
https://doi.org/10.1007/s41666-019-00062-3

RESEARCH ARTICLE

Transfer Learning for Clinical Time Series Analysis
Using Deep Neural Networks

Priyanka Gupta1 ·Pankaj Malhotra1 · Jyoti Narwariya1 · Lovekesh Vig1 ·
Gautam Shroff1

Received: 8 December 2018 / Revised: 24 October 2019 / Accepted: 12 November 2019 /

© Springer Nature Switzerland AG 2019

1 Introduction

Electronic health records (EHR) consisting of the medical history of patients are
useful in various clinical applications such as diagnosis and recommending medicine
[22]. Traditional machine learning approaches often require careful domain-specific
feature engineering to achieve good prediction performance. On the other hand, deep
learning approaches enable end-to-end learning without the need of hand-crafted and
domain-specific features, and have recently produced promising results for various
clinical prediction tasks [17, 22, 29]. As a result, there has been a rapid growth in
the applications of deep learning to various clinical prediction tasks from electronic
health records, e.g., Doctor AI [6] for medical diagnosis, Deep Patient [21] to predict
future diseases in patients, and DeepR [23] to predict unplanned readmission after
discharge. With various medical parameters being recorded over a period of time in
EHR databases, recurrent neural networks (RNNs) can be an effective way to model
the sequential aspects of EHR data and, in turn, enable applications in diagnoses [3,
6, 17], mortality prediction, and estimating length of stay [9, 27, 28].

� Priyanka Gupta
priyanka.g35@tcs.com

� Pankaj Malhotra
malhotra.pankaj@tcs.com

Jyoti Narwariya
jyoti.narwariya@tcs.com

Lovekesh Vig
lovekesh.vig@tcs.com

Gautam Shroff
gautam.shroff@tcs.com

1 TCS Research, New Delhi, India

Journal of Healthcare Informatics Research (2020) 4:112–137

Published online: 13 December 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s41666-019-00062-3&domain=pdf
http://orcid.org/0000-0002-1907-0426
mailto: priyanka.g35@tcs.com
mailto: malhotra.pankaj@tcs.com
mailto: jyoti.narwariya@tcs.com
mailto: lovekesh.vig@tcs.com
mailto: gautam.shroff@tcs.com

However, like most deep learning approaches, RNNs are prone to overfitting when
labeled training data is scarce, and often require careful and computationally expen-
sive hyper-parameter tuning effort. Transfer learning [2, 24] is known to mitigate this:
It enables knowledge transfer from neural networks trained on a source task (domain)
with sufficient training instances to a related target task (domain) with few training
instances. For example, training a deep network on a diverse set of images can pro-
vide useful features for images from unseen domains [31]. Moreover, fine-tuning a
pre-trained network for the target task is often faster and easier than constructing and
training a new network from scratch [2, 19].

It has been shown that pre-trained networks can learn to extract a rich set of
generic features that can then be applied to a wide range of other similar tasks [19].
Also, it has been argued that transferring weights even from distant tasks can be bet-
ter than using random initial weights in neural networks [35]. Transfer learning via
fine-tuning parameters of pre-trained models for end tasks has been recently consid-
ered for medical applications as well [6, 16]. However, fine-tuning a large number
of parameters with a small-labeled dataset may still result in overfitting, and requires
careful regularization (as we show in Section 9 through empirical evaluation). In this
work, we consider two simple yet effective approaches to transfer the knowledge
captured in pre-trained deep RNNs for new target tasks in healthcare domain. More
specifically, we consider two scenarios: (i) extract features from a pre-trained net-
work and use them to build models for target task and (ii) initialize deep network for
target task using parameters of a pre-trained network and then fine-tune using labeled
training data for target task.

The key contributions of this work are:

– We propose two approaches for transfer learning for classification tasks such
as patient phenotyping and mortality prediction given multivariate time series
corresponding to physiological parameters of patients1. For a target task in
the healthcare domain, we consider (i) a domain adaptation approach using a
general-purpose off-the-shelf time series feature extractor based on deep RNN,
to remove the effort and resources required to train a deep network from scratch
while still leveraging its advantages, and (ii) a task adaptation approach based
on a deep RNN trained using labeled data from another set of (source) tasks
in healthcare domain to reduce the dependence on labeled training data for the
target task and also reduce hyper-parameter tuning effort.

– Our proposed approaches allow extracting robust features from variable length
multivariate time series by using pre-trained deep RNNs, thereby reducing
dependence on expert domain-driven feature extraction.

– We show that carefully regularized fine-tuning of pre-trained RNNs leads to
models that are significantly more robust to training data size in comparison with
task-specific classification models trained from scratch.

– We also study the trade-off between domain adaptation and task adaptation with
respect to the amount of labeled data from the healthcare domain, and show that

1This work contrasts and extends our previous work in [8] and [7].

Journal of Healthcare Informatics Research (2020) 4:112–137 113

leveraging pre-trained models from other (seemingly unrelated) domains can be
useful in scenarios where task adaptation may be ineffective, e.g., when labeled
data for the target task as well as its related tasks within the healthcare domain is
scarce.

Through empirical evaluation of patient phenotyping and mortality prediction tasks
on MIMIC-III benchmark dataset [13], we demonstrate that our transfer learning
approaches yield data- and compute-efficient classification models that require little
training or fine-tuning effort while yielding classification performance that is com-
parable with models with hand-crafted features or carefully trained domain-specific
deep networks benchmarked in [9, 10, 32].

The rest of the paper is organized as follows: In Section 2, we present related
work, and provide details of an existing off-the-shelf pre-trained deep RNN, namely
TimeNet [19], in Section 3. We provide an overview of the proposed domain and
task adaptation approaches in Section 4, followed by their details in Sections 5 and
6, respectively. In Section 7, we provide details of cohort selection and datasets. We
provide experimental details and observations in Sections 8 and 9, respectively, and
comparison of two approaches in Section 10, and finally conclude in Section 11.

2 RelatedWork

TimeNet-based features have been shown to be useful for various tasks includ-
ing ECG classification [19]. In this work, we consider application of TimeNet
to phenotyping and in-hospital mortality tasks for multivariate clinical time series
classification. Deep Patient [21] proposes leveraging features from a pre-trained
stacked-autoencoder for EHR data. However, it does not leverage the temporal aspect
of the data and uses a non-temporal model based on stacked-autoencoders. Our
domain adaptation approach extracts temporal features via TimeNet while incorpo-
rating the important sequential nature of EHR data. Doctor AI [6] uses discretized
medical codes (e.g., diagnosis, medication, procedure) from longitudinal patient
visits via a purely supervised setting while we use real-valued time series. While
approaches like Doctor AI require training a deep RNN from scratch, our approach
leverages a general-purpose RNN for feature extraction.

Harutyunyan et al. [9] consider training a deep RNN model under multitask
learning setting (for multiple prediction tasks including phenotyping and in-hospital
mortality) to learn a general-purpose deep RNN for clinical time series. They show
that it is possible to train a single network for multiple tasks simultaneously by cap-
turing generic features that work across different tasks. We also consider leveraging
generic features for clinical time series but under the transfer learning setting where
we pre-train an RNN on different domains or set of different tasks. This pre-training
allows our approach to be more data and resource efficient.

Unsupervised pre-training has been shown to be effective in capturing the generic
patterns and distribution from EHR data [21]. Further, RNNs for time series classi-
fication from EHR data have been successfully explored, e.g., in [3, 17]. However,
these approaches do not address the challenge posed by limited labeled data, which

Journal of Healthcare Informatics Research (2020) 4:112–137114

is the focus of this work. Transfer learning using deep neural networks has been
recently explored for medical applications: A model learned from one hospital could
be adapted to another hospital for the same task via RNNs [6]. A deep neural network
was used to transfer knowledge from one dataset to another while the source and
target tasks (named-entity recognition from medical records) are the same in [16].
However, in both these transfer learning approaches, the source and target tasks are
the same while only the dataset changes. In contrast, our task adaptation approach
allows to transfer the model trained on several healthcare-specific tasks to a different
(although related) classification task using RNNs for clinical time series.

3 Background: TimeNet

Deep (multi-layered) RNNs have been shown to perform hierarchical processing of
time series with different layers tackling different time scales [11, 18]. TimeNet [19]
is a general-purpose multi-layered RNN trained on large number of diverse univari-
ate time series from UCR Time Series Archive [4] that has been shown to be useful as
off-the-shelf feature extractor for time series. TimeNet has been trained on 18 differ-
ent datasets simultaneously via an RNN autoencoder in an unsupervised manner for
reconstruction task. Features extracted from TimeNet have been found to be useful
for classification task on 30 datasets from various domains not seen during training
of TimeNet, proving its ability to provide meaningful features for unseen datasets.

TimeNet contains three recurrent layers having 60 gated recurrent units (GRUs)
[5] each. TimeNet is an RNN trained via an autoencoder consisting of an encoder
RNN and a decoder RNN trained simultaneously using the sequence-to-sequence
learning framework [1, 33] as shown in Fig. 1. RNN autoencoder is trained to obtain
the parameters WE of the encoder RNN fE via reconstruction task such that for input
x1...τ = x1, x2, ..., xτ (xi ∈ R), the target output time series xτ...1 = xτ , xτ−1, ..., x1
is reverse of the input.

(a) (b)

Fig. 1 a TimeNet trained via RNN Encoder-Decoder with three hidden GRU layers. b TimeNet-based
feature extraction. TimeNet is shown unrolled for L = 3

Journal of Healthcare Informatics Research (2020) 4:112–137 115

The RNN encoder fE provides a non-linear mapping of the univariate input time
series to a fixed-dimensional vector representation zτ : zτ = fE(x1...τ ;WE), fol-
lowed by an RNN decoder fD based non-linear mapping of zτ to univariate time
series: x̂τ ...1 = fD(zτ ;WD); where WE and WD are the parameters of the encoder
and decoder, respectively. The model is trained to minimize the average squared
reconstruction error. Training on 18 diverse datasets simultaneously results in robust
time series features getting captured in zτ : the decoder relies on zτ as the only input to
reconstruct the time series, forcing the encoder to capture all the relevant information
in the time series into the fixed-dimensional vector zτ . This vector zτ is used as the
feature vector for input x1...τ . This feature vector is then used to train a simpler clas-
sifier (e.g., SVM, as used in [19]) for the end task. TimeNet maps a univariate input
time series to 180-dimensional feature vector, where each dimension corresponds to
final output of one of the 60 GRUs in the 3 recurrent layers.

4 Approach Overview

Consider sets DS and DT of time series instances corresponding to a source (S) and
a target (T) dataset, respectively. DS = {(x(i)

S , y(i)
S)}NS

i=1, where NS is the number of

time series instances in the source dataset. Denoting time series x(i)
S by x and the cor-

responding target label y(i)
S by y for simplicity of notation, we have x = x1, x2, . . . xτ

denote a time series of length τ , where xt ∈ R
n (t = 1 . . . τ) is an n-dimensional

vector corresponding to n parameters. Further, y = [y1, . . . , yK] ∈ {0, 1}K , where
K is the number of binary classification tasks. Similarly, DT = {(x(i)

T , y
(i)
T)}NT

i=1 such

that NT � NS , and y
(i)
T ∈ {0, 1} such that the target task is a binary classification

task. We consider DS and DT to be from same (different) domain if the n parameters
in DS and DT are the same (different). Further, we consider the tasks for DS and DT

to be the same if number of target classes in yS and yT is same and the correspond-
ing classes are semantically same, for example, both yS and yT contain two classes
{patient survives, patient dies}.

We consider two scenarios for transfer learning using RNNs:

i) Domain adaptation where DS contains time series from various domains such
as electric devices, motion capture, spectrographs, sensor readings, ECGs, and
simulated time series, taken from publicly available UCR Time Series Classi-
fication Archive [4], and DT contains clinical time series from EHR database
(i.e., sets DS and DT are from different domains). We consider pre-training an
RNN using DS via unsupervised learning and study its ability to compute use-
ful features for time series from an unseen domain (healthcare in our case). We
adapt pre-trained model using DT via supervised learning (Note: As we adapt
model trained via unsupervised learning for supervised task, set DT and DS are
from different task);

ii) Task adaptation where both DS and DT contain time series from the healthcare
domain such that the parameters in xS and xT correspond to the same n physio-
logical parameters such as heart rate, pulse rate, and oxygen saturation. Further,

Journal of Healthcare Informatics Research (2020) 4:112–137116

yS corresponds to various tasks, such as presence/absence of phenotypes, e.g.,
acute cerebrovascular disease, diabetes mellitus with complications, and gas-
trointestinal hemorrhage, and yT corresponds to a related but different task, e.g.,
present/absence of new phenotypes that are not present in yS . We consider pre-
training an RNN model using DS via supervised learning on the diverse set of
tasks in yS such that the model learns to capture and extract a rich set of generic
features from clinical time series that can be useful for other tasks in the same
domain. We adapt the pre-trained model using DT via supervised learning.

5 Domain Adaptation: Adapting Universal Time Series Feature
Extractors to Healthcare Domain

General-purpose time series feature extractors such as TimeNet [19] and Universal
Encoder [30] usually constrain the input time series to be univariate as it is difficult to
cater to multivariate time series with varying dimensionality in a single neural network.
In this scenario, we consider adapting TimeNet to healthcare domain with two key
considerations2: (i) extend TimeNet for multivariate clinical time series classification
tasks that requires simultaneous consideration of various physiological parameters and
(ii) adapt the features from TimeNet for specific tasks from healthcare such as patient
phenotyping and mortality prediction tasks. We show how TimeNet can be adapted to
these classification tasks by training computationally efficient traditional linear clas-
sifiers on top of features extracted for each parameter using TimeNet, as depicted
in Fig. 2. Further, we propose a simple mechanism to leverage the weights of the
trained linear classifier to provide insights into the relevance of each raw input feature
(physiological parameter) for a given phenotype (described in Section 5.3).

Consider DT is set of labeled time series instances from an EHR database:
DT = {(x(i)

T , y
(i)
T)}NT

i=1, where x(i)
T is a multivariate time series, y

(i)
T ∈ {0, 1} such that

the target task is a binary classification task, NT is the number of time series instances
corresponding to patients. We consider the presence or absence of a phenotype as
a binary classification task and learn an independent model for each phenotype
(unlike [9] which consider phenotyping as a multi-label classification problem). This
allows us to build simple and compute-efficient linear binary classification models
as described next. In practice, the outputs of these binary classifiers can then be con-
sidered together to estimate the set of phenotypes present in a patient. Similarly,
mortality prediction is considered to be a binary classification task where the goal is
to classify whether the patient will survive (after admission to ICU) or not.

5.1 Feature Extraction for Multivariate Clinical Time Series

For a multivariate time series x = x1, x2, . . . xτ , where xt ∈ R
n, we consider

time series for each of the n raw input features (physiological parameters, e.g.,

2It is to be noted that we take TimeNet as an example to illustrate our proposed domain-adaptation
approach, but the proposed approach is generic and can be used to adapt any universal time series feature
extractor to healthcare domain.

Journal of Healthcare Informatics Research (2020) 4:112–137 117

Fig. 2 Domain adaptation scenario. TimeNet is pre-trained in an unsupervised manner on time series from
k diverse domains, and then used to extract features from time series in (k + 1)-th domain for subsequent
target classification task

glucose level and heart rate) independently, to obtain univariate time series xj =
xj1, xj2, . . . xjτ , where j = 1 . . . n. (Note: We use x instead of x(i) and omit
superscript (i) for ease of notation). We obtain the vector representation zjτ =
fE(xj ;WE) for xj using TimeNet, where zjτ ∈ R

c with c = 180 (as described in
Section 3). We concatenate the TimeNet-features zjτ for each raw input feature j to
get the final feature vector zτ = [z1τ , z2τ , . . . , znτ] for time series x, where zτ ∈ R

m,
m = n × c as illustrated in Fig. 3.

In general, time series length τ varies across instances, i.e., depends on i (e.g.,
based on length of stay in the hospital). We assume equal length for each time series

Fig. 3 Domain adaptation. TimeNet-based feature extraction and classification

Journal of Healthcare Informatics Research (2020) 4:112–137118

for sake of clarity without loss of generality. In practice, we convert each time series
to have equal length τ by suitable pre/post-padding with 0s.

5.2 Using TimeNet-Based Features for Classification

The final concatenated feature vector zτ is used as input to the phenotyping and
mortality prediction classification models. We consider a linear mapping from input
TimeNet features zτ to the target label y s.t. the estimate ŷ = w · zτ , where w ∈ R

m.
We note that since c = 180 is large, zτ has large number of features m ≥ 180. We,
therefore, constrain the linear model with weights w to use only a few of these large
number of features. The weights are obtained using LASSO-regularized loss function
[34]:

arg min
w

1

N

N∑

i=1

(y(i) − w · z(i)
τ)2 + α||w||1 (1)

where y(i) ∈ {0, 1}, ||w||1 = ∑n
j=1

∑c
k=1 |wjk| is the L1-norm, wjk represents the

weight assigned to the k-th TimeNet feature for the j -th raw feature, and α con-
trols the extent of sparsity with higher α implying more sparsity, i.e., fewer TimeNet
features are implicitly used to arrive at the final classification decision.

5.3 Obtaining Relevance Scores for Raw Features

Determining relevance of the n raw input features for a given phenotype is potentially
useful to obtain insights into the obtained classification model. The learned weights
w are easy to interpret and can give interesting insights into relevant features for a
classification task (e.g., as used in [20]). We obtain the relevance rj of the j -th raw
input feature as the sum of the absolute values of the weights wjk assigned to the
corresponding TimeNet features zjτ as shown in Fig. 4, s.t.

rj =
c∑

k=1

|wjk|, j = 1 . . . n. (2)

Fig. 4 Obtaining relevance scores for raw input features. Here, τ time series length, n number of raw input
features

Journal of Healthcare Informatics Research (2020) 4:112–137 119

Further, rj is normalized using min-max normalization to obtain r ′
j = rj −rmin

rmax−rmin
∈

[0, 1]; where rmin = min(r1, . . . , rn) and rmax = max(r1, . . . , rn). In practice, these
normalized relevance scores for the raw features help to interpret and validate the
overall model. For example, one would expect blood glucose level raw input feature
to have a high relevance score in the classification model learned to detect diabetes
mellitus phenotype (we provide such insights later in Section 8).

6 Task Adaptation: Adapting Healthcare-Specific Pre-trainedModels
to a New Task

As depicted in Fig. 5, the goal of task adaptation is to transfer the learning from a set
of source tasks to a related target task for clinical time series by means of an RNN.
Considering phenotype detection from time series of physiological parameters as a
binary classification task, we train HealthNet as an RNN classifier on a diverse set
of such binary classification tasks simultaneously (one task per phenotype) using a
large labeled dataset. We consider the following approaches to adapt it to an unseen
target task:

1. Initialize parameters of the target task-specific RNN using the parameters of
HealthNet previously trained on a large number of source tasks; so that Health-
Net provides good initialization of parameters of task-specific RNN and train the
model (described in Section 6.2).

Fig. 5 Task adaptation scenario. HealthNet is pre-trained for K classification tasks from healthcare
domain simultaneously via supervised training. Then, it is adapted for target task either via fine-tuning or
feature extraction (potentially using only a small amount of labeled training data for target task)

Journal of Healthcare Informatics Research (2020) 4:112–137120

2. Extract features using HealthNet and then learn an easily trainable non-temporal
linear classification model such as a logistic regression model [12] for target
tasks with few labeled instances (described in Section 6.3).

More specifically, consider DS and DT are sets of labeled time series instances
from an EHR database (i.e., same domain): DS = {(x(i)

S , y(i)
S)}NS

i=1, where x(i)
S is a

multivariate time series, y(i)
S = {y1, . . . , yK} ∈ {0, 1}K , K is the number of binary

classification tasks, and NS is the number of time series instances corresponding to
patients. Similarly, DT = {(x(i)

T , y
(i)
T)}NT

i=1 such that NT � NS , and y
(i)
T ∈ {0, 1} such

that the target task is a binary classification task. As depicted in Fig. 6a, we first train
HealthNet on K source tasks using DS (refer to Section 6.1 for details), and then
consider the following two scenarios for adapting to the pre-trained model to target
tasks using DT :

– Fine-tune the HealthNet with suitable regularization (refer Section 6.2 for
details), as shown in Fig. 6b. This allows us to train a model that does not require
hyper-parameter tuning efforts.

– Train the simpler logistic regression (LR) classifier for target task and the fea-
tures obtained via HealthNet (refer Section 6.3 for details), as shown in Fig. 7,
which is compute-efficient.

We next provide details of training and fine-tuning the HealthNet and training the LR
models.

6.1 Obtaining HealthNet Using Supervised Pre-training of RNN

Training an RNN on K binary classification tasks simultaneously can be considered
as a multi-label classification problem. We train a multi-layered RNN with L recur-
rent layers having GRUs to map x(i) ∈ DS to y(i). Let zt,l ∈ R

h denote the output of
recurrent units in l-th hidden layer at time t , and zt = [zt,1, . . . , zt,L] ∈ R

m denote

(a) (b)

Fig. 6 a HealthNet trained via supervised learning for multiple source tasks simultaneously using final
activation as sigmoid. b Fine-tuning HealthNet for a new target task using final activation as softmax. Here,
blue and red arrows correspond to recurrent and feed forward weights of the recurrent layers, respectively.
Only feed forward (red) weights are regularized while fine-tuning the HealthNet. RNN with L = 2 hidden
layers is shown unrolled over τ = 3 time steps

Journal of Healthcare Informatics Research (2020) 4:112–137 121

T

Fig. 7 Inference in task adaptation. Using features extracted from HealthNet. RNN with L = 2 hidden
layers is shown unrolled over τ = 3 time steps

the hidden state at time t obtained as concatenation of hidden states of all layers,
where h is the number of GRU units in a hidden layer and m = h×L. The parameters
of the network are obtained by minimizing the cross-entropy loss L via stochastic
gradient descent:

z(i)
τ = fE(x(i);W′

E), ŷ(i) = σ(WC z(i)
τ,L + bC)

C(y
(i)
k , ŷ

(i)
k) = y

(i)
k · log(ŷ

(i)
k) + (1 − y

(i)
k) · log((1 − ŷ

(i)
k))

L = − 1

NS × K

NS∑

i=1

K∑

k=1

C(y
(i)
k , ŷ

(i)
k). (3)

Here σ(x) = (1 + e−x)−1 is the sigmoid activation function, ŷ(i) is the estimate for
target y(i), W′

E are parameters of recurrent layers, and WC and bC are parameters of
the classification layer.

6.2 Fine-Tuning of HealthNet

We initialized the target task-specific RNN parameters by the pre-trained RNN
parameters of recurrent layers (W′

E) and a new binary classification layer parameters
(W′

C and b′
C). We obtain probabilities of two classes for the binary classification task

as ŷ(i) = softmax(W′
C z′(i)

τ,L + b′
C), where z′(i)

τ,L is the output of recurrent units in last
layer (L) at last timestamp (τ). Let W′

EF and W′
ER are feed forward and recurrent

weights of the recurrent layers. All parameters are trained together by minimizing
cross-entropy loss with regularizer. We consider two regularizer techniques to obtain
two different fine-tuned models with loss given by L1 and L2 via stochastic gradient
descent:

L1 = − 1

NT

NT∑

i=1

C(y(i), ŷ(i)) + λ‖W′
EF ‖1 (4)

L2 = − 1

NT

NT∑

i=1

C(y(i), ŷ(i)) + λ‖W′
EF ‖2 (5)

Journal of Healthcare Informatics Research (2020) 4:112–137122

where ŷ(i) is the probability of positive class, ||W′
EF ||1 = ∑m

j=1 |Wj | is the L1

norm with λ controlling the extent of sparsity, and ||W′
EF ||2 = ∑m

j=1 Wj
2 is the

L2 norm. As [25] suggests that using an L1 or L2 penalty on the recurrent weights
compromises the ability of the network to learn and retain information through time,
therefore, we apply L1 or L2 regularizer only to the feed forward connections across
recurrent layers and not the weights of the recurrent connections.

6.3 LRModels Using Features Extracted fromHealthNet

For input x(i) ∈ DT , the hidden state z(i)
τ at last time step τ is used as input feature

vector for training the LR model. We obtain probability of the positive class for the
binary classification task as ŷ(i) = σ(w′

C z(i)
τ + b′

C), where w′
C , b′

C are parameters of
LR. The parameters are obtained by minimizing the negative log-likelihood loss L′:

L′ = − 1

NT

NT∑

i=1

C(y(i), ŷ(i)) + λ‖w′
C‖1 (6)

where ||w′
C ||1 = ∑m

j=1 |wj | is the L1 regularizer with λ controlling the extent of
sparsity—with higher λ implying more sparsity, i.e., fewer features from the repre-
sentation vector are selected for the final classifier. It is to be noted that this way
of training the LR model on pre-trained RNN features is equivalent to freezing the
parameters of all the hidden layers of the pre-trained RNN while tuning the param-
eters of a new final classification layer which has been used successfully in, e.g.,
[14]. The sparsity constraint ensures that only a small number of parameters are to
be tuned which is useful to avoid overfitting when labeled data is small.

7 Dataset Description

We use MIMIC-III (v1.4) clinical database [13] which consists of over 60,000 ICU
stays across 40,000 critical care patients. We use the same experimental setup as in
[9], with same splits and features for train, validation, and test datasets3 based on
17 physiological parameters with 12 real-valued (e.g., blood glucose level and sys-
tolic blood pressure) and 5 categorical time series (e.g., Glascow coma scale motor
response and Glascow coma scale verbal), sampled at 1-h intervals. The categorical
variables are converted to one-hot vectors such that the final multivariate time series
has n = 76 raw input features (59 actual features and 17 masking features to denote
missing values). Refer to Table 4 in the Appendix for names of raw features used. In
all our experiments, we restrict training time series data up to first 48 h in ICU stay,
such that τ = 48 with one reading every 1 h while training all models to imitate prac-
tical scenario where early predictions are important, unlike [9, 32] which use entire
time series for training the classifier for phenotyping task. The benchmark dataset
contains label information for presence/absence of 25 phenotypes common in adult

3https://github.com/yerevann/mimic3-benchmarks

Journal of Healthcare Informatics Research (2020) 4:112–137 123

https://github.com/yerevann/mimic3-benchmarks

ICUs (e.g., acute cerebrovascular disease, diabetes mellitus with complications, and
gastrointestinal hemorrhage), and in-hospital mortality, whether the patient survived
or not after ICU admission (class 1: patient dies, class 0: patient survives).

The benchmark dataset contains label information for presence/absence of 25 phe-
notypes common in adult ICUs including 12 critical (and sometimes life-threatening)
conditions, such as respiratory failure and sepsis; 8 chronic conditions that are com-
mon comorbidities and risk factors in critical care, such as diabetes and metabolic
disorders; and 5 conditions considered “mixed” because they are recurring or chronic
with periodic acute episodes. We also consider the task of predicting in-hospital mor-
tality, i.e., whether the patient survived or not after ICU admission (class 1: patient
dies, class 0: patient survives).

We use the same evaluation metrics and protocol as in [9, 10] unless mentioned
otherwise, including macro- and micro-averaged AUROC for phenotyping task, and
AUROC and AUPRC for in-hospital mortality prediction task, where AUROC (area
under the receiver operator characteristic curve) is the commonly used metric in
classification tasks, micro AUROC is calculated by single AUROC computed on
flattened model prediction and ground truth matrices, micro AUROC calculated by
averaging performance metric per-class/label. AUPRC (area under the precision-
recall curve) better suits to problems with imbalanced classes which happens to be the
case here for both phenotyping and in-hospital mortality tasks, e.g., 4493 (10.63%)
out of 42,276 patients died in-hospital making in-hospital mortality prediction task
to have high class imbalance.

8 Experimental Evaluation for Domain Adaptation

We evaluate TimeNet-based transfer learning approach on binary classification tasks
(i) presence/absence of 25 phenotypes and (ii) in-hospital mortality task.

8.1 Experimental Setup

We have n = 76 raw input features resulting in m = 13, 680-dimensional (m =
76 × 180) TimeNet feature vector for each admission. We use α = 0.0001 for
phenotype classifiers and use α = 0.0003 for in-hospital mortality classifier (α is
chosen based on hold-out validation set). Table 1 summarizes the results of phe-
notyping and in-hospital mortality prediction task, and provides comparison with
existing benchmarks. Refer to Table 3 in the Appendix for detailed phenotype-wise
results. We report the values of the performance metrics for all models along with
95% confidence intervals obtained by resampling the test set 10,000 times with
replacement.

We consider two variants of classifier models for phenotyping task: (i) TimeNet-
x using data from current episode and (ii) TimeNet-x-Eps using data from previous
episode of a patient as well (whenever available) via an additional input feature
related to presence or absence of the phenotype in previous episode. Each classifier is
trained using up to first 48 h of data after ICU admission. However, we consider two
classifier variants depending upon hours of data x used to estimate the target class at

Journal of Healthcare Informatics Research (2020) 4:112–137124

Table 1 Classification performance comparison of TimeNet-based models with LR (logistic regression
model over manually designed statistical features) and LSTM (LSTM classifier trained from scratch) for
the phenotyping and in-hospital mortality prediction tasks

Phenotyping task

approach Micro AUROC Macro AUROC

LR 0.799 (0.796, 0.803) 0.739 (0.734, 0.743)

LSTM 0.821 (0.818, 0.825) 0.770 (0.766, 0.775)

TimeNet-48 0.812 (0.808, 0.815) 0.761 (0.757, 0.765)

TimeNet-All 0.813 (0.810, 0.817) 0.764 (0.759, 0.768)

TimeNet-48-Eps 0.820 (0.817, 0.824) 0.772 (0.768, 0.777)

TimeNet-All-Eps 0.822 (0.819, 0.825) 0.775 (0.771,0.779)

In-hospital mortality prediction task

approach AUROC AUPRC

LR 0.848 (0.828, 0.868) 0.474 (0.419, 0.529)

LSTM 0.855 (0.835, 0.873) 0.485 (0.431, 0.537)

TimeNet-48 0.852 (0.831, 0.872) 0.519 (0.467, 0.571)

Numbers in round brackets denote 95% confidence intervals. Here, results of LR and LSTM are taken from
[10] (Note: For phenotyping, we compare TimeNet-48-Eps with existing benchmarks over TimeNet-All-
Eps as it is more applicable in practical scenarios. Only TimeNet-48 variant is applicable for in-hospital
mortality task.)

test time. For x = 48, data up to first 48 h after admission is used for determining the
phenotype. For x = All, the learned classifier is applied to all 48-h windows (over-
lapping with shift of 24 h) over the entire ICU stay period of a patient, and the average
phenotype probability across windows is used as the final estimate of the target class.
In TimeNet-x-Eps, the additional feature is related to the presence (1) or absence (0)
of the phenotype during the previous episode. We use the ground-truth value for this
feature during training time, and the probability of presence of phenotype during
previous episode (as given via LASSO-based classifier) at test time.

For evaluating the efficacy of the features extracted via TimeNet, we compare
our approach with a logistic regression model (LR) trained using manually designed
statistical features from raw time series as used in [9]: For each input physiological
parameter, it uses minimum, maximum, mean, standard deviation, skew, and number
of measurements for each of the seven different subsequences or chunks of a given
time series. The seven subsequences correspond to the full time series, and the data
over the first 10%, 25%, 50%, last 50%, last 25%, and last 10% of time. Effectively,
this results in 17 × 7 × 6 = 714 features per time series (where 17 is the number of
original raw physiological parameters).

8.2 Results and Observations

8.2.1 Classification Tasks

For the phenotyping task, we make the following observations from Table 1:

Journal of Healthcare Informatics Research (2020) 4:112–137 125

1. TimeNet-48 versus LR: TimeNet-based features perform significantly better than
hand-crafted features as used in LR ([9, 10], while using only the first 48 h of
data unlike the LR approach that uses the entire episode’s data. This proves the
effectiveness of TimeNet features for MIMIC-III data. Further, it only requires
tuning a single hyper-parameter α for LASSO, unlike other approaches like
LSTM [9, 10] that would involve finding the suitable number of hidden units,
layers, learning rate, etc. and training the deep networks from scratch.

2. TimeNet-x versus TimeNet-x-Eps: Leveraging previous episode’s time series
data for a patient significantly improves the classification performance.

3. TimeNet-48-Eps performs at par existing benchmarks, while still being practi-
cally more feasible as it looks at only up to 48 h of the current episode of a patient
rather than the entire current episode. For in-hospital mortality task, we observe
comparable performance to existing benchmarks.

Training linear models is significantly fast and it took around 10 min for obtaining
any of the binary classifiers while tuning for α ∈ [10−5 − 10−3] (five equally spaced
values) on a 32GB RAM machine with Quad Core i7 2.7GHz processor. We observe
that LASSO leads to 96.2 ± 0.8 % sparsity (i.e., percentage of weights wjk ≈
0) for all classifiers leading to around 550 useful features (out of 13,680) for each
phenotype classification.

8.2.2 Relevance Scores for Raw Input Features

We observe intuitive interpretation for relevance of raw input features using the
weights assigned to various TimeNet features (refer (2)): For example, as shown
in Fig. 8, we obtain highest relevance scores for glucose level (feature 1) and sys-
tolic blood pressure (feature 20) for diabetes mellitus with complications (Fig. 8a),
and essential hypertension (Fig. 8b), respectively. Refer to the Appendix Fig. 13 for
more details. We conclude that even though TimeNet was never trained on MIMIC-
III data, it still provides meaningful general-purpose features from time series of raw
input features, and LASSO helps to select the most relevant ones for end task by
using labeled data. Further, extracting features using a deep recurrent neural network

Fig. 8 a, b Relevance scores for raw input features or parameters. x-axis: feature number, y-axis: relevance
score. Here, P1: diabetes mellitus with complications, P2: essential hypertension

Journal of Healthcare Informatics Research (2020) 4:112–137126

model for time series of each raw input feature independently—rather than consid-
ering a multivariate time series—eventually allows to easily assign relevance scores
to raw features in the input domain, allowing a high-level basic model validation by
domain-experts.

9 Experimental Evaluation for Task Adaptation

9.1 Experimental Setup

We evaluate the HealthNet-based transfer learning approach on the same tasks as
used in Section 8 with the following evaluation protocol as depicted in Fig. 9:

Out of 25 phenotypes, we consider K = 20 phenotypes to obtain the pre-trained
RNN which we refer to as HealthNet (HN) and test the transferability of the features
from HN to remaining 5 phenotype classification tasks with varying labeled data
sizes. Since more than one phenotype may be present in a patient at a time, we remove
all patients with any of the 5 test phenotypes from the original train and validate sets
(despite them having one of the 20 train phenotypes also) to avoid any information
leakage. Except for this, note that the train, validate, and test splits remain the same
as in [9]. We report average results in terms of weighted AUROC (as in [9]) on two

Fig. 9 Evaluation protocol for task adaptation

Journal of Healthcare Informatics Research (2020) 4:112–137 127

random splits of 20 train (and validate) phenotypes and 5 test phenotypes, such that
we have 10 test phenotypes (tested one-at-a-time). We also test the transferability of
HN features to in-hospital mortality prediction task.

For each target task (i.e., 10 phenotypes and in-hospital mortality prediction task),
we test the robustness of HN to labeled training data size. We use random stratified
sub-sampling of the training and validation data to obtain reduced labeled training
and validation sets. We consider the number of hidden layers L = 2, batch size of
128, regularization using dropout factor [26] of 0.3, and Adam optimizer [15] with
initial learning rate 10−4 for training RNNs. The number of hidden units h with
minimum L (3) on the validation set is chosen from {100, 200, 300, 400}. Best HN
model was obtained for h = 300 such that total number of features is m = 600.
For fine-tuning of HN, we use the same parameters as used in training HN with
regularization factor λ = 0.01 (4 and 5). For the linear classification model, the
parameter λ is tuned on {0.1, 1.0, . . . , 104} (on a logarithmic scale) to minimize L′
(6) on the validation set.

9.2 Results and Observations

We refer to the fine-tuned model using L1 regularizer as HN-L1, using L2 regular-
izer as HN-L2, without regularizer as HN-Tune, and LR model learned using HN
features as HN-LR, and consider two baselines for comparison: (i) logistic regres-
sion (LR) using manually designed statistical features described in Section 8.1 and
(ii) RNN classifier (RNN-C) with gated units as in LSTMs (or GRUs) obtained using
training and validation data for the target task. To test the robustness of the mod-
els for small-labeled training sets, we consider subsets of training and validation
datasets as explained in Section 9.1, while the test set remains the same. Further,
we also evaluate the relevance of layer-wise features zτ,l from the L = 2 hidden
layers of HealthNet. HN-LR-1 and HN-LR-2 refer to models trained using zτ,2
(the topmost hidden layer only) and zτ = [zτ,1, zτ,2] (from both hidden layers),
respectively.

Comparing Variants of HealthNet-Based Transfer Learning Techniques The results
for phenotyping tasks in Fig. 10a suggest that (i) all the variants of HN-based trans-
fer learning performs equally well on 100% training data; (ii) regularized fine-tuned
models (HN-L1 and HN-L2) consistently outperform non-regularized fine-tuned
model (HN-Tune) as training dataset is reduced. Importantly, as the size of labeled
training set is reduced, non-regularized fine-tuned model degrades quickly as it is
prone to overfitting due to a large number of trainable parameters. (iii) For medium-
sized datasets (20% and 60% of original training data), the fine-tuned models HN-L1
and HN-L2 perform better than feature extraction based HN-LR models as well
as the models without any regularization. However, for extremely large or small
data sizes (5% and 100% cases), the difference is insignificant, thus indicating the
expected trade-off between fine-tuning and feature extraction-based methods w.r.t.
training data size: when labeled training data is small, fine-tuning all the param-
eters of a deep network may still be prone to some overfitting even after careful
regularization.

Journal of Healthcare Informatics Research (2020) 4:112–137128

Fig. 10 a, b Classification performance comparison along with 95% confidence intervals for phenotyping
task. Here, baseline models are LR and RNN-C, W-AUROC is weighted-AUROC over 10 phenotypes

Robustness of Transfer LearningModels VersusModels Trained FromScratch to Train-
ing Data Size We compare the best fine-tuning based and feature extraction based
variants, i.e., HN-L1 and HN-LR-2, with the LR and RNN-C models trained from
scratch. As shown in Fig. 10b, we observe that:

(i) HN-L1, HN-LR-2, and RNN-C perform equally well when using 100% train-
ing data, and are better than LR. This implies that the transfer learning–based
models are as effective as models trained specifically for the target task on
large labeled datasets while reducing training efforts and automating feature
extraction.

(ii) HN-L1 consistently outperforms RNN-C and LR models as training dataset
is reduced. As the size of labeled training dataset reduces, though the perfor-
mance of the model trained from scratch (RNN-C) as well as transfer learning
models (HN-L1 and HN-LR-2) degrades, we observe that transfer learning
based models degrade much more gracefully and perform significantly bet-
ter than RNN-C for reduced data sizes (here, the 5% labeled data scenario).
The performance gains from transfer learning are greater when the training
set of the target task is small. Therefore, with transfer learning, fewer labeled
instances are needed to achieve the same level of performance as model trained
on target data alone.

(iii) As labeled training set is reduced, LR performs better than RNN-C confirming
that deep networks are prone to overfitting on small datasets.

We also evaluate the transfer learning approach on in-hospital mortality task, and
found transfer learning to be useful there as well. However, since the task is poten-
tially unrelated to the phenotyping task, we do not observe significant improvements
over the models trained from scratch. Refer to Fig. 12a in the Appendix for more
details. From Fig. 12b, we interestingly observe that HN-LR-2 results are at least
as good as RNN-C and LR on the seemingly unrelated task of mortality prediction,
suggesting that the features learned are generic enough and transfer well.

Journal of Healthcare Informatics Research (2020) 4:112–137 129

Number of Relevant Features for a Task We observe that only a small number of fea-
tures are actually relevant for a target classification task out of large number of input
features to LR models (714 for LR, 300 for HN-LR-1, and 600 for HN-LR-2). As
shown in Table 2, > 95% of features have weight ≈ 0 (absolute value < 0.001) for
HN-LR models corresponding to phenotyping tasks due to sparsity constraint (6), i.e.,
most features do not contribute to the classification decision. The weights of features
that are non-zero for at least one of target tasks for HN-LR-1 are shown in Supple-
mentary Material Fig. 14. We observe that, for example, for HN-LR-1 model, only
130 features (out of 300) are relevant across the 10 phenotype classification tasks and
the mortality prediction task. This suggests that HN provides several generic features
while LR learns to select the most relevant ones given a small-labeled dataset. Table 2
(and Fig. 14 in the Appendix) also suggests that HN-LR models use a larger number
of features for mortality prediction task, possibly because concise features for mor-
tality prediction are not available in the learned set of features as HN was pre-trained
for phenotype identification tasks.

10 Domain Adaptation Versus Task Adaptation

We study in what scenarios can domain adaptation be valuable compared with task
adaptation and vice versa. To this effect, we consider a scenario where none or a
very small number of source tasks from the healthcare domain are available for pre-
training. When there is no source task from the healthcare domain for pre-training,
the user has to resort to either training from scratch for the target task or use domain
adaptation via TimeNet. However, when a small number (say, 2–3) of source tasks
are available from the healthcare domain, it may be worth consider pre-training a
healthcare domain-specific model rather than solely relying on TimeNet.

We evaluate on 5 binary classification target tasks, i.e., presence/absence of 5 phe-
notypes and report average results in Fig. 11. We use the same setup as in Sections 8
and 9 for domain and task adaptation, respectively. We vary the number of randomly
chosen source tasks for task adaptation with K = {2, 5, 20} phenotypes out of the 20
remaining phenotypes (out of 25 tasks, 5 are used for testing) to obtain the pre-trained
RNN, i.e., HealthNet (HN), and test the transferability of HN-L1 to 5 phenotypes
with 20% of training data. We report the results using split K randomly selected train
phenotypes out of 20 and 5 fixed test phenotypes, and report the average of three-run.
For domain adaptation, we rely only on domain adaptation without using any of the
K source tasks for pre-training.

Table 2 Fraction of features with weight ≈ 0. Here, the average and standard deviation over 10 phenotypes
is reported for phenotyping task

Series task Series LR Series HN-LR-1 Series HN-LR-2

Phenotyping 0.902 ± 0.023 0.955 ± 0.020 0.974 ± 0.011

In-hospital mortality 0.917 0.787 0.867

Journal of Healthcare Informatics Research (2020) 4:112–137130

Fig. 11 Classification
performance comparison along
with 95% confidence intervals.
HealthNet-based transfer
learning (HN-L1) versus
TimeNet-based transfer learning
(TimeNet-48). Here, W-AUROC
is weighted-AUROC over 5
phenotype target tasks

10.1 Results and Observations

From Fig. 11, we observe that the performance of task adaptation approach HN-
L1 degrades in comparison with domain adaptation approach (TimeNet-48) when
the number of source tasks K available for training reduces. Further, TimeNet-48
and HN-L1 perform comparably when there is enough labeled data from a diverse
set of tasks within the healthcare domain to allow for pre-training and leverage
within-domain transfer. The advantage of TimeNet-like off-the-shelf generic mod-
els is evident as such models can be trained on publicly available time series data
across domains in an unsupervised manner, and therefore, the performance of domain
adaptation models is not very sensitive to the data in the healthcare domain. In other
words, domain adaptation–based approaches are useful when there is not enough
labeled data for the target task nor sufficient tasks in the target domain to pre-train a
domain-specific model to leverage the benefits of transfer learning.

We also contrast the time taken to fine-tune TimeNet-based models and
HealthNet-based models. Training and fine-tuning times are recorded on a 32GB
RAM machine with Quad Core i7 2.7GHz processor. Training linear models (e.g.,
over TimeNet features) is fast, and it took around 10 min to obtain any of the tar-
get task-specific binary classifiers while tuning for α ∈ [10−5 − 10−3] (five equally
spaced values). However, fine-tuning a deep learning model (e.g., HN) took around
45 min which is slower in comparison with TimeNet-based models but still faster
than training a deep learning model (i.e., RNN-C) from scratch that took around 3 h
for obtaining a final model while tuning for number of hidden units from {100, 200,
300, 400}.

11 Conclusion

Deep neural networks require heavy computational resources for training and are
prone to overfitting. Scarce labeled training data, significant hyper-parameter tuning
efforts, and scarce computational resources are often a bottleneck in adopting deep

Journal of Healthcare Informatics Research (2020) 4:112–137 131

learning–based solutions to healthcare applications. In this work, we have proposed
effective approaches for transfer learning in the healthcare domain by using deep
recurrent neural networks (RNN). We considered two scenarios for transfer learn-
ing: (i) adapting a deep RNN-based universal time series feature extractor (TimeNet)
to healthcare tasks and applications and (ii) adapting a deep RNN (HealthNet) pre-
trained on healthcare tasks to a new related task. Our approach brings the advantage
of deep learning such as automated feature extraction and ability to easily deal
with variable length time series while still being simple to adapt to the target tasks.
We have demonstrated that our transfer learning approaches can lead to significant
gains in classification performance compared with traditional models using carefully
designed statistical features or task-specific deep models in scarcely labeled train-
ing data scenarios. Further, leveraging pre-trained models ensures very little tuning
effort, and therefore, fast adaptation. We also found that raw feature-wise handling of
time series via TimeNet and subsequent linear classifier training can provide insights
into the importance and relevance of a raw feature (physiological parameter) for a
given task while still modeling the temporal aspect. This raw feature relevance scor-
ing can help domain-experts gain at least a high-level insight into the working of
otherwise opaque deep RNNs.

In future, evaluating a domain-specific TimeNet-like model for clinical time series
(e.g., trained only on MIMIC-III database) will be interesting. Also, transferability
and generalization capability of RNNs trained simultaneously on diverse tasks (such
as length of stay, mortality prediction, and phenotyping [9, 32]) to new tasks is an
interesting future direction.

Acknowledgments We would like to thank the anonymous reviewers for their valuable comments that
have helped to significantly enhance this paper.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of interest.

Appendix: Multi-layered RNNwith Gated Recurrent Units

A gated recurrent unit (GRU) [5] consists of an update gate and a reset gate that
control the flow of information by manipulating the hidden state of the unit as in
Equation (7).

In an RNN with L hidden layers, the reset gate is used to compute a proposed
value z̃l

t for the hidden state zl
t at time t for the l-th hidden layer by using the hidden

state zl
t−1 and the hidden state zl−1

t of the units in the lower hidden layer at time t .
The update gate decides as to what fractions of previous hidden state and proposed
hidden state to use to obtain the updated hidden state at time t . In turn, the values of
the reset gate and update gate themselves depend on the zl

t−1 and zl−1
t

We use dropout variant for RNNs as proposed in [26] for regularization such that
dropout is applied only to the non-recurrent connections, ensuring information flow
across time steps.

Journal of Healthcare Informatics Research (2020) 4:112–137132

Fig. 12 a, b Classification performance comparison along with 95% confidence intervals for In-hospital
mortality task. Here, baseline models are LR and RNN-C

Fig. 13 Feature relevance scores for 25 phenotypes using TimeNet-based transfer learning. Refer to
Table 3 for the names of phenotypes and Table 4 for the names of raw features

Fig. 14 Feature weights (absolute) for HN-LR-1. Here Pi (i = 1, . . . , 10) denotes i-th phenotype
identification task. x-axis: feature number, y-axis: task

Journal of Healthcare Informatics Research (2020) 4:112–137 133

Table 3 Phenotype-wise classification performance in terms of AUROC

S.No. Phenotype LSTM-
Multi

TimeNet-
48

TimeNet-
All

TimeNet-
48-Eps

TimeNet-
All-Eps

1 Acute and unspecified renal failure 0.8035 0.7861 0.7887 0.7912 0.7941

2 Acute cerebrovascular disease 0.9089 0.8989 0.9031 0.8986 0.9033

3 Acute myocardial
infarction

0.7695 0.7501 0.7478 0.7533 0.7509

4 Cardiac dysrhythmias 0.684 0.6853 0.7005 0.7096 0.7239

5 Chronic kidney disease 0.7771 0.7764 0.7888 0.7960 0.8061

6 Chronic obstructive pulmonary dis-
ease and bronchiectasis

0.6786 0.7096 0.7236 0.7460 0.7605

7 Complications of surgical proce-
dures or medical care

0.7176 0.7061 0.6998 0.7092 0.7029

8 Conduction disorders 0.726 0.7070 0.7111 0.7286 0.7324

9 Congestive heart failure; nonhyper-
tensive

0.7608 0.7464 0.7541 0.7747 0.7805

10 Coronary atherosclerosis and other
heart disease

0.7922 0.7764 0.7760 0.8007 0.8016

11 Diabetes mellitus with complica-
tions

0.8738 0.8748 0.8800 0.8856 0.8887

12 Diabetes mellitus without compli-
cation

0.7897 0.7749 0.7853 0.7904 0.8000

13 Disorders of lipid metabolism 0.7213 0.7055 0.7119 0.7217 0.7280

14 Essential hypertension 0.6779 0.6591 0.6650 0.6757 0.6825

15 Fluid and electrolyte disorders 0.7405 0.7351 0.7301 0.7377 0.7328

16 Gastrointestinal hemorrhage 0.7413 0.7364 0.7309 0.7386 0.7343

17 Hypertension with complications
and secondary hypertension

0.76 0.7606 0.7700 0.7792 0.7871

18 Other liver diseases 0.7659 0.7358 0.7332 0.7573 0.7530

19 Other lower respiratory
disease

0.688 0.6847 0.6897 0.6896 0.6922

20 Other upper respiratory
disease

0.7599 0.7515 0.7565 0.7595 0.7530

21 Pleurisy; pneumothorax;
pulmonary collapse

0.7027 0.6900 0.6882 0.6909 0.6997

22 Pneumonia 0.8082 0.7857 0.7916 0.7890 0.7943

23 Respiratory failure; insuf-
ficiency; arrest (adult)

0.9015 0.8815 0.8856 0.8834 0.8876

24 Septicemia (except in labor) 0.8426 0.8276 0.8140 0.8296 0.8165

25 Shock 0.876 0.8764 0.8564 0.8763 0.8562

Journal of Healthcare Informatics Research (2020) 4:112–137134

Table 4 List of raw input features

1 Glucose 31 Glascow coma scale eye opening → 3 to
speech

2 Glascow coma scale total → 7 32 Height

3 Glascow coma scale verbal response →
incomprehensible sounds

33 Glascow coma scale motor response → 5
localizes pain

4 Diastolic blood pressure 34 Glascow coma scale total → 14

5 Weight 35 Fraction inspired oxygen

6 Glascow coma scale total → 8 36 Glascow coma scale total → 12

7 Glascow coma scale motor response →
obeys commands

37 Glascow coma scale verbal response → con-
fused

8 Glascow coma scale eye opening → none 38 Glascow coma scale motor response → 1 no
response

9 Glascow coma scale eye opening → to pain 39 Mean blood pressure

10 Glascow coma scale total → 6 40 Glascow coma scale total → 4

11 Glascow coma scale verbal response → 1.0
ET/Trach

41 Glascow coma scale eye opening → to
speech

12 Glascow coma scale total → 5 42 Glascow coma scale total → 15

13 Glascow coma scale verbal response → 5
oriented

43 Glascow coma scale motor response → 4
flex-withdraws

14 Glascow coma scale total → 3 44 Glascow coma scale motor response → no
response

15 Glascow coma scale verbal response → no
response

45 Glascow coma scale eye opening → sponta-
neously

16 Glascow coma scale motor response → 3
abnorm flexion

46 Glascow coma scale verbal response → 4
confused

17 Glascow coma scale verbal response → 3
inapprop words

47 Capillary refill rate → 0.0

18 Capillary refill rate → 1.0 48 Glascow coma scale total → 13

19 Glascow coma scale verbal response →
inappropriate words

49 Glascow coma scale eye opening → 1 no
response

20 Systolic blood pressure 50 Glascow coma scale motor response →
abnormal extension

21 Glascow coma scale motor response → flex-
withdraws

51 Glascow coma scale total → 11

22 Glascow coma scale total → 10 52 Glascow coma scale verbal response → 2
incomp sounds

23 Glascow coma scale motor response →
obeys commands

53 Glascow coma scale total → 9

24 Glascow coma scale verbal response → no
response-ETT

54 Glascow coma scale motor response →
abnormal flexion

25 Glascow coma scale eye opening → 2 to
pain

55 Glascow coma scale verbal response → 1 no
response

26 Heart rate 56 Glascow coma scale motor response → 2
abnorm extensn

27 Respiratory rate 57 pH

Journal of Healthcare Informatics Research (2020) 4:112–137 135

Table 4 (continued)

28 Glascow coma scale verbal response → ori-
ented

58 Glascow coma scale eye opening → 4 spon-
taneously

29 Glascow coma scale motor response →
localizes pain

59 Oxygen saturation

30 Temperature

The time series goes through the following transformations iteratively for t = 1
through T , where T is length of the time series:

reset gate : rl
t = σ(Wl

r · D(zl−1
t), zl

t−1])
update gate : ul

t = σ(Wl
u · [D(zl−1

t), zl
t−1])

proposed state : z̃l
t = tanh(Wl

p · [D(zl−1
t), rt 	 zl

t−1])
hidden state : zl

t = (1 − ul
t) 	 zl

t−1 + ul
t 	 z̃l

t (7)

where 	 is Hadamard product, [a,b] is concatenation of vectors a and b, D(·) is
dropout operator that randomly sets the dimensions of its argument to zero with prob-
ability equal to dropout rate, and z0

t equals the input at time t . Wr , Wu, and Wp

are weight matrices of appropriate dimensions s.t. rl
t ,u

l
t , z̃

l
t , and zl

t are vectors in

Rcl
, where cl is the number of units in layer l. The sigmoid (σ) and tanh activation

functions are applied element-wise.

References

1. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and
translate. arXiv:14090473

2. Bengio Y (2012) Deep learning of representations for unsupervised and transfer learning. In:
Proceedings of ICML workshop on unsupervised and transfer learning, pp 17–36

3. Che Z, Purushotham S, Cho K, Sontag D, Liu Y (2016) Recurrent neural networks for multivariate
time series with missing values. arXiv:160601865

4. Chen Y, Keogh E, Hu B, Begum N, et al. (2015) The ucr time series classification archive. www.cs.
ucr.edu/eamonn/time series data/

5. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014)
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
arXiv:14061078

6. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J (2016) Doctor ai: predicting clinical events via
recurrent neural networks. In: Machine Learning for Healthcare Conference, pp 301–318

7. Gupta P, Malhotra P, Vig L, Shroff G (2018) Transfer learning for clinical time series analysis using
recurrent neural networks

8. Gupta P, Malhotra P, Vig L, Shroff G (2018) Using features from pre-trained timenet for clinical
predictions

9. Harutyunyan H, Khachatrian H, Kale DC, Galstyan A (2017) Multitask learning and benchmarking
with clinical time series data. arXiv:170307771

10. Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A (2019) Multitask learning and
benchmarking with clinical time series data. Scientific Data 6(1):96

11. Hermans M, Schrauwen B (2013) Training and analysing deep recurrent neural networks. In:
Advances in neural information processing systems, pp 190–198

Journal of Healthcare Informatics Research (2020) 4:112–137136

http://arxiv.org/abs/14090473
http://arxiv.org/abs/160601865
www.cs.ucr.edu/ eamonn/time_series_data/
www.cs.ucr.edu/ eamonn/time_series_data/
http://arxiv.org/abs/14061078
http://arxiv.org/abs/170307771

12. Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, vol 398. Wiley,
Hoboken

13. Johnson AE, Pollard TJ et al (2016) Mimic-iii, a freely accessible critical care database. Scientific
Data 3:160035

14. Kashiparekh K, Narwariya J, Malhotra P, Vig L, Shroff G (2019) Convtimenet: a pre-trained deep
convolutional neural network for time series classification. In: 2019 International joint conference on
neural networks (IJCNN). IEEE

15. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:14126980
16. Lee JY, Dernoncourt F, Szolovits P (2017) Transfer learning for named-entity recognition with neural

networks. arXiv:170506273
17. Lipton ZC, Kale DC, Elkan C, Wetzel R (2015) Learning to diagnose with lstm recurrent neural

networks. arXiv:151103677
18. Malhotra P, Vig L, Shroff G, Agarwal P (2015) Long short term memory networks for anomaly

detection in time series. In: ESANN, 23rd European symposium on artificial neural networks,
computational intelligence and machine learning, pp 89–94

19. Malhotra P, TV V, Vig L, Agarwal P, Shroff G (2017) TimeNet: pre-trained deep recurrent neural
network for time series classification. In: 25th European symposium on artificial neural networks,
computational intelligence and machine learning, pp 607–612

20. Micenková B, Dang XH, Assent I, Ng RT (2013) Explaining outliers by subspace separability. In:
2013 IEEE 13th international conference on data mining (ICDM). IEEE, pp 518–527

21. Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict
the future of patients from the electronic health records. Scientific reports 6:26094

22. Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2017) Deep learning for healthcare: review,
opportunities and challenges. Briefings in bioinformatics

23. Nguyen P, Tran T, Wickramasinghe N, Venkatesh S (2017) Deepr: a convolutional net for medical
records. IEEE J Biomed Health Info 21(1):22–30

24. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359
25. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks.

arXiv:12115063
26. Pham V, Bluche T, Kermorvant C, Louradour J (2014) Dropout improves recurrent neural networks

for handwriting recognition. In: Frontiers in handwriting recognition (ICFHR). IEEE, pp 285-?290
27. Purushotham S, Meng C, Che Z, Liu Y (2017) Benchmark of deep learning models on large healthcare

mimic datasets. arXiv:171008531
28. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Liu PJ, Liu X, Sun M, Sundberg P, Yee H, et al.

(2018) Scalable and accurate deep learning for electronic health records. arXiv:180107860
29. Ravı̀ D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ (2017) Deep learning

for health informatics. IEEE J Biomed Health Infor 21(1):4–21
30. Serra J, Pascual S, Karatzoglou A (2018) Towards a universal neural network encoder for time series
31. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recogni-

tion. arXiv:14091556
32. Song H, Rajan D, Thiagarajan JJ, Spanias A (2017) Attend and diagnose: clinical time series analysis

using attention models. arXiv:171103905
33. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In:

Advances in Neural Information Processing Systems, pp 3104–3112
34. Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society Series B (Methodological): 267–288
35. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural

networks? In: Advances in neural information processing systems, pp 3320–3328

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Journal of Healthcare Informatics Research (2020) 4:112–137 137

http://arxiv.org/abs/14126980
http://arxiv.org/abs/170506273
http://arxiv.org/abs/151103677
http://arxiv.org/abs/12115063
http://arxiv.org/abs/171008531
http://arxiv.org/abs/180107860
http://arxiv.org/abs/14091556
http://arxiv.org/abs/171103905

	Transfer Learning for Clinical Time Series Analysis Using Deep Neural Networks
	Introduction
	Related Work
	Background: TimeNet
	Approach Overview
	Domain Adaptation: Adapting Universal Time Series Feature Extractors to Healthcare Domain
	Feature Extraction for Multivariate Clinical Time Series
	Using TimeNet-Based Features for Classification
	Obtaining Relevance Scores for Raw Features

	Task Adaptation: Adapting Healthcare-Specific Pre-trained Models to a New Task
	Obtaining HealthNet Using Supervised Pre-training of RNN
	Fine-Tuning of HealthNet
	LR Models Using Features Extracted from HealthNet

	Dataset Description
	Experimental Evaluation for Domain Adaptation
	Experimental Setup
	Results and Observations
	Classification Tasks
	Relevance Scores for Raw Input Features

	Experimental Evaluation for Task Adaptation
	Experimental Setup
	Results and Observations
	Comparing Variants of HealthNet-Based Transfer Learning Techniques
	Robustness of Transfer Learning Models Versus Models Trained From Scratch to Training Data Size
	Number of Relevant Features for a Task

	Domain Adaptation Versus Task Adaptation
	Results and Observations

	Conclusion
	Appendix A Multi-layered RNN with Gated Recurrent Units
	References

