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Abstract Consumer sleep tracking technologies offer an unobtrusive and cost-efficient
way to monitor sleep in free-living conditions. Technological advances in hardware and
software have significantly improved the functionality of the new gadgets that recently
appeared in the market. However, whether the latest gadgets can provide valid mea-
surements on overall sleep parameters and sleep structure such as deep and REM sleep
has not been examined. In this study, we aimed to investigate the validity of the latest
consumer sleep tracking devices including an activity wristband Fitbit Charge 2 and a
wearable EEG-based eye mask Neuroon in comparison to a medical sleep monitor.
First, we confirmed that Fitbit Charge 2 can automatically detect the onset and offset of
sleep with reasonable accuracy. Second, analysis found that both consumer devices
produced comparable results in measuring total sleep duration and sleep efficiency
compared to the medical device. In addition, Fitbit accurately measured the number of
awakenings, while Neuroon with good signal quality had satisfactory performance on
total awake time and sleep onset latency. However, measuring sleep structure including
light, deep, and REM sleep remains to be challenging for both consumer devices.
Third, greater discrepancies were observed between Neuroon and the medical device in
nights with more disrupted sleep and when the signal quality was poor, but no trend
was observed in Fitbit Charge 2. This study suggests that current consumer sleep
tracking technologies may be immature for diagnosing sleep disorders, but they are
reasonably satisfactory for general purpose and non-clinical use.
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1 Introduction

With new gadgets entering the market every year, the field of consumer sleep tracking
has been expanding rapidly under the influence of the Quantified Self movement [1].
Consumer sleep tracking devices enable the collection of longitudinal sleep data in non-
clinical settings, which helps individuals understand sleep patterns and circadian
rhythms in an unobtrusive and cost-efficient fashion [2]. Common sleep tracking
devices, such as Fitbit and Jawbone, estimate sleep quality based on movement data
measured by embedded accelerometers. Previous validation studies suggest that these
devices tend to overestimate sleep and underestimate wake compared to clinical sleep
monitors [3–5].

The findings from previous validation studies, however, may become out of date as
new gadgets are release on the market. The manufacturers have been continuously
improving the hardware and software of the wearable wristbands to reduce the dis-
crepancy to clinical devices, and new functions such as sleep structure (light, deep, and
REM sleep) detection have recently become available in new wristbands Fitbit Charge
2. On the other hand, new types of consumer sleep trackers based on electroenceph-
alography (EEG) such as Neuroon and SleepShepherd also appeared in the consumer
market. These EEG-based sleep trackers are claimed to be more accurate than
accelerometer-based wristbands, but no study has validated this claim.

Therefore, the research community is calling for more validation studies on these
devices especially in free living conditions [6]. In response to such need, this paper
aimed to provide an update to the validity of the consumer sleep tracking technologies.
We investigated the validity of two most up-to-date consumer wearable sleep tracking
gadgets, i.e., Fitbit Charge 2 and Neuroon EEG eye mask. They were selected as the
representatives of accelerometer-based devices and EEG-based devices, respectively,
because they are popular, affordable and are available to be purchased online. In
addition, Neuroon EEG eye mask is the only wearable EEG device that can be used
concurrently with clinical devices due to sensors placement. In this study, we investi-
gated the validity of consumer sleep trackers in measuring five overall sleep parameters
including total sleep time (TST), wake after sleep onset (WASO), number of awaken-
ings (NAWK), sleep onset latency (SOL), and sleep efficiency (SE), and sleep structure
including light, deep, and REM sleep. These dimensions are the most measurable
characteristics of human sleep and are closely related to health and well-being [7, 8].
The measurements of a clinical portable sleep monitor named SLEEP SCOPE (Sleep
Well Co., Osaka, Japan) were used as the ground truth to compare with.

Analysis found that both Fitbit and Neuroon (when the signal quality of the
electrodes was good) produced accurate results on TST and SE when compared to
the medical device. In addition, good agreement was found on NAWK for Fitbit and on
WASO and SOL for Neuroon, respectively. However, measuring sleep structure
determined by sleep stage transitions was challenging for both devices. Regardless of
the differences in hardware and software, both Fitbit and Neuroon (with good signal)
underestimated light sleep while overestimated deep sleep in comparison to the medical
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device. Moreover, Fitbit underestimated REM and overestimated SOL, whereas
Neuroon underestimated NAWK and overestimated REM. These results indicate that
new mechanism and algorithms have improved the accuracy of consumer sleep
tracking devices in measuring some of the overall sleep parameters, but there is still
large room for improvement especially on sleep stage detection.

In what follows, we first summarize related work in the domain of human sleep and
provide a literature review on the validation of consumer sleep-tracking technologies.
We then describe the method that was used to validate the latest consumer devices in
this study. In Sect. 4, we present the results of statistical analysis. Section 5 discusses
how the analysis results updated the findings of previous studies. We also highlighted
three directions for future research. By clarifying the strength and weakness of con-
sumer sleep tracking technologies, this study can help both end-users and researchers
select devices that best suit their needs.

2 Related Work

2.1 Fundamentals of Human Sleep

Human sleep can be measured along multiple dimensions such as quantity, continuity,
and timing [9, 10]. Focusing on the most measurable characteristics of sleep that are
closely related to physical and mental well-being, five dimensions are used to quantify
sleep health [7]: sleep duration, sleep continuity or efficiency, timing, alertness/sleep-
iness, and satisfaction/quality.

The multiple dimensions of human sleep can be measured both objectively and
subjectively [7]. Subjective methods include the Pittsburgh Sleep Quality Index (PSQI)
[11] and sleep dairy [12]. The PSQI questionnaire is widely used in clinical settings for
rough evaluation of sleep quality over the past 1 month. Nevertheless, PSQI may fail to
capture the inter-night sleep variations. In contrast, sleep diary can be used to collect
longitudinal sleep data for understanding long-term trends and patterns of sleep [12].

The objective methods for measuring human sleep focus on analyzing a set of sleep
parameters [13], including total sleep time (TST), wake after sleep onset (WASO),
number of awakenings (NAWK), sleep onset latency (SOL), sleep efficiency index
(SE), REM sleep latency, total time in each sleep stage, and sleep stage ratio [14].
Human sleep that satisfies the following range is generally considered as abnormal:
SOL ≥ 46 min, WASO ≥ 41 min, NAWK (for awakenings longer than 5 min) ≥ 4, SE <
75%, REM ratio ≥ 41%, Stage 1 sleep ≥ 21%, Stage 2 sleep ≥ 81%, and Stage 3 + 4
sleep < 10% [15–17]. However, since people’s sleep needs varies significantly, there
may be a wide spectrum of acceptable sleep structures in addition to the recommended
standards. Polysomnography (PSG) and actigraphy are widely used tools for objec-
tively measuring sleep in clinical settings. A PSG test measures a whole set of sleep
parameters as well as many other physiological signals and is mainly used for diag-
nosing sleep diseases [14]. On the other hand, actigraphy is a wristband-like device that
is widely used for diagnosing circadian-related disorders [18, 19]. A common problem
of actigraphy is the underestimation of wake and overestimation of sleep [20].

Despite of measuring the same phenomenon, subjective sleep quality and objective
sleep quality characterize different aspects of human sleep and are only modestly
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correlated [7, 8, 21]. Subjective sleep quality may not reliably reflect sleep patterns in
some populations as people may have distorted impression on their sleep quality
[22–26]. Therefore, we assessed the validity of consumer devices in comparison to
objective sleep quality measured by a portable medical sleep monitor.

2.2 Validity of Consumer Sleep Tracking Technologies

Consumer sleep-tracking technologies help individuals monitor and reflect on sleep in
home settings and enable researchers to conduct large-scale longitudinal studies at low
cost. This field is expanding very rapidly, and new devices are entering the market
every year. Based on the mechanisms of the technologies, consumer sleep tracking
tools can be divided into two categories: accelerometer-based devices (e.g. mobile
apps, activity wristbands, smart mattress) and EEG-based devices (e.g. ZEO headband,
Neuroon eye mask, Sleep Shepherd headband). Comprehensive reviews on recent
developments in home sleep-tracking devices and mobile apps can be found in [27–31].

A number of studies have quantitatively and qualitatively evaluated the validity of
consumer sleep tracking devices. Quantitative validation studies compared the data
obtained from consumer sleep tracking devices to measurements by clinical devices or
instruments including PSG, actigraphy, and PSQI [27]. These studies mainly validated
previous models of popular activity trackers for home sleep tracking, including Fitbit
Tracker [32], Fitbit Ultra [4], and Jawbone [5, 33]. A few studies also investigated the
accuracy of some mobile apps such as Sleep Time [34, 35]. These studies found that
activity wristbands had the common problem of underestimating sleep disruptions and
overestimating total sleep time and sleep efficiency in healthy adults. A few studies also
analyzed the ability of consumer sleep trackers to measure sleep stages and found no
correlations between these devices and PSG [5, 36].

Researchers in human-computer interaction have also investigated the validity of
consumer sleep tracking technologies from user’s perspectives. The long-term impact
of sleep-tracking was studied in [37], and measurement accuracy was highlighted as
one of the main obstacles for improving sleep health using consumer sleep trackers.
Following the same line, the authors of [38] investigated the sources of measurement
errors and proposed countermeasures.

This study was designed to assess the validity of the latest consumer sleep trackers in
measuring sleep structure as well as overall sleep parameters in free-living conditions,
aiming at helping both individual users and researchers make informed decisions when
adopting consumer sleep tracking devices for personal use and for scientific studies.
This study provided new insights on the validity of activity wristbands and wearable
EEG for home sleep tracking, and the results offered rich implications for future studies
in this field. Specially, we were interested in the following three questions:

1. Do new consumer sleep tracking devices expand the ability of previous models in
measuring sleep parameters including sleep structure in free-living conditions?

2. Are wearable EEG devices more accurate than activity wristbands for measuring
sleep?

3. What are the limitations of these devices?
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3 Methods

3.1 Sleep Parameters

Human sleep can be measured along multiple dimensions such as quantity, continuity,
and timing [9, 39]. The outcome variables in this study were overall sleep parameters
including total sleep time (TST), wake after sleep onset (WASO), sleep onset latency
(SOL), number of awakenings (NAWK), sleep efficiency (SE), and sleep structure
including light, deep, and REM sleep. These parameters are the most measureable
characteristics of sleep that are closely related to physical and mental well-being [7],
and some of them such as SOL and WASO are important indicators of sleep disorders
[39–42]. The sleep parameters and their definitions are summarized in Table 1.

3.2 Devices

3.2.1 Fitbit

The Fitbit Charge 2 is a wearable activity wristband that tracks the frequency and
intensity of a user’s movements with an embedded triaxial accelerometer. It tracks sleep
in addition to physical activity, workout, and calorie consumption. The normal sleep-
recording mode was used during the data collection process, which accounts
Bsignificant movements (such as rolling over) as being awake, and is appropriate for
most users^ according to the manufacturer’s website [43].

A Fitbit Charge 2 can automatically detect the start of sleep if a user has not moved
for approximately 1 h. The reliability of the automatic detection was investigated in this
study, and the results are presented in Sect. 4.2. The movement data were collected in 1-
min epochs by default. After being synchronized to the Fitbit database, these data are
mapped to aggregated sleep parameters such as total minutes asleep and minutes awake

Table 1 Definition of sleep parameters

Sleep parameters Definition

Total sleep time (TST) Time in minutes from sleep onset to sleep offset less the wake time; equal to the
total of all REM and NREM sleep

Wake after sleep onset
(WASO)

Periods of wakefulness occurring after defined sleep onset

Light sleep The first and second stages of NREM sleep during which the heart rate slows and
body temperature decreases

Deep sleep The third stage of NREM sleep during which more slow-wave is observed and
individuals have high awakening threshold to nonsignificant stimuli

REM sleep A stage of sleep characterized by rapid eye movements and associated with
dreaming

Number of awakenings
(NAWK)

The number of awakenings occurring after defined sleep onset

Sleep onset latency
(SOL)

Time in minutes from Blight out^ to the first epoch scored as sleep

Sleep efficiency (SE) Percentage of total time in bed spent in sleep
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using proprietary software and algorithms. The final results are then shown to the end
users on the Fitbit dashboard. Since July 2017, Fitbit Charge 2 updated its software and
started to use new algorithms that integrate heart rate data with movement data for sleep
staging, which enables the device to detect sleep structure including light sleep, deep
sleep, and REM sleep. Two screenshots of the Fitbit dashboard are shown in Fig. 1. The
left one shows sleep readings inferred only from movement data, and the right one
shows sleep stages inferred from a combination of heart rate data and movement data.

3.2.2 Neuroon

Different from Fitbit Charge 2, Neuroon is a wearable EEG eye mask that estimates a
user’s sleep based on the measurement of brainwave. This is done by using an
embedded single channel EEG sensor. Neuroon was developed exclusively for sleep
tracking, and it is claimed to be the first consumer sleep-tracking device that uses the
same mechanism as portable clinical EEG sleep monitors. According to the manufac-
turer, Neuroon can also track other sleep-concurrent physiological parameters such as
heart rate, eye ball movements, body temperature, and body movements. All these data
were used to estimate overall sleep parameters and sleep stages by the company’s
proprietary algorithms. According to the manufacturer’s website [44], the accuracy of
Neuroon reached up to 94% compared to PSG. Figure 2 shows two screenshots of the
Neuroon dashboard.

3.2.3 Sleep Scope

As shown in Fig. 3, Sleep Scope is a portable clinical 1-channel EEG device developed
by the Sleep Well Company based in Osaka, Japan. Sleep Scope has been previously
validated against PSG and achieved 86.9% agreement (average Cohen’s Kappa value =

Fig. 1 Screenshots of sleep data on Fitbit dashboard. Sleep readings inferred only from movement data (left)
and sleep stages inferred from a combination of heart rate data and movement data (right)
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0.753) [45]. Given that the average inter-scorer reliability on sleep stage scoring is
82.6% [46], Sleep Scope agrees well to PSG. We chose Sleep Scope as an alternative of
PSG because the purpose of this study was not to diagnose sleep problems. Sleep
Scope is more portable and less obtrusive in comparison to PSG, and it can be used to
monitor sleep at a user’s home, though still not as convenient as wearable devices. A
Sleep Scope device uses two electrodes to be placed on the forehead and behind an ear.
In this study, we used gel-type electrodes to improve the accuracy of EEG measure-
ment. The data (i.e. raw EEG signals) from Sleep Scope need to be sent to the company
for analysis. A sleep report will be generated based on the analysis and a sample report
is shown in Fig. 4.

Fig. 2 Screenshots of Neuroon dashboard. Overall sleep parameters (left) and sleep structure (right)

Fig. 3 Single-channel EEG clinical sleep monitor Sleep Scope (picture credits: https://sleepwell.co.jp/)
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Fig. 4 A sample report of Sleep Scope (in Japanese only)

J Healthc Inform Res (2018) 2:152–178 159



3.3 Study Procedure

3.3.1 Participants

We recruited 25 participants by distributing posters around the campus of the University
of Tokyo. Screening conditions included no chronic conditions, no severe sleep
problems or mental diseases, and being able to attend a briefing in person. There was
no requirement on age, gender, and nationality. Participants filled in a PSQI (Pittsburg
Sleep Quality Index) [11] questionnaire to establish a baseline of their sleep quality.
The PSQI is a widely used instrument for assessing subjective sleep quality averaged
over the past 1 month, and a PSQI score equivalent to 5 or higher is indicator of poor
sleep. The demographic information of the participants is summarized in Table 2.
Ethics approval was obtained from the Ethic Committee of the University of Tokyo
(Ethics ID: KE16–83). All participants provided informed consent.

3.3.2 Data Collection Procedure

Before the start of the self-tracking experiment, we held a briefing with each participant
individually. In the briefing, we installed the Fitbit and Neuroon apps on participants’
smartphones and explained how to use all the devices. We also explained the purpose
of this study and informed the participants that they were free to stop the experiment if
they noticed any discomfort. After the briefing, each participant was given the follow-
ing items: a Fitbit Charge 2, a Neuroon, a medical device Sleep Scope, and necessary
accessories such as chargers and batteries.

Thereafter, each participant tracked their sleep for three consecutive nights using all
three devices concurrently. The self-tracking experiment took place in participants’
homes. Fitbit Charge 2 and Neuroon were worn on the non-dominant wrist and on the
lower forehead, respectively. The two electrodes of Sleep Scope were attached to the
upper forehead and behind an ear, while the main body of the device was placed beside
the participant’s pillow. During the experiment, the participants did not need to charge
the Fitbit as one charge lasts for more than 1 week. On the other hand, the battery of
Neuroon only lasts for a couple of days, and we asked the participants to charge their
Neuroon devices every morning after waking up to avoid device failures due to power-
off. When participants completed the self-tracking experiment, they returned all the
devices to us and received a coupon ($55) as appreciation for their participation.

Fitbit data were retrieved through Fitbit public API using a web application named
SleepExplorer [47] which we developed in our previous study. Neuroon data were
manually retrieved from the dashboard as there was no public API available. The EEG

Table 2 Demographic information of participants

Age (years) PSQI

All (n = 25) 24.8 ± 4.4 4.4 ± 2.3

Women (n = 10) 25.1 ± 3.6 3.8 ± 1.4

Men (n = 15) 24.7 ± 2.9 4.8 ± 2.8
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data from the medical monitor were extracted from the SD card of the device and were
forwarded to the Sleep Well Company for analysis. At the Sleep Well Company, raw
EEG data were routinely analyzed at 30-s epoch, and the sleep stages were determined
using proprietary automatic scoring system. The validity of the sleep staging was then
visually assessed epoch-by-epoch by specialists according to sleep scoring standards
[48], and corrections were added when necessary. We analyzed the second night for
each participant to remove Bthe first night effect^ [49], which is a common practice in
sleep research [50, 51]. If any of the devices produced obviously wrong data on the
second night, the third night was analyzed; the first night was analyzed only when the
data of both the second and the third night were unreliable. Eventually, we obtained a
dataset with 25 data entries.

3.4 Data Analysis

3.4.1 Data Preprocessing

Since consumer sleep trackers have their own naming scheme of the sleep parameters,
the first step in data processing was to clarify the definitions of the sleep parameters in
all devices and to ensure that the parameters measured the same underlying phenom-
enon across devices. As is summarized in Table 3, the sleep parameters measured by
Fitbit and Neuroon were mapped to well-defined terminology in sleep science. For
example, the length of sleep was described using Minutes Asleep by Fitbit and Sleep
Duration by Neuroon. However, these two measures were correspondent to different
terminology in sleep science; the former refers to total sleep time (TST), while the latter
refers to time in bed (TIB). Similarly, the Sleep Score calculated by Neuroon did not
have clinical meaning, and we had to calculate Sleep Efficiency according to its
definition in sleep science, which is the ratio of the total time spent sleep (TST)
compared to the total amount of time spent in bed (TIB). In addition, Neuroon only
provided the ratio of each sleep stage, and there was no information on the duration of
each sleep stage. Assuming that participants stopped the device immediately upon

Table 3 Mapping sleep parameters measured by consumer sleep trackers to clinical terminology

Clinical terminology Fitbit Neuroon

Total sleep time (TST) Minutes asleep Sleep duration − time
awake

Wake after sleep onset (WASO) Minutes awake Time awake

Stage N1 +N2 (light sleep) Light Light ratio × sleep duration

Stage N3 (deep sleep) Deep Deep ratio × sleep duration

REM sleep REM REM ratio × sleep
duration

Number of awakenings
(NAWK)

Number of awakenings + number of
restlessness

Number of awakenings

Sleep onset latency (SOL) Time to fall asleep Time to fall asleep

Sleep efficiency (SE) Sleep efficiency 1 − Time awake
Sleep duration
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waking up, we calculated the duration of each sleep stage for Neuroon by multiplying
the ratio of each sleep stage by Sleep Duration.

3.4.2 Statistical Analysis

The validity of a consumer sleep tracking device refers to how well this device actually
measures the underlying sleep phenomenon in comparison to the ground truth [52, 53].
To gain a sense of the overall performance of Fitbit Charge 2 and Neuroon, we
compared them to the medical device using the following statistical techniques.

– Box-and-whisker plot [54] was used to create intuitive display of the distribution of
sleep data measured by three devices based on minimum, first quartile, median,
third quartile, and maximum.

– Wilcoxon Signed-Rank test [55] was used to quantitatively compare the overall
distribution of the measurements by the consumer trackers and that of the medical
device. It is worth noting that WSR test was chosen over t test given the relatively
small sample size and thus the potential non-normality of the dataset [56, 57].

– Bland-Altman plot [58] was used to examine the level of agreement between the
consumer devices and the medical device. In clinical settings, if the within-mean
differences equal ± 1.96 SD (standard deviation) are not clinically important, then
the two devices are equivalent and may be used interchangeably [53].

– Pearson correlation coefficient was used to assess the linear relationship between
the consumer devices and the medical device.

Similar to the criteria used in [59, 60], we defined the acceptable error range as
≤ 30 min for TST and < 5% for SE. For other sleep parameters and sleep structure, we
determined an error rate of 5% (p = 0.05) to be within acceptable limits since this
approximates a widely acceptable standard for statistical significance in health sciences
research [61]. The analysis results are described in detail in the next section.

4 Results

4.1 Descriptive Statistics

Compared to the medical device, Fitbit Charge 2 showed lower values for TST (Fitbit
338.2 ± 94.1 min; medical device 350.5 ± 94.7 min, z = 2.10, p = 0.036), SOL (Fitbit
3.5 ± 4.1 min; medical device 14.6 ± 18 min, z = 4.26, p < 0.0000), light sleep (Fitbit
201.9 ± 42.8 min; medical device 244.3 ± 74.1, z = 5.25, p = 0.0006) and REM sleep
(Fitbit 72.6 ± 27.7 min; medical device 84.2 ± 32.7 min, z = 2.66, p = 0.0006), and
higher values for WASO (Fitbit 41.6 ± 18.8 min; medical device 17.1± 12.9 min, z = −
4.09, p < 0.0000) and deep sleep (Fitbit 61.8 ± 19.7 min; medical device
22.0 ± 30.1 min, z = − 3.60, p < 0.0000). No statistically significant difference was
found between the two devices on NAWK (Fitbit 19.9 ± 7.9 counts; medical device
16.8 ± 8.1 counts, z = − 1.69, p = 0.093) and SE (Fitbit 88.4 ± 3.6%; medical device
89.9 ± 8.8%, z = 1.84, p = 0.067). As for the proportion of individual sleep stages, Fitbit
overestimated the ratio of wake (Fitbit 11.1 ± 3.6%; medical device 4.6 ± 3.2%, z = −
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4.05, p < 0.0000), light sleep (Fitbit 66.6 ± 8.3%; medical device 52.8 ± 4.1%, z = 3.95,
p < 0.0000), and REM sleep (Fitbit 22.7 ± 5.9%; medical device 18.1 ± 4.9%, z = 3.04,
p = 0.001), while underestimated the ratio of deep sleep (Fitbit 6.1 ± 7.3%; medical
device 16.3 ± 4.2%, z = − 3.56, p = 0.0001).

On the other hand, Neuroon showed lower values for TST (Neuroon
194.0 ± 131.0 min; medical device 350.5 ± 94.7 min, z = 3.69, p < 0.0000), NAWK
(Neuroon 3.2 ± 3.2 count; medical device 16.8 ± 8.1 min, z = 4.38, p < 0.0000), SE
(Neuroon 53.6 ± 34.3%; medical device 89.9 ± 8.8%, z = 3.43, p = 0.0002), light sleep
(Neuroon 79.1 ± 86.3 min; medical device 244.3 ± 74.1, z = 4.17, p < 0.0000), and high
values for SOL (Neuroon 67.2 ± 115.8 min; medical device 14.6 ± 18.0, z = − 2.87, p =
0.0030), WASO (Neuroon 189.7 ± 159.5 min; medical device 17.1 ± 12.9 min, z = −
4.16, p < 0.0000), and deep sleep (Neuroon 42.4 ± 44.3 min; medical device
22.0 ± 30.1 min, z = − 2.06, p = 0.039). The results indicated no significant difference
between Neuroon and the medical device on REM sleep (Neuroon 64.6 ± 57.4 min;
medical device 84.2 ± 32.7 min, z = 1.29, p = 0.208). As for the proportion of individual
sleep stages, no statistically significant difference was found on REM (Neuroon 18.3 ±
14.7%; medical device 18.1 ± 4.9%, z = 1.23, p = 0.225). However, Neuroon
overestimated the ratio of wake (Neuroon 44.1 ± 33.5%; medical device 4.6 ± 3.2%,
z = − 3.97, p < 0.0000) and underestimated the ratio of light sleep (Neuroon 22.7 ±
22.2%; medical device 0.528 ± 0.041%, z = 4.17, p < 0.0000) and deep sleep (Neuroon
13.1 ± 14.7%; medical device 16.3 ± 4.2%, z = − 2.4332, p = 0.013).

The box-and-whisker plots of the sleep parameters measured by Fitbit,
Neuroon, and the medical device are shown in Fig. 5. Thick lines indicate the
median, box edges represent the 25–75% quartile range (interquartile range), and
the whiskers indicate the overall range, while circles indicate potential outliers.
The plots showed that Neuroon data had larger dispersion in comparison to Fitbit
Charge 2 and the medical device on all sleep parameters except on TST, light
sleep, and NAWK.

4.2 Agreement Between Consumer and Medical Device

4.2.1 Fitbit for Automatic Detection on Sleep Onset and Offset

We defined two metrics, sleep start delay Δts and sleep end delay Δte, to quantify the lag
in sleep onset and offset detected by Fitbit in comparison to those measured by the
medical device. The two metrics can be calculated using Eqs. (1) and (2). For sleep start
delay, Δts < 0 may be explained either by long sleep onset latency or by user’ habits
such as reading in bed or watching television in coach. In case of Δts > 0, a short delay
may be reasonable due to the lag in physiological change during sleep onset. However,
long positive delay may indicate a measurement error due to misclassification of other
sleep stages as SOL [38]. For sleep end delay, Δte < 0 may be reasonable because users
needed to manually turn off the medical device and such action always happened after
the actual sleep offset. Contrarily, Δte > 0 may indicate measurement errors due to
misclassification by Fitbit.

Δts ¼ ts;Fitbit−ts;Medical ð1Þ
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Δte ¼ te;Fitbit−te;Medical ð2Þ

The distribution of Δts and Δte is plotted in Fig. 6. In most cases, Δts is within the range
of [0, 20 min] and Δte is within the range of [− 20 min, 20 min]. We noticed overlong Δts
(> 20 min) for six participants. Four out of the six cases could be explained by overlong
sleep onset latency indicated either by medical data or by participants’ complaints.
However, the rest two cases can only be attributed to measurement errors. As for Δte,
the outlier at the right side was due to a human error. The participant turned off the medical
device after sleep offset but later returned to bed and slept for another 1.5 h.

4.2.2 Agreement of Consumer Devices to Medical Device

The Bland-Altman plots of consumer devices versus the medical device are shown
in Figs. 7 (Fitbit Charge 2) and 8 (Neuroon). A few measurements were situated
out of the range between the lower limit of agreement (LLA) and the upper limit
of agreement (ULA). According to the clinically satisfactory ranges defined in
[59, 60], i.e., mean difference on TST ≤ 30 min and on SE < 5%, both Fitbit
Charge 2 and Neuroon produced comparable results as the medical device in
measuring TST and SE.

Fitbit Neuroon Medical

0
10

0
20

0
30

0
40

0

S
O

L
(m

in
)

Fitbit Neuroon Medical

0
10

20
30

N
A

W
K

Fitbit Neuroon Medical

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
E

a

b c d

F N M F N M F N M F N M F N M

0
10

0
20

0
30

0
40

0
50

0
60

0

(F = Fitbit, N = Neuroon, M = Medical)

D
ur

at
io

n 
(m

in
)

TST
WASO
Light Sleep
Deep Sleep
REM Sleep

Fig. 5 Box-and-whiskers plot depicting different distributions for sleep parameters measured by three
devices. Thick lines indicate the median, box edges represent the 25–75% quartile range, and the whiskers
indicate the overall range. a TST, WASO, light, deep, and REM. b SOL. c NAWK. d SE

164 J Healthc Inform Res (2018) 2:152–178



In general, Fitbit Charge 2 agreed well to the medical device on TST, NAWK, and
SE (Fig. 7a, g, h). However, sleep parameters characterizing sleep-wake transitions
(SOL, WASO) or sleep stage transitions (light, deep, REM) showed poor agreement
between Fitbit and the medical device. In comparison, measurements by Neuroon
markedly deviated from those by the medical device on all sleep parameters as shown
in Fig. 8. The Bland-Altman plots for Neuroon and the medical device also demon-
strated trends in device difference as a function of the sleep parameters. In general,
Neuroon deviated more from the medical device with more disrupted sleep that was
characterized by longer awakenings, higher frequency of awakenings, longer sleep
onset, or lower sleep efficiency. No trend was observed for Fitbit.

The Pearson correlation coefficients between the consumer devices and the medical
device are summarized in Table 4. As for Fitbit, very strong correlation on TST, strong
correlations on light sleep and REM sleep, and moderate correlation on NAWK were
found. However, only moderate correlation on deep sleep was identified between
Neuroon and the medical device.

4.3 Impact of Signal Quality on Neuroon

Previous studies found that signal quality may affect the accuracy of EEG devices [62,
63]. Neuroon shows the Overall Signal of the three electrodes on the dashboard to help
users estimate how accurate the sleep readings may be. The signal quality was either
good (= 2, green), average (= 1, yellow), or poor (= 0, red), as is shown in Fig. 2.
Several participants mentioned that the Neuroon mask moved off their face during the
course of the night and the corresponding Overall Signal was poor.

Out of the 25 entries in the dataset, there were 14 entries of poor signal, 4 entries of
average signal, and 7 entries of good signal. We therefore divided the dataset into two
subsets, i.e., a subset with samples above average signal quality (= 1 or 2) and a subset
with samples of poor signal quality, and then investigated how the validity of Neuroon
differed between the two subsets.
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Fig. 6 Histogram of delay in a sleep onset and b sleep offset measured by Fitbit in comparison to medical
device. The results show that Fitbit can automatically detect the start and end of sleep with reasonable
accuracy in most cases
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The box-and-whiskers plots of the two subsets are shown in Fig. 9 (for TST, WASO,
light, deep, REM) and Fig. 10 (for SOL, NAWK, SE). As expected, signal quality had
strong impact on the performance of Neuroon, especially for TST, WASO, and light sleep.
These plots show that the distribution of Neuroon data markedly deviated from that of the
medical device when the signal quality was poor, characterized by significant underesti-
mation of sleep (and thus all sleep stages) and overestimation of awake. Using the medical
measurements as baselines, we summarized the mean bias of Neuroon with varied signal
quality in Table 5 (the overall performance of Fitbit Charge 2 and Neuroon was also shown
as references). In order to show the upper and lower bound of Neuroon’s performance, we
only included data entries with good signal quality (= 2) and poor signal quality (= 0) in the
analysis, and the four data entries with average signal quality (= 1) were excluded.
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The results revealed that when the signal quality of Neuroon was good, no signif-
icant differences were found between Neuroon and the medical device on TST,
WASO, SOL, and SE. However, when the signal quality was poor, Neuroon
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ULA. Neuroon significantly deviated from the medical device on all sleep parameters. a Total sleep time, b
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Table 4 Pearson correlation coefficients of sleep parameters between consumer and medical devices

TST WASO L i g h t
sleep

D e e p
sleep

R E M
sleep

NAWK SOL SE

Fitbit vs medical device .94a**** .25 .65*** .08 .73**** .46* −.04 .50*

Neuroon vs medical
device

.08 .13 .15 .50* .05 .37 .34 −.20

a Bold indicates a significant correlation (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p < 0.000)
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Fig. 9 Box-and-whiskers plots depicting different distributions for TST, WASO, and sleep stages when the
signal quality of Neuroon was a above average and b poor
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underestimated TST and SE and overestimated WASO and SOL. We also found that
Neuroon constantly underestimated NAWK and light sleep. As for deep sleep, Neuroon
overestimated it when the signal quality was good but produced similar results as the
medical device when the signal quality was poor. In addition, Neuroon overestimated REM
when the signal quality was good and underestimated it when the signal quality was poor.

The Bland-Altman plots that characterize the agreement between Neuroon and the
medical devices for the two data subsets are depicted in Figs. 11 (for TST, WASO,
SOL, NAWK, and SE) and 12 (for light, deep, and REM). Poor signal quality led to
increased discrepancy between Neuroon and the medical device on all sleep parameters
except on NAWK and deep sleep, indicating that the poor agreement on NAWK could
not be attributed to signal quality, and the ability to measure deep sleep regardless of
signal quality may be a strength of Neuroon.
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Table 5 Mean bias between consumer devices and medical devices

T S T
(min)

WA S O
(min)

L i g h t
(min)

D e e p
(min)

R E M
(min)

S O L
(min)

N A W K
(count)

S E
(%)

Fitbit − 12.3a 24.5 − 42.4 39.8 − 11.6 − 11.1 3.1 1.5

Neuroon − 156.5 172.6 − 165.2 20.4 − 19.6 52.6 − 13.6 − 36.3
Neuroon (signal

quality = 2)
− 6.9 4.4 − 64.7 38.0 11.6 4.5 − 15.5 1.7

Neuroon (signal
quality = 0)

− 265.1 281.6 − 223.6 5.8 − 62.1 94.7 − 12.9 − 62.7

a Bold indicates bias within acceptable range
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The impact of signal quality also manifested in the Pearson correlation coefficients
shown in Table 6. Very strong correlation on TST, and strong correlations on WASO
and deep sleep between Neuroon and the medical device were found when the signal
quality was average or good. In comparison, strong correlation onWASO and moderate
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Fig. 11 Bland-Altman plots for Neuroon versus medical device on TST, WASO, SOL, NAWK, and SE when
a, c, e, g, i signal quality was above average and b, d, f, h, j signal quality was poor
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correlations on deep sleep stage and SOL were identified when the signal quality was
poor. Interestingly, Neuroon was strongly correlated to the medical device on WASO in
both subset (r = .69 when signal was above average and r = .64 when signal was poor,
both statistically significant), but the correlation was cancelled out in the whole dataset
(r = .13), which suggest that the relationship between the two devices may be non-
linear on WASO so that such relationship was not captured by the Pearson correlation
coefficient in the whole dataset.

5 Discussions

This study has shown a quantitative comparison between the latest consumer sleep
tracking devices and a medical device in measuring overall sleep parameters and sleep
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Fig. 12 Bland-Altman plots for Neuroon versus medical device on light sleep, deep sleep, and REM sleep
when a, c, e signal quality was above average and b, d, f signal quality was poor

Table 6 Pearson correlation coefficients between Neuroon and medical device when Neuroon signal quality
varied

TST WASO Light sleep Deep sleep REM sleep NAWK SOL SE

Good or average signal .81a** .69* .38 .66* .46 .48 − .24 .15

Poor signal .08 .64* .28 .56* .13 .31 .53* − .03

All .08 .13 .15 .50* .05 .37 .34 − .20

a Bold indicates a significant correlation (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p < 0.000)
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structure. The impact of signal quality on the wearable EEG was also investigated. We
will now discuss these results within the landscape of previous studies and highlight
opportunities for future research.

5.1 Strength of Consumer Devices

Wearable activity wristbands were originally purported to measure and improve phys-
ical activity and were later expanded to also measure sleep duration and quality.
Previous models of Fitbit and other activity trackers such as Jawbone require users to
manually switch the device in and out of sleep tracking mode, which was one of the
main reasons for missing data and measurement errors when these devices were used
for sleep tracking [4, 38, 64, 65]. The feature of automatic sleep detection is no doubt
an attractive and useful function of Fitbit Charge 2. This study showed that Fitbit
Charge 2 was able to automatically detect the onset and offset of sleep with reasonable
accuracy, though the accuracy could be hampered by the characteristics of sleep (e.g.
long sleep onset latency) or by user behaviors (e.g. reading in bed).

Previous validation studies on consumer sleep tracking devices found that activity
wristbands tend to overestimate time asleep and sleep efficiency due to the misclassi-
fication of inactive awake as sleep [4, 5, 32, 33]. Nevertheless, with better hardware and
software, the latest models have overcome this limitation. Notably, our analysis showed
that both Fitbit Charge 2 and Neuroon had good agreement to the medical device on
TST (total sleep time) and SE (sleep efficiency). In addition, both consumer devices
demonstrated the ability to measure other sleep parameters. Fitbit achieved good
agreement to the medical device in measuring NAWK. It is worth noting that the
NAWK (number of awakenings) of Fitbit counted in both long awakenings and brief
restlessness. Very strong correlation was found on TST, and moderate correlation was
found on NAWK and SE between Fitbit Charge 2 and the medical device. As expected,
wearable EEG sleep trackers have the potential for accurately measuring more sleep
parameters. Using brainwave data, Neuroon produced comparable results to the med-
ical device on sleep onset latency and total awake time when signal quality was good.

Different from previous models of wristbands that dominantly rely on movement
data, the latest devices build on new algorithms that use multimodal data for sleep
scoring. Fitbit Charge 2 uses both movement data and heart rate signals [73], while
Neuroon nurtures data from imbedded EEG, EOG, ECG, and accelerometer [66].
These results revealed that the multi-modal approach has significantly improved the
accuracy of consumer sleep tracking devices in measuring overall sleep parameters.

5.2 Weakness of Consumer Devices

Although both consumer devices demonstrated the ability to accurately measure several
sleep parameters especially total sleep duration and sleep efficiency, measuring sleep
structure including light, deep, and REM sleep remains to be challenging for both
devices. There has been no study validating the ability of Fitbit to measure sleep stages,
as this function has only become available recently. However, another activity wrist-
band Jawbone has been routinely distinguishing light sleep (corresponding to sleep
Stage N1 and N2) and sound sleep (corresponding to sleep Stage N3 and REM). A few
validation studies on Jawbone found that light and sound sleep measured by Jawbone
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did not agree with the light and deep sleep measured by medical devices [5]. Along the
same line, our study found that both the latest consumer sleep trackers underestimated
light sleep while overestimated deep sleep, regardless of their differences in hardware
and software. As for REM, Fitbit Charge 2 overestimated REM by 11.6 min on average
compared to the medical device, whereas Neuroon with good signal quality
underestimated REM by 11.6 min on average. These results suggested that a combi-
nation of heart rate signal and movement data may be insufficient for sleep stage
analysis in Fitbit Charge 2. On the other hand, Neuroon may need better sleep scoring
algorithms to map brainwave signals to sleep stages. Better understanding on the
patterns of measurement errors is required to design new algorithms for future wearable
sleep tracking devices.

In addition to the above-mentioned common weakness, each of the consumer
devices has their own limitation in estimating several overall sleep parameters. Mea-
surement bias of WASO remains to be a problem for Fitbit. Previous validation studies
showed that activity wristbands tend to underestimate awake due to the difficulty in
detecting inactive awake [4, 5, 32, 33]. However, our results showed that Fitbit Charge
2 overestimated WASO by 24.5 min on average compared to the medical device. A
possible reason is that the new sleep scoring algorithm that incorporates heart rate data
tends to misclassify sleep as awake. Moreover, Fitbit Charge 2 cannot effectively
measure SOL. The average SOL measured by Fitbit Charge 2 was 3.5 min, which
was 11.1 min shorter than that measured by the medical device. Unlike previous
models such as Fitbit Flex that requires manual switch into sleep mode, Fitbit Charge
2 highlights the feature of automatic detection on sleep onset. Whereas this feature may
significantly improve usability of the device and help reduce missing data [4, 64, 65], it
also became impossible to capture the time stamp of Blights off^ when a user is ready to
sleep. Without such information, it is theoretically not possible to calculate SOL, as the
definition of SOL is the time between lights off and the first epoch of Stage N2. This
limitation of Fitbit Charge 2 is due to the trade-off between usability and accuracy.

On the other hand, the fundamental reason for Neuroon’s problem in measuring
nocturnal awakenings can be traced back to how this parameter was defined. According
to our observation, Neuroon only captured long awakenings and ignored brief ones,
yielding an underestimation of NAWK by 15 times on average in comparison to the
medical device. Although NAWK captured by Neuroon may agree to users' subjective
experience of sleep, inconsistency in the definition of the underlying phenomenon
being measured led to disagreement between Neuroon and the medical device. Given
the discrepancy between subjective and objective sleep quality [22–26], Fitbit’s strat-
egy of distinguishing brief awakenings (restlessness) from long awakenings strikes a
good balance between subjective experience and objective definition of awakenings.

5.3 Wristbands or Wearable EEG?

The manufacturers of wearable EEG sleep trackers such as Neuroon and Sleep
Shepherd claimed that their devices could measure sleep with higher accuracy in
comparison to wearable wristbands, because wearable EEG devices are based on
similar mechanism as clinical sleep monitors. Indeed, our study revealed that Neuroon
with good signal quality produced comparable measurements on total sleep time, sleep
efficiency, total wake time, and sleep onset latency. Since these sleep parameters as well
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as their night-to-night variability are important indicators of sleep disorders including
insomnia [39–42] and depression [67], Neuroon offers an opportunity for detecting
potential sleep-related health problems in free-living conditions. However, poor signal
quality could markedly deteriorate the performance of Neuroon and thus reduce the
quality of measurement results. Our analysis showed that Neuroon significantly devi-
ated from the medical device on all sleep parameters when the signal quality was poor,
though moderate correlation was found on deep sleep between the two devices. Even
worse, getting good signal from Neuroon was not easy, as only 7 out of the 25
participants had good signal in our study. Many participants complained that Neuroon
eye mask moved off their face during night. Moreover, our study found greater
discrepancy between Neuroon and the medical device in nights with more disrupted
sleep. Similar trends were observed in previous validation studies on both clinical (e.g.
single-channel EEG and actigraphy) and consumer (e.g. Fitbit Charge HR) sleep
tracking devices [68–71]. Given Neuroon’s sensitivity to poor signal quality and to
disrupted sleep patterns, it is improper to solely rely on data from Neuroon for
diagnosing sleep disorders.

In comparison, the limitations of Fitbit in measuring total awake time and sleep
onset latency greatly reduced its potential of being used for the purpose of diagnosing
sleep disorders. However, Fitbit achieved consistent and satisfactory performance on
measuring total sleep time, sleep efficiency, and number of awakenings. Factoring in
wearability and usability, Fitbit could be a good tool for individual and non-clinical use.

By clarifying the strength and weakness of consumer sleep tracking technologies,
this study can help both individual end-users and researchers to select devices that best
suit their needs. However, it is worth noting that this study has several limitations. First,
the cohort of this study only consists of young healthy adults. The findings from this
study thus may not be generalized to clinical and elderly populations. Second, we did
not examine the epoch-by-epoch analysis of sensitivity, specificity, and AUC [72]
because Neuroon only generated aggregated sleep metrics and epoch-by-epoch data
was not available. In addition, it remains unknown as to whether the consumer devices
could correctly classify individual sleep stages in each epoch. Future studies are needed
to (1) investigate the validity of the latest consumer devices for measuring the sleep of
clinical or elderly populations, (2) clarify the classification performance of the de-
vices through epoch-by-epoch comparison to medical devices, and (3) improve the
ability of consumer sleep trackers to detect sleep stage transitions.

6 Conclusions

Despite the popularity and convenience of consumer sleep trackers, the validity of these
tools has not yet been thoroughly examined, especially for the devices that have just
entered the market recently and especially for their ability to measure sleep stages. This
study investigated the validity of two latest consumer sleep tracking devices, an activity
wristband Fitbit Charge 2 and a wearable EEG eye mask Neuroon, in comparison to a
medical portable sleep monitor. Results from this study advances the understanding on
what consumer sleep tracking device can and cannot achieve. Our analysis found good
agreement between consumer sleep trackers and the medical device in measuring total
sleep duration and sleep efficiency. In addition, Fitbit Charge 2 agreed well to the
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medical device on the number of awakenings, while Neuroon with good signal quality
produced comparable measurements on total awake time and sleep onset latency.
However, classifying sleep stages remains challenging for both devices. Both devices
underestimated light sleep and overestimated deep sleep. Poor agreement was found on
REM as well, which was overestimated by Fitbit but underestimated by Neuroon. As
expected, Neuroon was able to accurately measure more sleep parameters than Fitbit.
Since some of these parameters are important indicators of sleep disorders, Neuroon
has the potential to be used for sleep disorder diagnosis in free living conditions.
However, the performance of Neuroon may be significantly deteriorated by poor signal
quality and disrupted sleep. Counting in other factors such as wearability and usability,
Fitbit Charge 2 could be a good option for general-purpose sleep monitoring and
tracking in home. In the end, we highlighted three directions for future research: (1)
to investigate the validity of the latest consumer devices for measuring the sleep of
clinical or elderly populations, (2) to clarify the classification performance of the
devices through epoch-by-epoch comparison to medical devices, and (3) to improve
the ability of consumer sleep trackers to detect sleep stage transitions.

Acknowledgements This work was supported by JSPS KAKENHI Grant-in-Aid for Research Activity
Start-up (Grant Number 16H07469) and an internal research grant from the National Institute of Advanced
Industrial Science and Technology of Japan. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of the paper.

Compliance with Ethical Standards

Conflict of Interest The authors certify that there is no conflict of interest involved in this manuscript and
this study. The opinions expressed in this paper are those of the authors and do not represent the views of the
second author’s company.

Ethical Approval Ethics approval was obtained from the Ethic Committee of the University of Tokyo
(Ethics ID: KE16–83). All participants provided informed consent.

References

1. Liang Z, Chapa-Martell MA (2015) Framing self-quantification for individual-level preventive health
care. In: Proceedings of the International Conference on Health Informatics, pp 336–343

2. Dittmar A, Axisa F, Delhomme G, Gehin C (2004) New concepts and technologies in home care and
ambulatory monitoring. Stud Health Technol Inform 108:9–35

3. Mantua J, Gravel N, Spencer R (2016) Reliability of sleep measures from four personal health
monitoring device compared to research-based actigraphy and polysomnography. Sensors 16:646

4. Meltzer LJ, Hiruma LS, Avis K, Montgomery-Downs H, Valentin J (2015) Comparison of a commercial
accelerometer with polysomnography and actigraphy in children and adolescents. Sleep 38(8):1323–
1330. https://doi.org/10.5665/sleep.4918

5. De Zambotti M, Baker FC, Colrain IM (2015) Validation of sleep-tracking technology compared with
polysomnography in adolescents. Sleep 38(9):1461–1468. https://doi.org/10.5665/sleep.4990

6. De Zambotti M, Godino JG, Baker FC et al (2016) The boom in wearable technology: cause for alarm or
just what is needed to better understand sleep? Sleep 39(9):1761–1762. https://doi.org/10.5665
/sleep.6108

J Healthc Inform Res (2018) 2:152–178 175

https://doi.org/10.5665/sleep.4918
https://doi.org/10.5665/sleep.4990
https://doi.org/10.5665/sleep.6108
https://doi.org/10.5665/sleep.6108


7. Buysse DJ (2014) Sleep health: can we define it? Does it matter? Sleep 37(1):9–17. https://doi.
org/10.5665/sleep.3298

8. Coates TJ, Killen JD, George J, Marchini E, Silverman S, Thoresen C (1982) Estimating sleep
parameters: a multitrait-multimethod analysis. J Consult Clin Psychol 50(3):345–352. https://doi.
org/10.1037/0022-006X.50.3.345

9. Carskadon MA, Dement WC (2015) Normal human sleep: an overview. In: Kryger MH, Roth T, Dement
WC (eds) Principle and practice of sleep medicine, 4th edn. Elsevier Saunders, Philadelphia, pp 13–23

10. Hall M (2010) Behavioral medicine and sleep: concept, measures and methods. In: Steptoe A (ed)
Handbook of behavioral medicine: methods and applications. Springer, New York, pp 749–765.
https://doi.org/10.1007/978-0-387-09488-5_49

11. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh sleep quality index: a
new instrument for psychiatric practice and research. Psychiatry Res 28(2):193–213. https://doi.
org/10.1016/0165-1781(89)90047-4

12. Carney CE, Buysse DJ, Ancoli-Israel S, Edinger JD, Krystal AD, Lichstein KL, Morin CM (2012) The
consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep 35(2):287–302. https://doi.
org/10.5665/sleep.1642

13. Hublin C, Partinen M, Koskenvuo M, Kaprio J (2007) Sleep and mortality: a population-based 22-year
follow-up study. Sleep 30(10):1245–1253. https://doi.org/10.1093/sleep/30.10.1245

14. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr, Friedman L, Hirshkowitz
M, Kapen S, Kramer M, Lee-Chiong T, Loube DL, Owens J, Pancer JP, Wise M (2005) Practice
parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep
28(4):499–519. https://doi.org/10.1093/sleep/28.4.499

15. Ohayon M, Wickwire EM, Hirshkowitz M, Albert SM, Avidan A, Daly FJ, Dauvilliers Y, Ferri R, Fung
C, Gozal D, Hazen N, Krystal A, Lichstein K, Mallampalli M, Plazzi G, Rawding R, Scheer FA, Somers
V, Vitiello MV (2017) National sleep foundation’s sleep quality recommendations: first report. Sleep
Health 3(1):6–19. https://doi.org/10.1016/j.sleh.2016.11.006

16. Hirshkowitz M (2004) Normal human sleep: an overview. Med Clin North Am 88:51–65
17. Keenan SA (1999) Normal human sleep. Respir Care Clin N Am 5:319–331
18. Sadeh A (2011) The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev 15(4):

259–267. https://doi.org/10.1016/j.smrv.2010.10.001
19. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak C (2003) The role of actigraphy in

the study of sleep and circadian rhythms. American Academy of sleep medicine review paper. Sleep
26(3):342–392. https://doi.org/10.1093/sleep/26.3.342

20. Littner M, Kushida CA, Anderson WM et al (2002) Practice parameters for the role of actigraphy in the
study of sleep and circadian rhythms: an update for 2002. Sleep 26(3):337–341

21. Vitiello MV, Larsen LH, Drolet G et al (2002) Gender differences in subjective-objective sleep relation-
ships in non-complaining healthy older adults. Sleep 25S:A61

22. Van Ravesteyn LM, Tulen JH, Kamperman AM et al (2014) Perceived sleep quality is worse than
objective parameters of sleep in pregnant women with a mental disorder. J Clin Sleep Med 10(10):1137–
1141. https://doi.org/10.5664/jcsm.4118

23. Lund HG, Rybarczyk BD, Perrin PB, Leszczyszyn D, Stepanski E (2013) The discrepancy between
subjective and objective measures of sleep in older adults receiving CBT for comorbid insomnia. J Clin
Psychol 69(10):1108–1120. https://doi.org/10.1002/jclp.21938

24. Most EIS, Aboudan S, Scheltens P, van Someren EJW (2012) Discrepancy between subjective and
objective sleep disturbances in early- and moderate-stage Alzheimer disease. Am J Geriatr Psychiatry
20(6):460–467. https://doi.org/10.1097/JGP.0b013e318252e3ff

25. O’Donnel D, Silva EJ, Munch M et al (2009) Comparison of subjective and objective assessments of
sleep in healthy older subjectis without sleep complaints. J Sleep Res 18(2):254–263. https://doi.
org/10.1111/j.1365-2869.2008.00719.x

26. Tsuchiyama K, Nagayama H, Kudo K, Kojima K, Yamada K (2003) Discrepancy between subjective and
objective sleep in patients with depression. Psychiatry Clin Neurosci 57(3):259–264. https://doi.
org/10.1046/j.1440-1819.2003.01114.x

27. Kolla BP, Mansukhani S, Mansukhani MP (2016) Consumer sleep tracking devices: a review of
mechanisms, validity and utility. Expert Rev Med Devices 13(5):497–506. https://doi.org/10.1586
/17434440.2016.1171708

28. Shelgikar AV, Anderson PF, Stephens MR (2016) Sleep tracking, wearable technology, and opportunities
for research and clinical care. Chest 150(3):732–743. https://doi.org/10.1016/j.chest.2016.04.016

29. Ong AA, Gillespie MB (2016) Overview of smartphone applications for sleep analysis. World J
Otorhinolaryngol Head Neck Surg 2(1):45–49. https://doi.org/10.1016/j.wjorl.2016.02.001

176 J Healthc Inform Res (2018) 2:152–178

https://doi.org/10.5665/sleep.3298
https://doi.org/10.5665/sleep.3298
https://doi.org/10.1037/0022-006X.50.3.345
https://doi.org/10.1037/0022-006X.50.3.345
https://doi.org/10.1007/978-0-387-09488-5_49
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.5665/sleep.1642
https://doi.org/10.5665/sleep.1642
https://doi.org/10.1093/sleep/30.10.1245
https://doi.org/10.1093/sleep/28.4.499
https://doi.org/10.1016/j.sleh.2016.11.006
https://doi.org/10.1016/j.smrv.2010.10.001
https://doi.org/10.1093/sleep/26.3.342
https://doi.org/10.5664/jcsm.4118
https://doi.org/10.1002/jclp.21938
https://doi.org/10.1097/JGP.0b013e318252e3ff
https://doi.org/10.1111/j.1365-2869.2008.00719.x
https://doi.org/10.1111/j.1365-2869.2008.00719.x
https://doi.org/10.1046/j.1440-1819.2003.01114.x
https://doi.org/10.1046/j.1440-1819.2003.01114.x
https://doi.org/10.1586/17434440.2016.1171708
https://doi.org/10.1586/17434440.2016.1171708
https://doi.org/10.1016/j.chest.2016.04.016
https://doi.org/10.1016/j.wjorl.2016.02.001


30. Ko PT, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF (2015) Consumer sleep technologies: a
review of the landscape. J Clin Sleep Med 11(12):1455–1461. https://doi.org/10.5664/jcsm.5288

31. Kelly JM, Strecker RE, Bianchi MT (2012) Recent developments in home sleep-monitoring devices.
International Scholarly Research Network Neurology, Article ID 768794, 10 pages

32. Montgomery-Downs HE, Insana SP, Bond JA (2012) Movement toward a novel activity monitoring
device. Sleep Breath 6(3):913–917

33. De Zambotti M, Claudatos S, Inkelis S et al (2015) Evaluation of a consumer fitness-tracking device to
access sleep in adults. Chronobiol Int 32(7):1024–1028. https://doi.org/10.3109/07420528.2015.1054395

34. Bhat S, Ferraris A, Gupta D, Mozafarian M, DeBari VA, Gushway-Henry N, Gowda SP, Polos PG,
Rubinstein M, Seidu H, Chokroverty S (2015) Is there a clinical role for smartphone sleep apps?
Comparison of sleep cycle detection by a smartphone application to polysomnography. J Clin Sleep
Med 11(7):709–715. https://doi.org/10.5664/jcsm.4840

35. Shirazi AS, Clawson J, Hassanpour Y, Tourian MJ et al (2013) Already up? Using mobile phones to track
& share sleep behavior. Int J Hum Comput Stud 71(9):878–888. https://doi.org/10.1016/j.
ijhcs.2013.03.001

36. Behar J, Roebuck A, Shahid M, Daly J, Hallack A, Palmius N, Stradling J, Clifford GD (2015) SleepAp:
an automated obstructive sleep apnoea scorning application for smartphones. IEEE J Biomed Health
Inform 19(1):325–331. https://doi.org/10.1109/JBHI.2014.2307913

37. Liang Z, Ploderer B (2016) Sleep tracking in the real world: a qualitative study into barriers for
improving sleep. In: Proceedings of OZCHI 2016: 537–541

38. Liang Z, Ploderer B, Chapa-Martell MA (2017) Is Fitbit fit for sleep-tracking? Sources of measurement
errors and proposed countermeasures. In: Proceedings of Pervasive Health 2017

39. Natale V, Leger D, Martoni M et al (2014) The role of actigraphy in the assessment of primary insomnia:
a retrospective study. Sleep Med 15(1):111–115. https://doi.org/10.1016/j.sleep.2013.08.792

40. Suh S, Nowakowski S, Bernert RA, Ong JC, Siebern AT, Dowdle CL, Manber R (2012) Clinical
significance of night-to-night sleep variability in insomnia. Sleep Med 13(5):469–475. https://doi.
org/10.1016/j.sleep.2011.10.034

41. Buysse DJ, Cheng Y, Germain A, Moul DE, Franzen PL, Fletcher M, Monk TH (2010) Night-to-night
sleep variability in older adults with and without chronic insomnia. Sleep Med 11(1):56–64. https://doi.
org/10.1016/j.sleep.2009.02.010

42. Natale V, Plazzi G, Martoni M (2009) Actigraphy in the assessment of insomnia: a quantitative approach.
Sleep 32(6):767–771. https://doi.org/10.1093/sleep/32.6.767

43. Fitbit Charge 2: How do I track my sleep? https://help.fitbit.com/articles/en_US/Help_article/1314/?l=
en_US&c=Topics%3ASleep&p=charge_2&fs=Search&pn=1#Whatisthedifference

44. Neuroon sleep analytics. https://neuroon.jp/features/sleep-analytics/
45. Yoshida M, Shinohara H, Kodama H (2015) Assessment of nocturnal sleep architecture by actigraphy

and one-channel electroencephalography in early infancy. Early Hum Dev 91(9):519–526. https://doi.
org/10.1016/j.earlhumdev.2015.06.005

46. Rosenberg RS, Van Hout S (2013) The American Academy of Sleep Medicine inter-scorer reliability
program: sleep stage scoring. J Clin Sleep Med 9(1):81–87. https://doi.org/10.5664/jcsm.2350

47. Liang Z, Ploderer B, Liu W, Nagata Y, Bailey J, Kulik L, Li X (2016) SleepExplorer: a visualization tool
to make sense of correlations between personal sleep data and contextual factors. Pers Ubiquit Comput
20(6):985–1000. https://doi.org/10.1007/s00779-016-0960-6

48. Iber C, Ancoli-Israel S, Chesson A et al (2007) The AASM manual for the scoring of sleep and
associated events: rules, terminology and technical specifications, 1st edn. American Academy of
Sleep Medicine, Westchester

49. McCall C, McCall WV (2012) Objective vs. subjective measurements of sleep in depressed insomniacs:
first night effect or reverse first night effect? J Clin Sleep Med 8(1):59–65

50. Ahmadi N, Shapiro GK, Chung SA, Shapiro CM (2009) Clinical diagnosis of sleep apnea based on
single night of polysomnography vs. two nights of polysomnography. Sleep Breath 13(3):221–226.
https://doi.org/10.1007/s11325-008-0234-2

51. Tworoger SS, Davis S, Vitiello MV, Lentz MJ, McTiernan A (2005) Factors associated with objective
(actigraphic) and subjective sleep quality in young adult women. J Psychosom Res 59(1):11–19.
https://doi.org/10.1016/j.jpsychores.2005.03.008

52. Evenson KR, Goto MM, Furberg RD (2015) Systematic review of the validity and reliability of
consumer-wearable activity trackers. Int J Behav Nutr Phys Act 12(1):159. https://doi.org/10.1186
/s12966-015-0314-1

53. Higgins PA, Straub AJ (2006) Understanding the error of our ways: mapping the concepts of validity and
reliability. Nurs Outlook 54(1):23–29. https://doi.org/10.1016/j.outlook.2004.12.004

J Healthc Inform Res (2018) 2:152–178 177

https://doi.org/10.5664/jcsm.5288
https://doi.org/10.3109/07420528.2015.1054395
https://doi.org/10.5664/jcsm.4840
https://doi.org/10.1016/j.ijhcs.2013.03.001
https://doi.org/10.1016/j.ijhcs.2013.03.001
https://doi.org/10.1109/JBHI.2014.2307913
https://doi.org/10.1016/j.sleep.2013.08.792
https://doi.org/10.1016/j.sleep.2011.10.034
https://doi.org/10.1016/j.sleep.2011.10.034
https://doi.org/10.1016/j.sleep.2009.02.010
https://doi.org/10.1016/j.sleep.2009.02.010
https://doi.org/10.1093/sleep/32.6.767
https://help.fitbit.com/articles/en_US/Help_article/1314/?l=en_US&c=Topics%3ASleep&p=charge_2&fs=Search&pn=1#Whatisthedifference
https://help.fitbit.com/articles/en_US/Help_article/1314/?l=en_US&c=Topics%3ASleep&p=charge_2&fs=Search&pn=1#Whatisthedifference
https://neuroon.jp/features/sleep-analytics/
https://doi.org/10.1016/j.earlhumdev.2015.06.005
https://doi.org/10.1016/j.earlhumdev.2015.06.005
https://doi.org/10.5664/jcsm.2350
https://doi.org/10.1007/s00779-016-0960-6
https://doi.org/10.1007/s11325-008-0234-2
https://doi.org/10.1016/j.jpsychores.2005.03.008
https://doi.org/10.1186/s12966-015-0314-1
https://doi.org/10.1186/s12966-015-0314-1
https://doi.org/10.1016/j.outlook.2004.12.004


54. Benjamini Y (1988) Opening the box of a boxplot. Am Stat 42(4):257–262
55. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. https://doi.

org/10.2307/3001968
56. Fay MP, Proschan MA (2010) Wilcoson-Mann-Whitney or t-test? On assumptions for hypothesis tests

and multiple interpretations of decision rules. Stat Surv 4(0):1–39. https://doi.org/10.1214/09-SS051
57. Bradley JV (1968) Distribution-free statistical tests. Prentice-Hall
58. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of

clinical measurement. Lancet 1(8476):307–310
59. Meltzer L, Walsh C, Traylor J, Westin A (2012) Direct comparison of two new actigraphs and

polysomnography in children and adolescents. Sleep 35(1):159–166. https://doi.org/10.5665/sleep.1608
60. Werner H, Molinari L, Guyer C, Jenni OG (2008) Agreement rates between actigraphy, diary, and

questionnaire for children’s sleep patterns. Arch Pediatr Adolesc Med 162(4):350–358. https://doi.
org/10.1001/archpedi.162.4.350

61. Rosenberger ME, Buman MP, Haskell WL et al (2015) 24h or sleep, sedentary behavior, and physical
activity with nine wearable devices. Med Sci Sports Exerc 48(3):457–465

62. Kappenman ES, Luck SJ (2010) The effects of electrode impedance on data quality and statistical
significance in ERP recordings. Psychophysiology 47(5):888–904. https://doi.org/10.1111/j.1469-
8986.2010.01009.x

63. Duun-Henriksen J, Kjaer TW, Looney D, et al. (2015) EEG signal quality of a subcutaneous recording
system compared to standard surface electrodes. J Sensors 2015: Article 341208, 9 pages

64. Baroni A, Bruzzese JM, Di Bartolo CA, Shatkin JP (2016) Fitbit Flex: an unreliable device for
longitudinal sleep measures in a non-clinical population. Sleep Breath 20(2):853–854. https://doi.
org/10.1007/s11325-015-1271-2

65. Ferguson T, Rowlands AV, Olds T, Maher C (2015) The validity of consumer-level, activity monitors in
healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act 12(1):42.
https://doi.org/10.1186/s12966-015-0201-9

66. Neuroon Open product overview. http://community.neuroonopen.com/product
67. Hein M, Lanquart JP, Loas G, Hubain P, Linkowski P (2017) Similar polysomnographic pattern in

primary insomnia and major depression with objective insomnia: a sign of common pathophysiology?
BMC Psychiatry 17(1):273. https://doi.org/10.1186/s12888-017-1438-4

68. Lucey BP, McLeland JS, Toedebusch CD et al (2016) Comparison of a single-channel EEG sleep study
to polysomnography. J Sleep Res 25(6):625–635. https://doi.org/10.1111/jsr.12417

69. De Zambotti M, Baker FC, Willoughby AR et al (2016) Measures of sleep and cardiac functioning
during sleep using a multi-sensory commercially-available wristband in adolescents: wearable technol-
ogy to measure sleep and cardiac functioning. Physiol Behav 158:143–149

70. Taibi DM, Landis CA, Vitiello MV (2013) Concordance of polysomnographic and actigraphic measure-
ment of sleep and wake in older women with insomnia. J Clin Sleep Med 9(3):217–225. https://doi.
org/10.5664/jcsm.2482

71. Blackwell T, Redline S, Ancoli-Isreal S et al (2008) Comparison of sleep parameters from actigraphy and
polysomnography in older women: the SOF study. Sleep 31(2):283–291. https://doi.org/10.1093
/sleep/31.2.283

72. Cellini N, Buman MP, McDevitt EA et al (2013) Direct comparison of two actigrapy devices with
polysomnographically recorded naps in healthy young adults. Chronobiol Int 30(5):691–698. https://doi.
org/10.3109/07420528.2013.782312

73. Kosecki D (2017) Your heart rate is the key to smarter sleep stages. Here’s why. Fitbit News, https://blog.
fitbit.com/heart-rate-during-sleep-stages/

178 J Healthc Inform Res (2018) 2:152–178

https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://doi.org/10.1214/09-SS051
https://doi.org/10.5665/sleep.1608
https://doi.org/10.1001/archpedi.162.4.350
https://doi.org/10.1001/archpedi.162.4.350
https://doi.org/10.1111/j.1469-8986.2010.01009.x
https://doi.org/10.1111/j.1469-8986.2010.01009.x
https://doi.org/10.1007/s11325-015-1271-2
https://doi.org/10.1007/s11325-015-1271-2
https://doi.org/10.1186/s12966-015-0201-9
http://community.neuroonopen.com/product
https://doi.org/10.1186/s12888-017-1438-4
https://doi.org/10.1111/jsr.12417
https://doi.org/10.5664/jcsm.2482
https://doi.org/10.5664/jcsm.2482
https://doi.org/10.1093/sleep/31.2.283
https://doi.org/10.1093/sleep/31.2.283
https://doi.org/10.3109/07420528.2013.782312
https://doi.org/10.3109/07420528.2013.782312
https://blog.fitbit.com/heart-rate-during-sleep-stages/
https://blog.fitbit.com/heart-rate-during-sleep-stages/

	Validity...
	Abstract
	Introduction
	Related Work
	Fundamentals of Human Sleep
	Validity of Consumer Sleep Tracking Technologies

	Methods
	Sleep Parameters
	Devices
	Fitbit
	Neuroon
	Sleep Scope

	Study Procedure
	Participants
	Data Collection Procedure

	Data Analysis
	Data Preprocessing
	Statistical Analysis


	Results
	Descriptive Statistics
	Agreement Between Consumer and Medical Device
	Fitbit for Automatic Detection on Sleep Onset and Offset
	Agreement of Consumer Devices to Medical Device

	Impact of Signal Quality on Neuroon

	Discussions
	Strength of Consumer Devices
	Weakness of Consumer Devices
	Wristbands or Wearable EEG?

	Conclusions
	References


