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Abstract Motivated by limitations of adverse drug reaction (ADR) detection in
clinical trials and passive post-market drug safety surveillance systems, a number of
researchers have examined social media data as a potential ADR information source.
Twitter is a particularly attractive platform because it has a large, diverse user commu-
nity. Two challenges faced in applying Twitter data are that ADR descriptions are
infrequent relative to the overall number of user posts and human review of all posts is
impractical. To address these challenges, we framed the ADR detection problem as a
binary classification task, where our objective was to develop a computational method
that can classify user posts, known as tweets, relative to the presence of an ADR
description. We developed a convolutional neural network model (ConvNet) that
processes tweets as represented by word vectors created using unsupervised learning
on large datasets. The ConvNet model achieved an F1-score of 0.46 and sensitivity of
0.78 for tweet ADR classification on the test dataset, compared to 0.37 F1-score and
0.33 sensitivity obtained by two baseline support vector machine (SVM) models that
incorporated word embedding, n-gram, and lexicon features. We attribute the superior
ConvNet model performance to its ability to process arbitrary length inputs, which
allows it to evaluate every word embedding in a given tweet and make better use of
their semantic content as compared to the SVM models which require a fixed length,
aggregated embedding input. The results presented demonstrate the feasibility of
detection of infrequent ADR mentions in large-scale media data.
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1 Introduction

A number of recent research studies have examined social media data as a potential
resource to identify adverse drug reactions (ADRs) for post-market drug safety sur-
veillance [1–10]. The motivation to use social media data is driven by limitations in the
identification of ADRs in clinical trials and other pharmacovigilance methods. Clinical
trials, which precede a drug’s market release, are constrained by time, cost, and ethical
concerns (e.g., testing on children) and therefore cannot identify all ADRs for a given
medication, particularly rare ADRs [11–13]. Post-market passive reporting systems
such as the Federal Drug Administration’s Adverse Event Reporting System (FAERS)
are known to be limited by delayed, biased, and under reporting of events [11, 14]. In
contrast, social media data is frequently updated by large numbers of users who often
describe their health status, including the occurrence of drug-related events, and may
therefore provide a means for identifying previously unknown ADRs earlier than
passive reporting system. Twitter is of particular interest because it serves a large,
demographically diverse user base and allows free, programmatic access to user posts.
Additionally, previous research has demonstrated a significant correlation (p < 0.001)
between ADRs described on Twitter and those reported in FAERS [6] indicating that
user ADR descriptions are a reliable data source for continued investigation of known
ADRs and to prompt further investigation of previously unknown ADRs. As with any
dataset, there are inherent limitations of Twitter data for the ADR detection task. In
particular, individuals from various population segments (e.g., senior citizens) may be
unlikely to use a social media platform. Individuals suffering from certain debilitating
conditions (e.g., Alzheimer’s) or privacy sensitive conditions (e.g., AIDS) may not be
able or willing to report ADRs on a public platform. For these reasons, we view ADR
identification via Twitter or other social media data as a hypothesis generation method
that can supplement existing pharmacovigilance tools (e.g., FAERS). ADRs detected
via social media data require subsequent validation via accepted methods such as
electronic health record (EHR) analysis or clinical trials. Although it is possible to
initiate ADR detection using these standard methods, both EHR data analysis and
clinical trials are more time-consuming and costly than a potential automated analysis
of Twitter data. Hence, it is potentially beneficial to use ADRs identified in Twitter to
inform these analyses.

Although there is great potential, the scale of social media data, both in terms of the
amount of data and the frequency with which it is updated, requires automated methods
to identify and aggregate ADR descriptions. The earliest automation approaches
utilized predefined drug and ADR lexicons and string matching methods [1–4, 6].
Lexicon methods are subject to a number of limitations. In particular, they are unable to
differentiate adverse reactions from indications (the reason the drug was used). More
importantly, ADR lexicon matching in social media is extremely difficult due to the
highly variable linguistic characteristics employed in social media such as the use of
informal, non-clinical event descriptions (e.g., Bfeeling like crap^) that include frequent
misspellings, irregular grammar (e.g., Bdis aderall got me sweatin^), non-standard
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abbreviations (e.g., Blol^), and symbols (e.g., emoticons) that convey semantic infor-
mation. More recently, researchers have treated ADR detection in social media as a
machine learning problem to address these concerns. In this paradigm, the problem is
most often framed as a sequence labeling task where the input text is tokenized (i.e.,
divided into its constituent parts, or tokens, that usually correspond to individual words)
and each token is individually labeled relative to whether or not it is part of an ADR.
For example, in the input Bmy Adderall is giving me stomach pain,^ the tokens
Bstomach^ and Bpain^ should be labeled as belonging to an ADR, while the remaining
tokens should be labeled as not belonging to an ADR. The most successful ADR
sequence labeling efforts have employed conditional random field models [10] and
very recently recurrent neural networks [15]. These models perform the ADR sequence
labeling task very well when trained and evaluated on input text that is known to
contain an ADR. However, they incur high false positive rates when processing input
text that does not contain an ADR. This is a significant challenge to ADR detection in
social media because most inputs do not describe an ADR.

We propose that a fully automated system to detect ADRs in social media sources
such as Twitter may be constructed as a three-part pipeline: a classifier to identify inputs
that contain an ADR, a sequence labeler to identify the specific tokens describing the
ADR, and finally an aggregator that maps the ADR tokens to formal ontology concepts
to support analysis. The first component in the pipeline is a classifier that determines if
the input contains an ADR, without any determination of the specific tokens that
compose the ADR description. The purpose of this component is to filter most of the
inputs that do not contain an ADR description to address the high false positive errors
made by the sequence labeling component. Previous work to develop such a classifier
has relied on standard machine learning methods such as Naïve Bayes and support
vector machines (SVMs) [16]. These methods are limited by the inability to process
arbitrary length inputs, such as text. Therefore, it is necessary to perform feature
engineering to create a fixed length representation of the input text that can be
processed by the model. The feature engineering process is time-consuming and
resource intensive and generally leads to information loss that limits performance.

Here, we investigate a convolutional neural network (CNN) model designed to
classify Twitter user posts, known as tweets, relative to the presence of an ADR and
that could serve as the first component in an ADR detection pipeline. CNN models
have been used in a variety of applications since their development more than twenty
years ago [17]; however, to our knowledge, this is the first time they have been used to
detect adverse drug events in free text, such as social media. Our CNN model closely
follows known sentence classification models based on CNN architectures [18, 19].
Importantly, the model includes a pooling mechanism that allows it to process arbitrary
length inputs, which is highly advantageous for text classification. Input tweets are
represented by a matrix whose rows are real-valued vectors, known as a word embed-
dings, that are a continuous representation of the word in the tweet. The word
embeddings are formed from large, unlabeled datasets and capture latent semantic
information that has been shown to be useful in many natural language processing tasks
[20, 21]. As the embedding representations are the only model input, we avoid task-
specific feature engineering. We evaluate the performance of our CNN model on the
ADR classification task for Twitter data and compare to SVMs using both engineered
features and an averaged word embedding input.
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2 Materials and Methods

This study was determined to exempt from IRB review by The Children’s Hospital of
Philadelphia (Fig. 1).

2.1 Data Collection and Labeling

We combined two Twitter datasets in our study. We collected the first dataset, denoted
as the CHOP ADHD Dataset, between May 1st and December 31st, 2015, using the
Twitter streaming API. We collected user posts (called tweets) containing at least one
search keyword corresponding to a list of 44 brand and generic drug names of
medications commonly used to treat attention deficit hyperactivity disorder (ADHD).
To account for user misspellings, we also included phonetically similar versions of each
drug name using the approach described by Pimpalkhute et al. [22] The final search
keyword list contained 166 terms. We removed all retweets (user posts that are re-
posted by another user) and any tweet containing a URL as they are mainly advertise-
ments. From these, we randomly sampled 4402 tweets,1 which were labeled as positive
or negative for containing a primary or secondary report of a specific adverse drug
reaction. Two reviewers labeled each tweet. For event positives, the words in the text
span containing the event were also labeled. Tweets that contained an adverse event
description that was not associated with a drug were labeled as ADR negative. Two
authors independently labeled all tweets. We performed consensus reconciliation of
discordant assessment until 100% agreement was achieved. Of the labeled tweets in the
CHOPADHD Dataset, 278 (6.32%) were identified as containing an ADR.

The second dataset, denoted as the ASU ADR Dataset, was previously published and
made publicly available [10]. The ASU ADR Dataset contains tweets with at least one
keyword corresponding to a list of 74 brand and generic drugs from the IMS Health’s

Fig. 1 Experimental workflow from data collection to model evaluation

1 We originally sampled 5000 tweets. However, we found that one of our search terms, liquado, a phonetic
misspelling of the drug LiquADD, is also a common misspelling of licuado, a blended beverage similar to a
smoothie. We therefore eliminated these samples.
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Top 100 drugs by volume for the year 2013. Per the Twitter developer agreement,
authors may publish tweet IDs but may not publish the text for tweets obtained from the
Twitter APIs. The authors of the ASU ADR Dataset released annotations and tweet IDs
for 7574 tweets, of which only 4850 were available through the Twitter API at the time
of this study (Twitter does not store tweets indefinitely). Of the 4850 annotated tweets,
559 (11.51%) were labeled as containing an ADR and 4291 (88.49%) were labeled as
containing no ADR.

We combined the CHOP ADHD Dataset and the ASU ADR Dataset to form our
complete dataset for this study. We split the complete dataset into stratified training
(80%) and test (20%) sets. The training set contains 7401 tweets with 669 (9%)
containing an ADR and 6732 (91%) labeled as containing no ADR. The test set
contains 1851 tweets with 168 (9%) labeled as containing an ADR and 1683 (91%)
labeled as no ADR. The labeled ADHD dataset is available at https://github.com/chop-
dbhi/twitter-adr-blstm.

2.2 ConvNet Model Development

We developed our convolutional neural network (ConvNet) model based on previously
published models for sentence classification [18, 19]. The model is called convolutional
because it applies an approximation to the mathematical convolution operator using a
collection of kernels (two-dimensional numerical matrices) that represent local features.
The outputs of the kernels are subsequently used to classify the input tweet relative to
the presence of an ADR. We implemented and trained the ConvNet model using
version 0.8.0 of the TensorFlow library [23]. The source code for our ConvNet model
implementation and training is available at https://github.com/chop-dbhi/twitter-adr-
convnet.

2.2.1 Word Embedding Features

Prior to model development, it is necessary to derive a numerical representation of each
tweet to use as model input. For the ConvNet model, we utilized word embedding
representations to create the input. A word embedding is a vector of real values (i.e.,
decimal numbers) that represent a given word. The word embeddings are maintained in
an M X N embedding matrix where M is the dimensionality of the word representation
(i.e., the number of decimal values used to represent the word) and N is the number of
words in the vocabulary. Note that M is the same for all words. Each column of the
embedding matrix corresponds to a single word. To create an input for a tweet, we first
tokenize the tweet (i.e., divide it into its constituent tokens where each token is usually
a word) to create a token list that maintains the order the tokens appear in the tweet. We
then form a D ×M matrix representation of the tweet, where D is the number of tokens
(words) in the tweet. Thus, each row in the matrix represents a single word in the tweet.
The row order is determined by the word order in the tweet, i.e., the jth word in the
tweet corresponds to the jth row. The row values are copied from the column in the
embedding matrix that corresponds to the word. If a particular word is not in the
embedding matrix, then it is ignored. This process creates variable length inputs (i.e., D
is not the same for all tweets). Most machine learning models require fixed length
inputs. The ConvNet model can, in principle, accept variable length inputs because the
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pooling layers (described below) effectively collapse arbitrary length inputs to a fixed
size. However, for implementation convenience, we converted all training tweets to a
fixed length equal to the number of tokens in the longest tweet in the training set by
adding <PAD> tokens to tweets shorter than the longest. In the same manner, we
converted all test tweets to a fixed length equal to the number of tokens in the longest
test tweet. Note, the <PAD> token is represented by a zero vector of length M. The
effect of such zero padding is model dependent. In our ConvNet model, zero padding
only serves to inform the model that a given word is near the sentence boundary.
Consider that we first convolve a given filter across the input windows (as determined
by the filter size and stride), including possible padding. This yields W outputs for the
given kernel, where W is the number of windows. We then apply max pooling, i.e., we
take the maximum of the W values and zero, denoted as wmax. The minimum possible
value of wmax is therefore zero. Assuming a given kernel is convolved with a region
containing zero padding and noting that the convolution of an arbitrary kernel with a
zero vector is equal to zero, there are two possible outcomes for this process: (1) wmax is
greater than zero indicating the convolution is positive for some region of the input
which is necessarily not composed of only padding values or (2) wmax is exactly zero
indicating that the convolution is non-positive for all regions of the input. In the first
case, the only potential impact of the zero padding is to cancel the effect of the portion
of the kernel that is convolved with the padding. This provides the intended effect of
informing the system of sentence boundaries. In second case, the zero padding
effectively clips the negative region of the convolution output to be zero. However,
because we apply rectified linear activation units (which evaluate to zero for all non-
positive inputs) to the wmax values, there is no net effect in this second case.

We evaluated three versions of word embeddings. The first, denoted as the Generic
Embeddings, is a published dataset developed from 400 million non-domain specific
tweets for which each word is represented by 400 numerical values [24]. We developed
a second set of word embeddings, denoted as the ADHD Embeddings using approxi-
mately 500,000 unlabeled tweets from our CHOP ADHD Dataset. We generated the
word embeddings using the skip-gram model [25] architecture as implemented in the
Gensim Python library [26]. The word embedding dimension was set to 250 as
determined through a cross-validation grid search in which we considered values of
between 50 and 400 in increments of 50. Finally, we considered a concatenation of
these models in which each word is represented by 650 values where the first 400
values for the word are from the first dataset and remaining 250 values are from the
second dataset. For words present in only one of the two datasets, a (250 or 400) zero
vector was concatenated to the available (400 or 250) values from the other dataset. The
concatenated word embeddings can be viewed as a multi-channel input similar to the
different color channels in an image file. In the case of word embeddings, the multiple
channels correspond to possibly different semantics for a given word as described by
previous investigators [18].

2.2.2 Convolutional Neural Network Model Architecture

Our ConvNet model produces a binary label that indicates the presence or absence of
an ADR in the input tweet. The input tweet is first converted to a D ×M matrix where
each row corresponds to a word representation of length M as described above. The
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model includes K kernels, where each kernel is represented by a sκ ×M matrix where
sκ ≤D, noting that sκ may vary for κ ∈ [1,K]. Each kernel is convolved with the tweet
input to form a vector hi. The convolution process involves computing the dot product
of the kernel with an aligned element in a window of the input matrix. As the kernel has
fewer rows than the input, this process is repeated for each window of the input that is
the same size as the kernel. The number of windows depends on the kernel size, sκ, the
stride, s, which is the number of rows the kernel is advanced along the input before the
next convolution, and the presence of padding (the addition of zeros around the border
of the input matrix). In this work, we use a stride of one, meaning that the filter is
applied to a moving window that is stepped forward one row at a time. We do not apply
padding (commonly called valid padding). The resultant output of a given kernel
convolved with the input is a vector, cκ, of length D − sκ + 1. To each element of this
vector, we add a bias term and then apply a rectified linear activation function which
has been shown to simplify neural network training [27, 28]. A max pooling layer is
then applied in which the maximum value of each cκ is retained, yielding an output
vector, h, of length K, the number of kernels. This vector is finally passed to a fully
connected softmax layer to compute the class probabilities, i.e., the probability of the
tweet containing or not an ADR mention. The architecture is illustrated in Fig. 2. The
inputs, output equations, and parameters to be learned are detailed in Table 1.

2.2.3 Training

We trained the ConvNet model using back-propagation and batch stochastic gradient
descent to estimate the gradient of the cross-entropy error function and update the
model parameters (i.e., the kernel weights and the weights in the softmax layer). The
iterative process of error derivative estimation and parameter updates was conducted
over several epochs (i.e., one training epoch is the error derivative and weight updates
done per batch for all batches derived from the entire training set so that for multiple

Fig. 2 ConvNet architecture. The input tweet is represented as a D × M matrix, where M is the length of the
word vector representations. A collection of K kernels of size ki ×M (ki equal to 2 and 3 in this illustration with
multiple filters for each filter width) are convolved with the input to produce K outputs each of size D − ki + 1.
In the max pooling layer, the maximum of each convolution is collected into a single vector which is the input
to a fully connected softmax layer used to compute the log-probability of the presence of an ADR in the input
tweet

J Healthc Inform Res (2018) 2:25–43 31



epochs, the entire training dataset is processed multiple times). We applied dropout
regularization [29, 30] as a means for controlling model variance (i.e., overfitting). For
the ConvNet model, we implemented this by first computing the convolution and
performing the max pooling operation to generate the input vector of size K to the
fully connected softmax layer. Prior to computing the softmax layer output, we
generated a uniform random value in the range zero to one for each of the K elements
in the input vector. If the random value was above the dropout keep probability, p, the
input element was set to zero. Note, this is the same as removing the convolution kernel
that corresponds to that element for the given training sample. Additionally, we used
oversampling of positive cases (i.e., samples containing an ADR) to address class
imbalance during training. Specifically, we formed each batch by randomly selecting
half of the batch from the available ADR positive samples and half of the batch from
the negative samples so that each training batch was balanced.

We conducted training in two phases. The first phase was used to select model
hyperparameters such as the number and size of the kernels, the number of training
epochs, and the dropout keep probability. We performed a grid search over the
parameter combinations for a range of variables and evaluated each combination using
a k-fold cross-validation, with k = 5. In all, we evaluated 972 parameter combinations
as detailed in Table 2. Once the optimal parameters were identified, we trained the
model on the entire training set. The complete training process required approximately
270 h on a compute server with 72 2.3 GHz Intel Xeon CPUs and 1 TB RAM.

2.3 Baseline Models

We implemented two baseline methods for comparison with the ConvNet model: a
support vector machine (SVM) classifier using n-gram and lexicon features and an
SVM using word embedding features. As with the ConvNet model, it was necessary to
address class imbalance during training. Unlike the ConvNet model, the SVM training
procedure does not use batches with multiple epochs over the training set so that we
could not balance the training batches as was done when training the ConvNet model.
Thus, we applied a bootstrap method. Specifically, we trained each of the SVM models
with the available, unbalanced training data using a grid search and k-fold cross-

Table 1 ConvNet input, output, and parameters by layer. In all cases, κ indicates the kernel index. Note there
are K output vectors, cκ, and weight matrices,Wκ, for the convolution layer. The max function yieldsK values,
one for each output vector, cκ. The parameters D, M, and sκ indicate the number of words in the input tweet,
the word embedding length, and the size of the κth kernel, respectively. The function, f, in the convolution
layer is a non-linear activation function (a rectified linear function in this study)

Layer Input Output Parameters to be learned

Convolution x ∈ℝD ×M cκ ¼ f Wκ∙xi:iþsκ þ bκð Þ
where
i = 1, ⋯, D − sκ + 1
bκ is the κ

th element of b

Wκ∈ℝsκ�D

b ∈ℝK

Max Pooling cκ h = max cκ None

Softmax h C =Wsm ∙ h + bsm Wsm ∈ℝ2 ×K

b ∈ℝ2
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validation (k = 5) to determine the optimal model tuning parameters. We then took
random samples of 5000 tweets from our unlabeled data (unlabeled tweets collected
when forming CHOPADHD Dataset) and obtained predictions from each SVMmodel.
Tweets predicted as ADR positive were added to the training data. We repeated this
process iteratively until cross-validation accuracy no longer increased (five iterations)
yielding a new training set with 21% ADR positive samples (up from 9%). The final
SVM models were trained with this boosted training set and evaluated on the held out
test set.

2.3.1 SVM with N-gram and Lexicon Features (SVM-1)

Our first baseline model, denoted as SVM-1, is a support vector machine (SVM)
classifier with input that includes four feature types inspired by previously published
work on ADR detection in social media text [16]. The first feature set is a collection of
n-gram features (specifically unigram, bigram, and trigram) associated with each tweet.
We derived these features by identifying all unigrams, bigrams, and trigrams in the
training data to form an overall n-gram dictionary of size 158,835 terms. For a given
input tweet, a vector represents the tweet in which the value at the index of a specific n-
gram feature is set to one if that n-gram is present in the tweet and zero if it is not
present. The remaining features were based on matching concepts in a lexicon. The
lexicon contains 13,014 concepts and is a combination of a previously published ADR
lexicon [10] and selected concepts from the Consumer Health Vocabulary2 (CHF) that
corresponded to adverse events that are associated with commonly used ADHD
medications as derived from the NICHQ Vanderbilt Assessment Follow-up—PARENT
informant form. These features include a binary indication of whether an ADR was
present in the tweet, the number of lexicon hits and the sum of the hit similarity match
scores per tweet (produced by the Apache Lucene3 software package), where the latter
two features were standardized to have zero mean and unit variance. To identify lexicon
matches, we created an Apache Lucene index from the ADR lexicon concept terms and
queried the index for concept matches within each tweet, i.e., each tweet was used as a
query to the index. The result of each index query, one per tweet, is a rank ordered list
of lexicon concepts that correspond to ADRs where the ranking is determined by the

2 http://consumerhealthvocab.org
3 https://lucene.apache.org/

Table 2 Hyperparameters evaluated for ConvNet model tuning. The full cross-product of all variables was
evaluated, resulting in 972 parameter combinations

Hyperparameter Range evaluated

Filter width sets {2,3,4}, {3,4,5}, {2,3,4,5}

Maps per filter width 25, 50, 100

Dropout keep probability 0.35, 0.5, 0.65

Number of training epochs 10, 20, 30,

Ratio of positive to negative samples in each batch 0.099 (no over sampling), 0.6, 1, 1.5,

Word embeddings Generic, CHOP ADHD, concatenated
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Lucene scoring function. We used the DefaultSimilarity option in Lucene which is a
variant of Tf-Idf scoring. Although a complete description of the hit similarity compu-
tation is outside the scope of this work, we note that, in addition to several other factors,
it is a function of the term frequency, inverse document frequency, and the number of
terms in the index that were found in the tweet.4 Our additional lexicon terms and
model implementation are available at https://github.com/chop-dbhi/twitter-adr-lexicon
[15].

2.3.2 SVM with Word Embedding Features (SVM-2)

The second baseline model, denoted as SVM-2, also used a SVM method, but with
only word embeddings as input features. We considered both the Generic Embeddings
and the ADHD Embeddings described previously. A challenge to using word embed-
ding inputs for an SVM model is that the SVM model requires a fixed length input
vector. One approach to address this issue would be to set all tweets to some fixed
length, say N, either by padding or cropping each tweet to the appropriate length. This
would produce input vectors of size N times the length of the word embedding
dimension. Assuming N is at least 10, this would yield input vectors with O(1000)
values per tweet for our model. Unlike the ConvNet model, there is no parameter
sharing in the SVMmodel, and therefore such a large input vector would likely result in
severe overfitting. Instead, we addressed this issue using an input vector with dimen-
sion equal to that of a single word embedding. To generate the input vector represen-
tation for a given tweet, we first initialized a vector of zeros of the same length as a
single word embedding (400, 250, and 650 for the Generic Embeddings, the ADHD
Embeddings, and the concatenated embeddings, respectively). We then iterated through
each word in the tweet. If a word embedding was available for the word, it was added
element wise to the current input vector. The tweet input vector was then divided by the
number of words for which an embedding existed. As a final model, we considered an
input tweet representation that combined the Generic Embeddings and the ADHD
Embeddings. In this model, a 650 dimensional vector represented the tweet. For each
word in the tweet, if the word had an embedding available in both embedding sources,
the two vectors were concatenated and added to the current tweet vector. If a word was
found in one embedding source but not the other, the available vector was concatenated
with a zero vector the length of the missing vector. As before, the final vector
representation averaged over the number of words in the tweet for which at least one
embedding was available.

3 Results

We evaluated 243 hyperparameter combinations through fivefold cross-validation. The
optimal parameters for the ConvNet model architecture were Generic Embeddings, 30
training epochs, kernel sizes of 2, 3, and 4 (kernel size refers to the number of words
spanned by the kernel), 50 kernels per kernel size, and a dropout keep probability of

4 A complete description of Lucene scoring is available at http://www.lucenetutorial.com/advanced-
topics/scoring.html.
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0.5. The cross-validation F1-score had a narrow range of (0.44, 0.5) across all param-
eter combinations. This suggests the model is reasonably robust to the tuning param-
eters, at least for the particular task and dataset presented here. For the SVM-2 baseline
model, cross-validation revealed that the ADHD Embedding-derived inputs provided
the best performance.

Using the optimal hyperparameters, we evaluated the ConvNet and SVM models on
the test set, which contains 1851 tweets (168 with an ADR mention). Note that items in
the test set were never used in training. The parameters learned by the ConvNet model
can be affected by the random parameter initialization (i.e., the kernel values and
softmax layer weights) and the random selection of tweet batches during training. We
addressed this concern by performing ten training and evaluation runs. Specifically, we
randomly initialized the learned parameters, trained the model as described previously,
and then evaluated on the test set. We repeated this process ten times to obtain statistical
measures (mean and confidence intervals) of the performance parameters for the
ConvNet model on the test set. The performance results are provided in Table 3. As
indicated, the average ConvNet model performance is nearly 25% better in terms of F1-
score as compared to the either of the SVM models. We assessed the statistical
significance of these F1-score differences by McNemar’s test using exact binomial
probability calculations [31] for which the maximum p value between the ConvNet
model and either of the SVM model predictions over the ten ConvNet training and
evaluation runs was 4.6e-13 indicating a clear statistical significance in the model
predictions. The superior performance of the ConvNet model relative to the SVM
models is attributable to a 133% increase in sensitivity with only a 25% loss in
precision. Noting that only 9.1% of the test tweets contain an ADR description, this
result suggests that the ConvNet model is better at detecting the few tweets that contain
ADR descriptions, while maintaining nearly the same ability as the SVM model to
control false positives.

We found that the methods used for addressing class imbalance for both the
ConvNet (oversampling) and SVM (boosting) models were of critical importance.
For comparison, we evaluated model cross-validation performance with the original
unbalanced training datasets. For our ConvNet model, this resulted in randomly
selected training batches whose average class distribution is approximately that of the
overall imbalanced dataset. The best performance (taken over the grid of the remaining
hyperparameters) corresponded to cross-validation average metrics of F1-score, 0.204;
precision, 0.748; and sensitivity, 0.119. Similarly, for the SVM-2 model, we evaluated

Table 3 Test set performance metrics. SVM-1 indicates the support vector machine model trained with n-
gram 1-hot vectors and lexicon features. SVM-2 indicates the support vector machine model trained with
inputs derived from the ADHD Embeddings. For the convolutional neural network (ConvNet) model, the
mean and 95% confidence intervals over ten training and evaluation runs are shown

Model Accuracy F1-score Precision Sensitivity

ConvNet 82.0% (77.5–86.5%) 0.457 (0.419, 0.495) 0.337 (0.288, 0.386) 0.780 (0.716, 0.845)

SVM-1 90.3% 0.366 0.448 0.310

SVM-2 89.5% 0.365 0.403 0.333

Values in italics indicate the best performance for a given metric
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cross-validation performance without boosted samples and obtained average metrics of
F1-score, 0.261; precision, 0.692; and sensitivity, 0.161. For both models, the results
are significantly lower than the test set performance indicated in Table 3 where
oversampling was used. We also evaluated the ConvNet model with the boosted data
samples used to train the SVM model. First, we evaluated performance by adding the
boosted samples and maintaining the resulting positive to negative class sample ratio of
0.166 in the training batches. This setting is the closest match to the boosted training
method used to train the SVM model. We found that the average cross-validation
performance was poor compared to the setting in which training batches were nearly
balanced, suggesting that the ConvNet model is more sensitive to class imbalance than
the SVM models. We also evaluated the ConvNet performance using the boosted
samples while balancing the class ratio as before. In this case, the performance showed
no statistically significant difference as compared to not using the boosted samples
when balancing the training batches.

We also considered an ensemble approach for the ConvNet model, in which the
predicted class (ADR present or not) was determined by the majority vote of the ten
individually trained models (all models had the same architecture and training samples,
but were initialized with different random weights at the start of training). In the event
of a tie, the tweet was considered to be negative for an ADR. This produced slightly
better results than the average performance of the individual models: 84% accuracy,
0.476 F1-score, 0.338 precision, and 0.804 sensitivity. Using the ensemble model, we
can also evaluate the Receiver Operating Characteristic (ROC) curve and the Precision-
Recall (PR) curve of the ConvNet model. An ROC curve illustrates the tradeoff
between controlling false positives and negatives through the dependence between
sensitivity and precision as a function of the classification decision threshold. The ROC
area under the curve (AUC) is a point metric that is often used to assess model
performance. Similarly, the PR curve illustrates the balance between sensitivity (aka
recall) and precision and is often more informative for imbalanced data such as our test
set. The ROC and PR curves of the ConvNet and SVM-2 models are shown in Fig. 3
and Fig. 4, respectively. The ROC curves indicate the ensemble ConvNet model is
better able to simultaneously control false positives and negatives relative to the SVM
models. Further, it may be tuned to better control false positives (i.e., improve
precision) without drastically reducing sensitivity by altering the positive decision
probability threshold from the default of 0.5. For example, if the decision threshold
for the ADR class is set to 0.65 for the ensemble model, the F1-score increases to
0.522.5 This increase in F1-score results from an increased precision (0.445) but with
decreased sensitivity (0.631). This result is also reflected in the PR curve of Fig. 4. This
suggests the decision threshold can be adjusted to control precision and sensitivity as
warranted by a particular application. Closer analysis of that figure, however, indicates
that this tradeoff has significant limitations. First, the only points with precision above
0.6 are those with less than 0.1 recall. Second, the rate of decrease of precision
increases as recall increases. In particular, for recall values above 0.7, the precision
falls of quickly to below 0.2. There is also a nearly flat region for recall between 0.2 and

5 The optimal threshold in the given example was selected using the test set. Results are for illustrative
purposes only. As with any model tuning parameter, selection of a threshold that yields generalizable
performance would require a cross-validation study.
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0.6 where precision remains above 0.5 which is encouraging as it suggests robustness
of the model in this region.

4 Discussion

4.1 Learning Curve Analysis

With any machine learning model, there is concern about overfitting to the data, that is
the model performance sensitivity to training data variance. An important factor that
influences overfitting is the number of parameters learned in the model relative to the
training sample size. Our best performing ConvNet model contains 112,801 learning
parameters. This is a relatively large number of parameters as compared to the training
sample size. To address this concern, we implemented dropout regularization which is

Fig. 3 The Receiver Operating Characteristic (ROC) and ROC area under the curve (AUC) for ConvNet and
SVM-2 models. The dashed line is the expected performance of a random binary classifier. AUC values closer
to 1.0 indicate high performance with low false positive and false negative rates

Fig. 4 The Precision-Recall and Mean Precision for ConvNet and SVM-2 models. Average precision values
closer to 1.0 indicate better performance
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intended to counter potential overfitting. Nonetheless, overfitting remains a concern. To
evaluate overfitting in our models, we now consider learning curve plots. A learning
curve is a plot of a selected performance metric as a function of the number of training
samples. Two curves are generated, one each for the training and validation sets. In the
absence of bias (insufficient model complexity) and variance (sensitivity to the data
sample), both the training and validation curves will approach the optimum metric
value as the training set size increases. In the presence of variance, the training curve
will approach the optimum value, however the validation curve will not. In the
presence of bias, the training and validation curves will fail to approach the optimum
value. Learning curves for the ConvNet and SVM-2 models are shown in Fig. 5. For
the ConvNet model, the learning curve indicates variance is present as evidenced by the
separation between the training and cross-validation curves in the limit of large training
set size. Recall that for the ConvNet model, the available training examples are repeated
across training epochs. In the learning curve of Fig. 5, the ConvNet (left side)
performance does not plateau until after 1000 training batches, at which point it has
been exposed to the complete training set nearly nine times (i.e., 1000 batches is 8.7
epochs). Therefore, it is reasonable to infer that variance may be reduced with
additional labeled training samples. The learning curve also suggests the presence of
bias indicated by the failure of both the training and validation curves to approach the
optimal loss value of zero. This is likely due to the fact that the only model inputs are
the word embeddings with finite-sized convolution kernels. These features fail to
capture information between words that are separated by distances longer than the
kernel width, where in this study, the maximum width was four. It is possible that
additional features such as part-of-speech tags and lexicon information may reduce bias
for this model.

4.2 Error Analysis

The ConvNet model had relatively low precision on test set (see Table 3), implying that
false positive errors had the strongest impact on overall model performance. We

Fig. 5 Learning curves for ConvNet and SVM-2 models. The performance metric, cross entropy loss, has an
optimal value of zero. For the ConvNet model (left), each training batch contains 64 tweets (115 training
batches is approximately one epoch, i.e., 7360 training examples). Note that for the ConvNet model, training
samples are repeated across epochs. Performance is evaluated by fivefold cross-validation. The symbols
indicate the mean value over the fivefolds and the shaded region indicates one standard deviation. Behavior for
the SVM-1 model (not shown) is similar to that of the SVM-2 model
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qualitatively examined the ConvNet model false positive errors to better understand the
nature of these errors (see Table 4). The most frequent type of false positive error
(38.9%) can be attributed to the presence of a symptom description or ADR-related
word in the tweet that is not directly attributed to the drug or to a specific individual.
Another important and interesting category of false positive error occurs for tweets that
contain vague event descriptions (11.1%). The tweets associated with these errors
contain descriptions of events that are attributed to the drug but are not easily defined
in a clinical sense. Errors due to the misrecognition of indications were also common
(10.3). In total, these error sources account for 60% of all false positive errors. In all
such cases, it is unlikely that word features alone, as used by the ConvNet model, are
sufficient to distinguish from ADR positive cases, again implying that additional
features are necessary to improve model performance.

4.3 Limitations

The characteristics of our Twitter dataset represent the most significant limitation
of this study. In particular, the labeled tweet dataset is relatively small and
therefore the presented results may not generalize to other drug and ADR types
described in Twitter posts. It is possible that there are semantic differences
between the ADRs mentioned in our dataset and other rare ADRs or with ADRs
associated with drugs that were not represented in our data. Similarly, the results
may not generalize to other data sources, particularly those with different linguis-
tic characteristics. The unique linguistic style of tweets, driven by the restriction to
140 characters and use of vernacular, strongly differentiate the data from that of
other social media sites or from formal sources such as biomedical literature and

Table 4 Author’s classification of false positive errors made by the ConvNet model. The bold text in the
Example column indicates the portion of the tweet that matches the error classification category

False positive
classification category

Example Percent of false
positive errors

Symptom description/
ADR-related word

maybe its just me but i dont think its really
Bprogression^ if you lose weight from
taking adderal or vyvanse.

38.9

Vague event
description

10 gs of focalin got me organizing my
thoughts in alphabetical order.

11.1

Indication @MENTION have you tried any? I take
Effexor for my anxiety, it works really well.

10.3

Negated reaction @MENTION i’ve cut my son’s intake of carbs
by half and he seems more awake and
doesn’t gain weight like he used to.
methylphenidate slow

1.2

Drug benefit @MENTION not what you think, I don’t
have money for that. It’s my adderal &
Paxil making me happy.

2.4

Other @MENTION Yes, it is so frustrating. I’m
already on the highest dose of Effexor
and taking a relatively low dose of Lamictal.

36.1
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clinical notes. To further determine the generalizability of the presented method to
data sources with significantly different linguistic styles requires that we first
formulate word embeddings derived from the new source (e.g., clinical notes).
Following that, it would be necessary to label a data sample relative to the
indication of ADRs and then train and evaluate the model. Fortunately, relevant
datasets exist (e.g., Multiparameter Intelligent Monitoring in Intensive Care
[MIMIC] III [32]), and this is a focus of our continuing research.

Another concern is the number of words in the training and test sets that do not
appear in the word embedding data. We identified 2756 words (32.6% of all
words) in the training and test tweets that did not appear in either the Generic
Embeddings or the ADHD Embeddings. This occurs whenever a given word in the
training or test data is not in any tweet in the corpus used to form the embeddings.
In a cursory analysis, we found that nearly all of the missing words were
usernames, hash tagged phrases (e.g., #singlepayernow), or misspellings. It is
possible that hash tagged phrases and misspelled words could provide additional
information that would have boosted model performance. As a possible area of
future research, we hypothesize that it may be possible to reduce the frequency of
missing words by attempting to break hash tagged phrases into the constituent
words and by incorporating a spell checker for unmatched words, thereby adding
more useable information to the inputs.

In addition to the technical difficulties noted above, there are additional limi-
tations associated with Twitter data for ADR analysis. The data provided by the
Twitter platform does not include user demographic information such as age,
gender, or geographic location. In the data we collected, users did not typically
provide such data in their public profile. Additionally, user posts did not typically
provide information on disease or comorbidity history. This may be due to the 140
character constraint for Twitter posts or it may reflect a reluctance to share such
information. Whatever the reason, the lack of such information prevents analysis
that may reveal deeper knowledge of ADRs based on such context. We plan to
explore methods that may overcome this limitation with an interactive information
system that contacts users to request more detailed information when a potential
ADR is detected in Twitter data.

5 Conclusion

Our results indicate that convolutional neural network models that use pretrained word
embeddings as the only input features can effectively classify text from social media,
specifically Twitter, relative to the presence of an ADR. The results indicate statistically
significant superior F1-scores and sensitivity compared to standard baseline methods,
which reflects the success of this approach in other natural language processing tasks.

An important aspect to the success of the ConvNet model was the use of word
embeddings that encode semantic information derived from a dataset that is much
larger than the labeled set used to train the classifier. The semantic information
manifests through the formation of word embedding vectors that are close to each
other in the embedding space for words that share similar meaning. Importantly,
the Generic Embeddings were formed from a very large set of tweets that capture
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much of the lay terminology used to describe adverse events in user tweets. This
implies that the ConvNet model may recognize ADR related-words (or phrases) in
the test set that were not present in the training set so long as the word embedding
representations are similar. This occurs because the kernel parameters learned
during training to detect a given ADR word (or phrase) present in the training
set produce a similar convolution output for semantically similar words (or
phrases) in the test set assuming the words have nearly equivalent embeddings.
This result is aligned with similar results in so-called transfer learning [33]. This
phenomenon is highly advantageous because such word embeddings can be
created using unsupervised learning methods that easily scale to large, unlabeled
datasets which are usually readily available at low cost. As these embeddings are
the only features used by our model, we avoid requirements for task-specific
feature engineering thereby achieving simplicity over systems requiring expert-
engineered input features that are typically difficult and expensive to develop.
Finally, we contend that the ConvNet model is better able to leverage the semantic
information encoded in the word embeddings than other standard models as
evidenced by the superior performance relative to an SVM model that also used
word embedding inputs. This is likely due to the fact that, through the convolution
process combined with pooling, the ConvNet model is able to process arbitrarily
sized inputs. This is in contrast to most machine learning models, including
SVMs, which require fixed length inputs. In practical terms, when using word
embeddings, this constraint forces the SVM input to either be very large
(O(10,000) in this study, i.e., the number of words in the largest tweet multiplied
by the word embedding length) or to be formed as an aggregation of the embed-
dings (as with the average embedding in this study). The former is likely to cause
severe overfitting (variance) due to the large number of parameters to be learned,
which is avoided in the ConvNet model by weight sharing, i.e., the kernel weights
are reused across the entire input as opposed to having a parameter for each input
dimension. In the latter case of aggregation, there is information loss in the input
and reduced model capacity.

As a long-term objective, we seek to create an automated system that aggre-
gates information on the occurrence of ADR reports in large-scale social media
data. Such an automated system must identify the specific spans (a group of
words) within an input text that describe an ADR and map such spans to known
ontology vocabulary terms. Current state-of-the-art methods for identifying the
ADR-specific spans, including our recent work [15], perform well when presented
with an input text that is known to contain an ADR span; however, performance
suffers from high false positive rates (i.e., incorrect labeling of spans as ADRs)
when the input includes text without an ADR. The ConvNet results indicate that it
is feasible to classify tweets relative to the presence of an ADR at scale with good
sensitivity, which is important for recognizing rare ADRs, while maintaining an
acceptable specificity. The ConvNet model may therefore serve as the first com-
ponent in an automated system, wherein the text input is first classified relative to
ADR presence, and the text span-labeling model processes only ADR positive
tweets. The remaining step of mapping ADR text spans to known ontology terms
has received little attention for ADR detection in social media and is an area of
exploration for our future work.
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