high, being these analytes both referred
to the renal function and with a normal ratio ranging from 10:1 to 20:1 [13]. It is
interesting to observe how these pairs of features perform differently when this cross-
sectional information is incorporated in the KNN imputation procedure, though they
both have high MIC values. The weighted KNN outperforms the linear interpolation
approach for Hematocrit and Hemoglobin, while falling behind for Blood Urea Nitro-
gen and Creatinine. This could be due to two possible reasons: (1) some analytes
follow a linear trend in the intervals containing the missing values, or (2) the infor-
mation included in the features themselves, exploited by the interpolation, is stronger
than the cross-information. In the specific case of Blood Urea Nitrogen and Creati-
nine, the intra-feature information could be prevailing due to the low missingness rate
(less than 5% after masking) which reinforces the latter hypothesis. The presence of
specific patterns in the patients’ missing values is another fact that could promote the
effectiveness of one method against the other. The absence of many analytes in one
visit could decrease the effectiveness of the weighted KNN procedure while recur-
ring missing measures of one specific analyte could penalise the interpolation-based
approach.

In the KNN approach, the selection of a small K parameter ensures a good
compromise between imputation performance and the need to preserve the origi-
nal distribution of the data—a very important characteristic any imputation method
should satisfy. Indeed, as a rule of thumb, it is advisable to limit the number of K

neighbours, because of the risk of severely impairing the original variability of the
data [4]. This matter requires particular care, since using the imputation accuracy (as
measured for instance by the nRMSD) as the sole parameter selection criteria could
lead to the choice of a large K value, while completely neglecting the data distortion
aspect.

In general, with a KNN approach, the imputation precision is subject to the degree
of dependencies the feature with missing data has with other features in the dataset;
imputing features with little or no dependencies could lead to a lack of precision and
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could introduce spurious associations by considering dependencies where they do
not exist [4]. In our approach, this risk is realistically mitigated by selecting the best
performing method for each feature, the interpolations replaces the KNN approach
on those analytes where the latter performs poorly.

It is worth noticing that the proposed algorithm is very time efficient. On a work-
station with an Intel� Xeon� W3680 CPU (6 cores/12 threads @ 3.33GHz, 12MB
L3 cache) and 24GB of DDR3 RAM, running Ubuntu Linux 16.04 LTS, our method
can impute a whole dataset of 8267 subjects with roughly 200,000 visits in less than
a minute; 3D-MICE requires several hours to impute the same dataset.

5 Conclusion

We introduce a novel algorithm that combines linear interpolation with weighted
KNN for the imputation of longitudinal clinical laboratory test results across multiple
visits of ICU patients. The KNN imputation integrates cross-sectional information
by effectively using the MIC among analytes as weights for the distance metric. The
proposed algorithm was shown to outperform 3D-MICE, a state-of the art method
that combines MICE and GP-based imputation.

As future work, we plan to enhance the proposed methodology by refining the
interpolation and weighted KNN steps, and by possibly adding new imputation
strategies, thus expanding it into a full-fledged ensemble of imputation methods suit-
able to impute multiple types of clinical and laboratory data. Moreover, it would
be very interesting to determine what thresholds of existing missing data and co-
dependencies among features would begin to have an impact on the performance
of the proposed approach. We also plan to run these experiments on additional
real-world datasets.

The proposed imputation algorithm was implemented in R, and is freely available
at: https://www.github.com/sebastiandaberdaku/PD Impute.
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