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Abstract

Accurate prioritization of immunogenic neoantigens is key to developing personalized cancer 

vaccines and distinguishing those patients likely to respond to immune checkpoint inhibition. 

However, there is no consensus regarding which characteristics best predict neoantigen 

immunogenicity, and no model to date has both high sensitivity and specificity and a significant 

association with survival in response to immunotherapy. We address these challenges in the 

prioritization of immunogenic neoantigens by 1) identifying which neoantigen characteristics 

best predict immunogenicity, 2) integrating these characteristics into an immunogenicity score, 

the NeoScore, and 3) demonstrating a significant association of the NeoScore with survival in 

response to immune checkpoint inhibition. One thousand random and evenly split combinations 

of immunogenic and non-immunogenic neoantigens from a validated dataset were analyzed 

using a regularized regression model for characteristic selection. The selected characteristics, 

the dissociation constant and binding stability of the neoantigen:MHC class I complex and 

expression of the mutated gene in the tumor, were integrated into the NeoScore. A web 

application is provided for calculation of the NeoScore. The NeoScore results in improved, or 

equivalent, performance in four test datasets as measured by sensitivity, specificity, and area 

under the receiver operator characteristics curve compared to previous models. Among cutaneous 

melanoma patients treated with immune checkpoint inhibition, a high maximum NeoScore was 

associated with improved survival. Overall, the NeoScore has the potential to improve neoantigen 
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prioritization for the development of personalized vaccines and contribute to the determination of 

which patients are likely to respond to immunotherapy.

Introduction:

Cancers arise through mutations in the genome of healthy human cells. As these mutations 

occur, some will produce mutated proteins, which have the potential to be processed into 

neoantigens that bind MHC class I and are presented on the cell surface. These neoantigens 

then act as tumor-specific targets with the potential to elicit a cytotoxic CD8+ T cell 

response (1–4). Tumor-specific neoantigens have strong potential to be targets of T cell-

mediated destruction, because they are not subject to immune tolerance or non-reactivity to 

self. However, there are two key ways in which the above mechanism may fail in tumor 

destruction. For one, recent evidence suggests that most neoantigens do not elicit an immune 

response in their natural state, termed immunologic ignorance (5). Second, once a T cell 

response is mounted to a neoantigen, that response may become exhausted over time due to 

inhibitory signals from the tumor microenvironment (6).

Circumventing these limitations to re-invigorate the host immune response has been the goal 

of many recent cancer therapies. To address immunologic ignorance, personalized cancer 

vaccines have been created and have demonstrated early success (7–12). These vaccines 

have taken several forms, including direct exposure to neoantigens (11), neoantigen-

encoding RNA vaccines (12), neoantigen-loaded dendritic cell vaccines (7), and adoptive 

transfer of neoantigen-specific T cells (2, 13). Each of these methods requires accurate 

knowledge of the neoantigens presented by the tumor cell with the potential to elicit an 

immune response. In silico prioritization methods have been used to prioritize which set of 

neoantigens should be experimentally tested, but the ability to prioritize the immunogenicity 

of each neoantigen, with high sensitivity and specificity, is still limited (14–18).

Exhaustion of T cells and attenuation of T cell activation can be overcome by immune 

checkpoint inhibition, such as monoclonal antibodies against PD-1 or CTLA-4. Immune 

checkpoint inhibition blocks inhibitory signals to the T cells to enhance T cell-mediated 

tumor destruction (19–21). However, immune checkpoint inhibition is only effective in a 

subset of patients (6), and there is no consensus on how to prioritize which patients will 

respond (18, 21–26). In a pan-cancer analysis, Yarchoan et al. demonstrated that cancer 

types with a higher mutational burden, such as melanoma, had improved response to anti-

PD-1 therapy compared to cancer types with a lower mutational burden (27). There are 

limitations to mutational burden as a predictor of response to immune checkpoint inhibition. 

First, in multiple myeloma, there was an association of increased tumor mutational burden 

with decreased response to immune checkpoint inhibition (28). Second, in melanoma, the 

association between the tumor mutational burden and response to immune checkpoint 

inhibition was confounded by the melanoma subtype (29). Finally, in lung cancers that 

progressed after treatment with immune checkpoint inhibitors, there was an increase in the 

tumor mutational burden compared to the pretreatment state (30), thus, contradicting the 

expectation that tumor cells resistant to immune checkpoint inhibition would have a low 
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number of neoantigens. Together, these findings suggest that tumor mutational burden is not 

sufficient for predicting response to immune checkpoint inhibition.

Several recent papers have been dedicated to predicting neoantigen immunogenicity based 

on the characteristics of validated immunogenic neoantigens (16–18, 23, 31). However, 

there is no consensus regarding which neoantigen characteristics are important for the 

prioritization of immunogenic neoantigens or the best way to combine the characteristics 

into an overall immunogenicity score. To identify the characteristics that best prioritize 

the immunogenicity of the neoantigens, a model-based approach was applied to evaluate 

neoantigen characteristics encompassing expression, processing, presentation, and T cell 

recognition in prioritizing neoantigen immunogenicity. The selected characteristics were 

then combined into an overall logistic regression model called the “NeoScore.” The 

development of the NeoScore has largely focused on melanoma, except for one lung cancer 

patient included in the Tumor Neoantigen Selection Alliance (TESLA) consortium dataset 

(16).

Immune checkpoint inhibition and personalized neoantigen vaccines are particularly 

effective in mutation-rich melanoma (25, 32–34). However, even in melanoma, a positive 

outcome from these interventions is not assured (6). To assess the clinical utility of the 

NeoScore and its ability to improve assessment of outcome in melanoma, the relationship of 

the NeoScore to survival in response to immunotherapy was tested using the datasets of Van 

Allen et al. 2015 and Liu et al. 2019 (21, 29).

Materials and Methods:

Datasets

For training of the neoantigen prioritization model, whole-exome sequencing (WES) and 

RNA sequencing (RNAseq) data were obtained from the TESLA consortium database 

on Synapse (16). The TESLA consortium data came from four patients with melanoma 

and a single lung cancer patient. The TESLA consortium provided RNAseq data, WES 

data, and clinically determined HLA types for each of these patients to 28 teams and 

used the neoantigen rankings from 25 of the teams to prioritize which neoantigens were 

experimentally validated. The neoantigens validated for their ability to elicit a T cell 

response were selected by two guidelines: 1) the top 5 neoantigens ranked by each team 

were tested and 2) the neoantigens that came up most frequently in the top 50 ranked 

neoantigens for each team were selected. The neoantigens tested were also constrained by 

HLA restriction requirements for the validation experiments. The final available dataset 

includes 5 patients with a total of 347 neoantigens that had been tested for their ability to 

elicit a T cell response using multimer staining. The TESLA consortium found that 26 of the 

347 tested neoantigens elicited a T cell response in an unvaccinated state (16). Neoantigens 

were used for model creation in this manuscript if they were 1) tested for immunogenicity 

by the TESLA consortium, 2) identified by either GATK Mutect2 or Strelka, and 3) had 

expression data. Accession information for the TESLA consortium dataset is included in 

Table I.
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For testing the neoantigen prioritization model, lists of tested neoantigens from melanoma 

tumors were obtained (7, 11, 35, 36). These datasets contain 357 tested neoantigens (n=7 

immunogenic neoantigens) (35), 149 tested neoantigens (n=18 immunogenic neoantigens) 

(11), 57 tested neoantigens (n=11 immunogenic neoantigens) (36) and 21 tested neoantigens 

(n=9 immunogenic neoantigens) (7). The neoantigens were tested for immunogenicity with 

tetramer staining and cytokine secretion (35), ELISPOT (11), and multimer staining (7, 36). 

Strønen, Ott, and Carreno also provided the expression data quantified as either fragments 

per kilobase of transcript per million mapped reads (FPKM), reads per kilobase of transcript 

per million mapped reads (RPKM), or transcripts per million (TPM) (7, 11, 35, 36). For the 

Cohen dataset, no expression data was provided. The RNAseq data from the Cohen dataset 

was obtained and analyzed as described below for read count quantification. Accession 

information is in Table I.

Finally, for survival analysis, WES and RNAseq data were obtained from the Van Allen et 
al., Liu et al., and Rizvi et al. cohorts (21, 25, 29) (all accession information is in Table 

I). The inclusion criteria for the Van Allen dataset were as follows: 1) both WES and 

RNAseq data available, 2) cutaneous melanoma as the primary lesion. All patients in the Van 

Allen cohort underwent treatment with an anti-CTLA-4 monoclonal antibody (ipilimumab). 

Inclusion criteria for the Liu et al dataset were as follows: 1) both WES and RNAseq 

data available, 2) cutaneous melanoma as the primary lesion, 3) no prior treatment with an 

anti-CTLA-4 monoclonal antibody (37). All patients in the Liu cohort underwent treatment 

with an anti-PD-1 monoclonal antibody (nivolumab or pembrolizumab). All samples from 

the Rizvi et al. dataset were included in the analysis including adenocarcinoma, squamous 

cell carcinoma, and non-small cell lung cancer. All patients in the Rizvi cohort underwent 

treatment with an anti-PD-1 monoclonal antibody (pembrolizumab only).

Data Preparation

WES and RNAseq FASTQ files from the TESLA consortium, Liu et al., and Van Allen et 
al., RNAseq FASTQ files from Cohen et al., and WES FASTQ files from Rizvi et al. were 

visualized for quality using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). FASTQ files were trimmed for quality using Trimmomatic (38) IlluminaClip 

with the following parameters: seed_mismatches = 2, palindrome_clip_threshold = 30, 

simple_clip_threshold = 10, leading = 10, trailing = 10, winsize = 4, winqual = 15. Quality 

was then re-visualized after trimming. Trimmed WES reads were mapped to the GRCh38.p7 

reference genome, from 1000 genomes (39), and read group labels were added using BWA-

mem (40). SAM files were converted to BAM and coordinate sorted (41). The BAM files 

were then converted to pileup format using SAMtools v. 1.4 (41).

Identification of somatic mutations and neoantigen generation

Single nucleotide variants (SNVs) and small insertions/deletions (indels) were identified 

using four programs, along with their recommended filters: GATK Mutect2 version 4.1.7.0 

with default parameters, Varscan2 version 2.3.9 with minimum coverage of 10, minimum 

variant allele frequency of 0.08, and somatic p-value of 0.05, Strelka version 2.9.2 with 

default parameters, and LoFreq version 2.1.1 with default parameters (42–45). Results 

for GATK Mutect2 were filtered with the recommended FilterMutectCalls, and Varscan2 
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results were filtered using the Perl false-positive filter (https://github.com/ckandoth/variant-

filter). Results from all four programs were examined with and without their respective 

filters. LoFreq results were not filtered to allow maximal potential to identify the missing 

mutations. Matched normal samples were used as the reference for each sample. The overlap 

of GATK Mutect2 and Strelka was used for the identification of SNVs and indels in the 

Liu, Van Allen, and Rizvi datasets for assessing the association of the NeoScore model with 

survival in response to immune checkpoint inhibition in melanoma.

Somatic mutations were separated from those SNVs that fell within 1 bp of an indel 

position, as these are likely to be false positives due to alignment errors. The mutations 

were annotated using the Variant Effect Predictor (VEP) tool from Ensembl version 90.9 

(46). Then, 21mer amino acid sequences were generated for each mutation using pVAC-

Seq tools version 3.0.5 (47). Finally, the 21mers were split into all possible 9mers and 

10mers where the mutation of interest was in every location. The full pipeline from read 

mapping through to the identification of somatic mutations is available at https://github.com/

SexChrLab/Cancer_Genomics.

Because the clinical samples for Liu et al. and Van Allen et al. were comprised of 

formalin-fixed, paraffin embedded (FFPE) samples, we considered applying an FFPE filter 

to remove false positive mutations introduced by FFPE storage. However, the characteristic 

G→A and C→T mutations introduced by FFPE processing overlap with the mutational 

signature introduced by ultraviolet radiation. Removal of the FFPE signature also removed 

the characteristic bias towards G→A and C→T mutations in the samples, and therefore, an 

FFPE filter was not applied.

Calculation of neoantigen characteristics

For each of the validated neoantigens, neoantigen characteristics with potential 

significance in predicting expression, processing, MHC binding, and T cell receptor 

(TCR) recognition probability were calculated as described here. The full pipeline for 

calculation and processing of the neoantigen characteristics can be found at https://

github.com/ElizabethBorden/Process_peptide_lists. A log10 transformation was applied if 

the distribution of the characteristic had a large degree of skewness. The difference 

in the values for each of the neoantigen characteristics between immunogenic and non-

immunogenic neoantigens was assessed using a two-sample, two-sided t-test. Correlation 

coefficients were calculated using Spearman correlation coefficients. P-values below 0.05 

were considered statistically significant.

Expression: For the datasets from Cohen et al., the TESLA consortium, and Liu et al., 
transcriptome assembly and read count quantifications were completed with Salmon version 

0.11.3, using the Ensembl GRCh38.p7 reference genome (48, 49). mRNA expression in 

units of TPM was log10-transformed, and a constant of 0.1 was added to all values before the 

transformation to avoid taking the log of zero. To account for the different units used across 

each dataset, expression values were centered and normalized by subtracting the mean and 

then dividing by the standard deviation.
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Clonality: Copy number variation was calculated with sequenza (50), and clonality was 

calculated using the deconvolution software, FastClone (51).

Variant allele frequency: Variant allele frequency (VAF) as calculated by GATK 

Mutect2 (42). Since the VAF was only calculated by GATK Mutect2, but not for Strelka, 

14 missing data points were estimated as the average of the rest of the data. No 

statistically significant difference in the VAF was observed between immunogenic and 

non-immunogenic neoantigens, either with or without these data points.

Processing: Cleavage and TAP transport potentials were calculated for each of the 

available neoantigens using NetCTLpan1.0 (52).

Dissociation constants: Dissociation constants of the neoantigen:MHC class I complex 

were calculated in nanomolar (nM) units using NetMHCpan4.0 (53). These values were 

log10-transformed before inclusion in the model.

Binding stability: Binding stability of the neoantigen:MHC class I complex was then 

calculated as the half-life in units of hours using NetMHCstabpan1.0 (53, 54). These values 

were log10-transformed and adjusted by a factor of 0.01 to avoid taking the log of zero 

before inclusion in the model.

Hydrophobicity method from the TESLA consortium: The number of hydrophobic 

residues was divided by the total number of residues in the neoantigen to create a 

“hydrophobicity fraction” (16). In keeping with the methods of the TESLA consortium, 

hydrophobic residues here were isoleucine, leucine, phenylalanine, methionine, tryptophan, 

valine, and cysteine.

Hydrophobicity with empirical prevalence: The hydrophobicity fraction was 

calculated as described for the TESLA consortium using the amino acids found to 

be empirically prevalent by Chowell et al. (55). Proline, leucine, and methionine were 

considered to have a high probability and given a score of +2. Glycine, tryptophan, 

phenylalanine, isoleucine, and valine were found to have a medium probability and given a 

score of +1. All others were given a score of 0.

Hydrophobicity Łuksza method: A neoantigen was given a score of zero if the 

mutation at the anchor residue changed from a hydrophobic to a hydrophilic residue (23). 

All other neoantigens were given a score of one. Hydrophobic neoantigens here were 

defined as alanine, isoleucine, leucine, methionine, phenylalanine, tryptophan, tyrosine, and 

valine.

TCR recognition: Prediction of TCR recognition probability, R, was calculated as 

described (23). A BLOSUM62 similarity matrix was used to assess the sequence similarity 

between a neoantigen and the closest matched known T cell epitope from the Immune 

Epitope Database (IEDB) (56). The sequence similarity was then used in place of binding 

energies, and the TCR recognition probability was calculated as:
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R = Zk−1 ∑
e ∈ IEDB

exp − k a − s, e

Where s, e  is the sequence similarity, a is the horizontal displacement of the binding curve, 

and k sets the steepness of the curve at a. Based on the model fit by Łuksza et al., the 

parameters a and k were set to 26 and 4.87 respectively (23). These parameters were 

optimized for both melanoma and lung cancer patients, the two cancer populations included 

in our training and test datasets. Finally, Z(k) is the partition function over the unbound state 

and all bound states, calculated as follows:

Z k = 1 + ∑
e ∈ IEDB

exp − k a − s, e

Sequence Similarity: The closest matched human peptide was identified using Blast v. 

2.10.1 (57), and the sequence similarity of the potential neoantigen to the closest matched 

human peptide was calculated using a BLOSUM62 matrix, as described (17). The sequence 

similarity was normalized across neoantigen length by dividing by the number of amino 

acids.

Amplitude: Dissociation constants for the neoantigen:MHC class I complex were then 

adjusted by the dissociation constants for the closest matched normal human peptide:MHC 

class I complex, a characteristic called amplitude. The ratio was taken of the dissociation 

constant of the closest matched human peptide:MHC class I (Kd
W T) to the dissociation 

constant of the neoantigen:MHC class I (Kd
MT) as follows (23):

A = Kd
W T /Kd

MT

Analysis of anchor vs. non-anchor residue mutations: Neoantigens were separated 

by their mutation position (anchor vs. non-anchor residues). Then, both the amplitude and 

the dissociation constant of the neoantigen:MHC class I complex were compared between 

the immunogenic and non-immunogenic neoantigens within each group. Comparisons were 

done using a two-sample, two-sided t-test. P-values below 0.05 were considered statistically 

significant.

HLA typing

HLA types were identified on normal tissue samples for each patient in the Liu et al. dataset 

using HLA-LA (58). HLA types provided in the supplementary data were used for each 

patient in the Van Allen et al. and Rizvi et al. datasets (21, 25).

Elastic net regression modeling

The TESLA consortium data was split into 1000 random subgroups containing all 

the immunogenic neoantigens (n=26) and an equal number of randomly selected non-
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immunogenic neoantigens. An elastic net regression was performed using the glmnet 

package in R for each of these splits (59). The selected coefficients and area under 

the receiver operator characteristics curve (AUC) from each model were tabulated across 

the 1000 splits. An optimal threshold for the model was selected in the TESLA dataset 

to optimize both sensitivity and specificity by the Youden Index and was implemented 

through the optimal cutpointr package from R statistical software (https://github.com/thie1e/

cutpointr).

Logistic regression modeling

Logistic regression modeling was performed, and optimism values were calculated with 

the RMS package in R statistical software (https://cran.r-project.org/web/packages/rms/

rms.pdf).

Survival analysis

To avoid scaling expression values on a patient-level basis, coefficients were determined on 

the TESLA consortium data for log10-transformed, non-scaled TPM expression data. The 

intercept changed to −1.7951 and the expression coefficient to 1.2868, but there was no 

change in the coefficients of the dissociation constant or binding stability and no effect on 

the performance of the model. The optimal threshold for each of the mutational burden, 

neoantigen burden, and maximum NeoScore were determined by optimizing based on an 

adjusted log rank test implemented in the MaxStat package in R (60). Then, the survival 

analysis was performed between scores above the selected threshold and below, using 

Kaplan Meier estimation and the log-rank test statistic. P-values below 0.05 were considered 

statistically significant.

Results:

Overlap of Strelka and GATK Mutect2 identifies the maximum number of validated 
immunogenic mutations

The first step in effective prioritization of neoantigens is to identify a high-fidelity list of 

somatic mutations. Isolating somatic mutations in cancers is more difficult than variant 

calling in normal tissue since cancers do not follow the typical rules of copy number 

or heterozygosity and often consist of multiple clonal populations with normal tissue 

contamination. The TESLA consortium validated neoantigens derived from mutations 

identified by 25 teams. The methods used for identifying the somatic mutations were 

not reported, making it difficult to reproduce all neoantigens (16). To maximize the 

immunogenic mutations identified, three highly rated programs were used to identify single 

nucleotide variants (SNVs) and small insertions and deletions (indels) for the data from 

the TESLA consortium: VarScan2, GATK Mutect2, and Strelka (42–44). A large degree of 

overlap was found in the ability of each program to identify the 34 validated immunogenic 

mutations. As shown in Figure 1, GATK Mutect2 and Strelka successfully identified 27/34 

mutations, while VarScan2 identified 24/34. The mutations from each of these programs 

overlapped, such that 27 was the maximum number of immunogenic mutations identified. 

To ensure that the success of VarScan2 in identifying the immunogenic mutations was not 

hindered by over-filtering, the unfiltered output was assessed and only one immunogenic 
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mutation had been eliminated by filtration steps (data not shown). GATK Mutect2 and 

Strelka identified the same number of immunogenic mutations with or without their 

respective filters (data not shown). LoFreq was also tested for the identification of somatic 

mutations, as LoFreq is optimized to call low-frequency mutations (45). However, LoFreq 

did not identify any additional immunogenic mutations (data not shown). The neoantigens 

derived from unidentified immunogenic mutations may be due to the reference genome 

version, peptide generation steps, or mutations identified by programs that were not tested. 

Overall, the combination of GATK Mutect2 and Strelka identified greater than or equal to 

the number of validated immunogenic neoantigens as in all other reported pipelines (16), 

while simultaneously decreasing the total number of potential neoantigens by 89.44%.

Dissociation constant and binding stability of the neoantigen:MHC class I complex as 
well as expression are significantly different between immunogenic and non-immunogenic 
neoantigens

A set of computationally predicted neoantigen characteristics were calculated for the 

expression, processing, presentation, and T cell receptor (TCR) recognition of SNV and 

small indel-derived neoantigens (Figure 2A). Each of these characteristics was included 

in the development of the NeoScore model. Figure 2B demonstrates that the set of 

characteristics included in model development is inclusive of all of those considered by 

the three models to which the NeoScore is compared. To begin, the distribution of each of 

these characteristics was assessed for immunogenic and non-immunogenic neoantigens from 

the TESLA consortium dataset.

Expression was included in the NeoScore model development in two ways: 1) mRNA 

expression level and 2) variant allele frequency (VAF). Expression level from RNAseq data 

was calculated as the transcripts per million (TPM) expression of the gene from which 

the neoantigen is derived. Immunogenic neoantigens had a significantly higher expression 

level than non-immunogenic neoantigens (p=2.875×10−4, Figure 2C). The clonality of the 

neoantigen was calculated by FastClone (51), but FastClone did not converge for 4/6 of 

the samples, so the VAF calculated by GATK-mutect2 was included in the development of 

the NeoScore model instead. No significant difference in the VAF was observed between 

immunogenic and non-immunogenic neoantigens (p=0.359, Figure 2D).

Processing steps for the neoantigen were included in the development of the NeoScore 

model as both the proteasomal cleavage potential and TAP (transporter associated 

with antigen processing) potential scores. While there was a higher average for both 

characteristics in the immunogenic than non-immunogenic neoantigens, no statistically 

significant difference was observed (p=0.817 and p=0.836, respectively) (Figure 2E–F). 

The binding to the MHC class I molecule was then considered by both the dissociation 

constant and stability of the neoantigen:MHC class I interaction. NetMHCpan was selected 

as the software for predicting the MHC class I dissociation constants due to its enhanced 

performance compared to other binding prediction methods (53). NetMHCpan achieved over 

a 0.90 AUC across 6 independent test datasets (61). The MHC class I dissociation constants 

were significantly lower in immunogenic than non-immunogenic neoantigens, indicating 

a higher binding affinity of immunogenic neoantigens to MHC class I (p=2.088×10−7, 
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Figure 2G). The binding stability showed significantly higher values for immunogenic over 

non-immunogenic neoantigens. (p=3.895×10−5, Figure 2H).

The ability of the neoantigen to stimulate a T cell response was included in the NeoScore 

model development using the model created by Łuksza et al. to calculate a characteristic 

referred to as the TCR recognition probability (23). The TCR recognition probability is 

a probabilistic model that considers the sequence similarity between the neoantigen and 

a known T cell epitope from the Immune Epitope Database (IEDB) as a proxy for the 

binding affinity of the neoantigen:MHC class I-TCR interaction. The TCR recognition 

probability showed no statistically significant difference between the immunogenic and 

non-immunogenic neoantigens (p=0.636, Figure 2I).

Two methods to account for T cell development were also included in NeoScore 

development. During maturation in the thymus, T cells expressing TCRs with high avidity 

to normal human peptides undergo apoptosis. Thus, a neoantigen with a high degree of 

sequence similarity to a normal human peptide is less likely to elicit a T cell response. 

The first method used to account for T cell development was the sequence similarity to the 

closest matched normal human peptide. No statistically significant difference was observed 

in the sequence similarity for immunogenic and non-immunogenic neoantigens (p=0.511, 

Figure 2J). The second method considered was the amplitude, where the dissociation 

constant of the neoantigen:MHC class I complex is adjusted by the dissociation constant 

of the closest matched human peptide:MHC class I complex. The amplitude adjusts for 

the regulation of TCR specificities during T cell maturation but also considers that only 

a normal human peptide capable of binding an MHC class I molecule will significantly 

impact the immunogenicity of the neoantigen. The amplitude was not significantly different 

between immunogenic and non-immunogenic neoantigens (p=0.209, Figure 2K).

One final characteristic considered in the development of the NeoScore model was the 

hydrophobicity of the neoantigen. The hydrophobicity of the neoantigen has been proposed 

to be associated with greater neoantigen immunogenicity because of the hydrophobicity 

of key binding pockets in the MHC class I binding groove (55). Mixed results have been 

reported for the association of hydrophobicity and immunogenicity to date (16, 18, 23, 55). 

One reason is the use of different methods for hydrophobicity, three of which are considered 

here. In the first method, the hydrophobicity is calculated as a fraction of the neoantigen 

residues that are hydrophobic (16). The TESLA consortium reported a significantly lower 

hydrophobicity of immunogenic neoantigens compared to non-immunogenic neoantigens, 

which is in the opposite direction as expected. While there was not a statistically significant 

difference in the neoantigens included in our analysis, the hydrophobicity fraction still had a 

lower average for immunogenic than non-immunogenic neoantigens (Figure 3, p=0.204). No 

difference in hydrophobicity was seen in additional datasets from Carreno or Strønen et al., 
and a significantly higher hydrophobicity of immunogenic neoantigens was observed in the 

dataset from Ott et al. (Figure 3, p=0.0168) (7, 11, 36). The second method calculated the 

hydrophobicity fraction using the empirical observations from Chowell et al. to determine 

which amino acids would increase the likelihood of immunogenicity (55). The method using 

the observations from Chowell et al. considers both hydrophobicity and other chemical 

properties such as side chain bulkiness and polarity. No differences in hydrophobicity were 
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seen across the four datasets using the empirical observations from Chowell et al. (Figure 

3). The final method considered the hydrophobicity at the anchor residues. A mutation that 

changed a previously hydrophobic anchor residue to a hydrophilic residue was given a score 

of zero, while all other changes or no change were given a score of one (23). While there 

was no statistically significant difference in hydrophobicity for any of the four datasets 

using the method of Łuksza et al., three out of four datasets showed a greater percentage of 

immunogenic neoantigens without a loss of hydrophobicity at an anchor residue (Figure 3). 

Overall, since the method from Łuksza showed the greatest consistency, only this method 

was included in development of the NeoScore model.

Given the inconsistent association of hydrophobicity with immunogenicity, we explored the 

association of hydrophobicity and immunogenicity when the data was separated out by HLA 

allele. Published motifs of the peptides that bind to different HLA alleles have demonstrated 

distinct differences in the conserved amino acids, suggesting that hydrophobicity may 

play a greater role in determining binding depending on the HLA allele. For example, 

published motifs for peptides that bind HLA-A01:01 and HLA-A03:01 contain conserved 

polar and charged amino acids whereas motifs for peptides that bind HLA-A02:01 contain 

several conserved hydrophobic amino acids (62). When we assessed the association of 

hydrophobicity and immunogenicity for each HLA allele independently, immunogenic 

neoantigens were significantly less hydrophobic than immunogenic neoantigens for HLA-

A01:01 using the hydrophobicity method from the TESLA consortium, consistent with the 

polar and charged conserved amino acids in the peptides that bind this allele (Supplementary 

Table 1). This data suggests that there might be an advantage to separately evaluating the 

role of the hydrophobicity characteristic in predicting neoantigens for different HLA alleles. 

However, due to the small sample sizes available, we were not able to incorporate the effect 

of hydrophobicity on predicting immunogenicity based on the HLA allele.

Next, the degree of correlation between the characteristics calculated for each neoantigen 

was assessed. Only two characteristics were significantly correlated: the dissociation 

constant and the binding stability (Figure 4A). Despite their correlation, there is evidence 

that the two characteristics both contribute to accurate neoantigen prioritization. While the 

dissociation constant assesses the affinity of the interaction between the neoantigen and the 

MHC class I molecule, the stability predicts the length of time that the neoantigen will 

remain bound. The importance of binding stability is demonstrated in Figure 4B, where 

clustering of the immunogenic neoantigens in the upper left-hand corner can be observed, 

indicating the influence of both characteristics in determining immunogenicity.

Capietto et al. recently found that a different set of neoantigen characteristics will influence 

immunogenicity, if the mutation occurs in an anchor residue compared to mutations in 

non-anchor residues (63). They demonstrated that, if a mutation occurred in an anchor 

residue, the amplitude had a greater predictive value than the dissociation constant of the 

neoantigen:MHC class I complex alone. To assess the influence of the mutation position, 

the distribution of the amplitude and the unadjusted dissociation constant for neoantigens 

with a mutation in an anchor or a non-anchor residue were analyzed. To maximize the 

chances of detecting a significant difference with the relatively low number of immunogenic 

neoantigens derived from mutations in anchor residues (n=13), the analysis of the impact of 
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mutation’s position was performed across the combination of four datasets (7, 11, 16, 36). 

As shown in Supplementary Figure 1, no statistically significant difference was observed for 

the amplitude with either anchor or non-anchor residue mutations. While the anchor-residue 

mutations did have a higher average amplitude in immunogenic neoantigens, the difference 

was not statistically significant. In contrast, the dissociation constant was significantly lower 

in immunogenic neoantigens than non-immunogenic neoantigens. Therefore, there was not a 

compelling reason to fit separate models for neoantigens with mutations in anchor residues 

and those with mutations in non-anchor residues. Furthermore, because the amplitude is 

mathematically dependent on the dissociation constant, the amplitude was not included in 

the subsequent steps of model development.

Regularized regression approach creates a neoantigen prioritization model, NeoScore, 
that outperforms existing models that score each neoantigen

While analysis of the distribution of each characteristic determined those with a statistically 

significant difference between immunogenic and non-immunogenic neoantigens, we next 

assessed the full set of characteristics to determine which influenced the ability to optimally 

prioritize SNV and small indel-derived immunogenic neoantigens. A regularized regression 

is a model-based approach to determine the group of characteristics that are important for 

discriminating between immunogenic and non-immunogenic neoantigens, whether or not 

each characteristic is statistically significant. A logistic model using an elastic net-based 

regularization was unable to identify individual characteristics that are most predictive of 

immunogenicity by optimizing shrinkage penalties; a consequence that is often seen with 

a small effective sample size. The effective sample size for these regularized regression 

methods using models from the binomial family is based on the class with the smallest 

number of observations, which is the immunogenic neoantigens (n=26). Consequently, a 

cross-validation approach was applied to select the best subset of neoantigen characteristics. 

One thousand combinations of 26 non-immunogenic and 26 immunogenic neoantigens were 

randomly selected, and the elastic net regularized regression was fit on each combination 

(Figure 5A). Performing 1000 random samples allowed for the examination of the impact 

of neoantigen characteristics on immunogenicity while adjusting for the small effective 

sample size. The number of times each characteristic was selected out of the 1000 

random combinations was tracked. The dissociation constant, binding stability, and mRNA 

expression were each selected over 700 of the 1000 times, while no other characteristic 

was selected over 500 times (Figure 5B). These fits were consistently able to distinguish 

immunogenic and non-immunogenic neoantigens, as demonstrated by the high density of 

area under the receiver operator characteristics curve (AUC) values around the mean of 

0.861 (25th percentile 0.828, 75th percentile 0.895) (Figure 5C).

Based on the results of the model-based regression approach, a logistic regression model 

was fit with the dissociation constant, binding stability, and expression in the TESLA 

consortium data. The final logistic regression model will be called the “NeoScore.” The 

equation for the model is as follows:

NeoScore = − 4.1922 + 2.2958 × E − 1.8478 × Kd + 0.7698 × S
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Where E is the scaled, log10-transformed expression value, Kd is the log10-transformed 

dissociation constant in units of nanomolar (nM), and S is the log10-transformed stability 

measured as the half-life of the binding interaction in units of hours. The coefficients 

for expression and stability were both positive, as expected since higher expression and 

longer binding times likely increase the chance of a neoantigen to elicit an immune 

response. The coefficient for the dissociation constant was negative, as expected since a 

lower dissociation constant indicates a higher binding affinity. These coefficients match the 

observed directions of change from Figure 2. Raw data from NetMHCpan, NetMHCstabpan, 

and Salmon can be processed and combined to return a set of neoantigens prioritized 

by their NeoScore using the following web application: https://bordene.shinyapps.io/

MHCI_neoantigen_prioritization/.

Given the large discrepancy between the number of immunogenic and non-immunogenic 

neoantigens, we assessed the impact of changing the ratio of immunogenic to non-

immunogenic neoantigens on the performance of the model. This was done by fitting 

the logistic regression model on 100 random down-sampled datasets from the TESLA 

consortium data at 10 different ratios of immunogenic to non-immunogenic neoantigens. 

Each of the logistic regression models was then applied to the Cohen dataset, and the 

optimism was calculated by subtracting the AUC on the Cohen dataset from the AUC 

on the TESLA dataset. The data demonstrated that decreasing the sample size of either 

immunogenic or non-immunogenic neoantigens increased the optimism, suggesting a less 

generalizable model. The lowest optimism was obtained when the maximal number of 

both immunogenic and non-immunogenic neoantigens were used, even though there were 

not equivalent numbers of immunogenic to non-immunogenic neoantigens. (Supplementary 

Figure 2).

Once the NeoScore model was fit in the TESLA dataset, model performance was assessed 

in both the TESLA training dataset and four independent test datasets. In the TESLA 

consortium dataset, the NeoScore had an AUC of 0.845, which exceeds the AUC of 0.70 

needed to be considered a discriminatory model (64). The NeoScore also outperformed the 

AUC of the Łuksza model (AUC=0.615) (Table II; Figure 6A). The NeoScore was then 

tested in four additional datasets. The NeoScore outperformed the Łuksza model in the 

Cohen (0.832 AUC vs. 0.689 AUC) and Strønen datasets (0.681 AUC vs. 0.620 AUC) (35, 

36) (Table II; Figure 6B,C). In the Carreno dataset, the NeoScore slightly outperformed 

Łuksza and the pTuneos hydrophobicity model (0.704 AUC for NeoScore, 0.696 AUC 

for pTuneos hydrophobicity, and 0.657 AUC for Łuksza) (Table II; Figure 6D). Published 

results of the immunogenicity scores from the pTuneos model were used (18), as the 

model was not able to be successfully run with the other datasets. Both the hydrophobicity-

only model and the full model provided by pTuneos are included, as the hydrophobicity 

model outperformed the full model. Similarly, in the Ott dataset, the NeoScore slightly 

outperformed the Łuksza model (0.609 AUC for NeoScore and 0.575 AUC for Łuksza) (11) 

(Table II; Figure 6E).

Since the model by the TESLA consortium consists of a single set of recommended 

thresholds for the neoantigen:MHC class I dissociation constant, neoantigen:MHC class 

I binding stability, and expression, the NeoScore could not be compared to the TESLA 
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consortium model in terms of the AUC. Therefore, an optimal threshold for the NeoScore 

was selected that maximized the sum of the sensitivity and specificity in the TESLA dataset 

and classified the NeoScore into high and low immunogenicity. The reported sensitivity 

and specificity for each dataset are based on the threshold optimized in the TESLA dataset 

(−2.478). In the TESLA and Cohen datasets, the NeoScore obtained a greater sensitivity 

with a lower specificity at the optimal cutpoint compared to the model by the TESLA 

consortium. Across all the remaining datasets, the sensitivity and specificity of the NeoScore 

were statistically equivalent to that achieved by the TESLA consortium, as demonstrated by 

the overlap of the 95% confidence interval (Table II).

Since only a subset of neoantigens were tested for immunogenicity by the TESLA 

consortium, we assessed the full set of neoantigens predicted to be immunogenic by the 

NeoScore model. All possible 9 and 10mer neoantigens were generated from each mutation 

across the five tumors in the TESLA dataset, and the immunogenicity of each neoantigen 

was prioritized by the NeoScore model. To make the analysis comparable to that done by 

the TESLA consortium, the neoantigens were assessed for their predicted immunogenicity 

in the context of the HLA types that were tested by the TESLA consortium. The sensitivity 

and specificity for the validated immunogenic neoantigens were as reported in Table I. The 

NeoScore predicted 740 additional immunogenic neoantigens across the five tumors that had 

not been tested by the TESLA consortium (range 54–310 per patient, data not shown). The 

large number of untested neoantigens is consistent with the low overlap observed between 

groups in the original TESLA consortium submissions. Among the 25 submissions, a 

median of 13% overlap was observed between the neoantigens predicted to be immunogenic 

(16). The low overlap and large number of untested candidates supports the need for further 

validation of neoantigen prioritization models.

Despite the high performance of the NeoScore in the TESLA and Cohen datasets, there 

is a marked decrease in the performance in the Carreno, Strønen, and Ott datasets. A 

likely cause for the decreased performance is how the immunogenicity was tested in these 

datasets. TESLA and Cohen both tested for reactive T cells present in the patient with no 

additional T cell stimulation. In contrast, Carreno et al. administered a dendritic cell vaccine 

with each of the predicted neoantigens and subsequently tested for an immune response to 

each neoantigen (7). Strønen et al. exposed PBMCs from healthy patients to dendritic cells 

transfected with the neoantigen of interest. They then tested for an immune response to those 

neoantigens (36). Ott et al. immunized patients with pools of long synthetic peptides and 

then tested for an immune response to each neoantigen that could be generated from the 

long peptides (11). None of these three methods rely on the expression of the neoantigen 

in the tumor to activate neoantigen-specific T cells. Therefore, a logistic regression model 

was fit to the TESLA dataset using only the neoantigen:MHC class I binding stability and 

dissociation constant. The following abbreviated NeoScore model was obtained:

NeoScoreabbreviated = − 1.2364 − 1.2146 × Kd + 0.9903 × S

The coefficients obtained for stability and dissociation constant are comparable to those 

obtained in the full NeoScore model. The threshold for the abbreviated NeoScore was 
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optimized in the TESLA dataset (−2.856) and then tested in the Cohen, Strønen, Carreno, 

and Ott datasets. As expected, the abbreviated NeoScore underperformed compared to the 

full NeoScore model in Cohen and TESLA but outperformed the full NeoScore model in 

both Carreno and Strønen (Table II; Figure 6). These results suggest that expression predicts 

neoantigen immunogenicity when priming of T cell responses is dependent on expression 

of the neoantigen by the tumor. However, when the T cells are stimulated independently 

of expression by the tumor, the predictive benefit of expression is undermined. Similarly, 

the performance of the TESLA consortium model, which relies on neoantigen expression, 

distinctly drops in the Carreno and Strønen datasets (Table II; Figure 6). The poor 

performance in Ott dataset across models remains unexplained. The Ott dataset did not 

significantly differ from the other datasets in terms of the distribution of the location of the 

mutations (anchor vs. non-anchor residues) or the general distribution of the characteristics 

(data not shown). Overall, elimination of expression enhanced the performance of the 

NeoScore model when considering the immune response stimulated independently of the 

tumor.

To further reaffirm the subset of neoantigen characteristics selected, a logistic regression 

model was fit using all nine neoantigen characteristics from Figure 5B, which did not 

notably improve the AUC (0.853 for the model with all nine characteristics compared to 

0.845 for the NeoScore, data not shown). Furthermore, the optimism is much higher for the 

model that included all neoantigen characteristics (8.64%) than the NeoScore (2.47%). The 

optimism indicates the likelihood that the model is overfitting the training data, which would 

make a less generalizable model. The lack of benefit from the additional characteristics adds 

support that the subset of characteristics selected is optimal for prioritizing immunogenic 

neoantigens. Overall, the model with the neoantigen:MHC class I dissociation constant and 

binding stability, and mRNA expression showed the best potential to consistently separate 

immunogenic and non-immunogenic neoantigens in validated datasets.

A high maximum NeoScore has a significant association with improved survival in 
cutaneous melanoma patients treated with immunotherapy

Once the ability of the NeoScore to discriminate immunogenic from non-immunogenic 

neoantigens with high sensitivity and specificity was established, the association of a 

single, strongly immunogenic neoantigen with survival in response to immune checkpoint 

inhibition was assessed. The survival analysis was performed across two datasets, one with 

treatment with an anti-CTLA-4 monoclonal antibody (21) and the other with anti-PD-1 

monoclonal antibodies (29). In both datasets, the cohort was restricted to immunotherapy-

naive patients with cutaneous melanoma (21, 29), which allowed us to assess the factors that 

drive response to immune checkpoint inhibition in melanoma with a high tumor mutational 

burden and no previous immunoediting. While the range of mutational burden in cutaneous 

melanoma is wide (1,368–33,591 for the Van Allen dataset and 864–24,292 for the Liu 

dataset), all samples have a high mutational burden due to UV-induced, DNA mutations. The 

final cohort sizes were 34 for Van Allen and 53 for Liu. However, the statistical power of the 

survival analysis is limited by the number of deaths observed in each dataset, resulting in an 

effective sample size of 22 for Van Allen and 20 for Liu. The NeoScore for each individual 

neoantigen per tumor was calculated. Since each patient has many neoantigens with a wide 
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range of NeoScores, there are several potential ways to summarize the neoantigen profile for 

the sake of comparison between patients. Three ways were selected here: 1) the mutational 

burden, 2) the neoantigen burden, and 3) the highest NeoScore for a neoantigen from the 

patient, referred to as the “maximum NeoScore.” The mutational burden and neoantigen 

burden were attempted for the sake of comparison to the literature, while the maximum 

NeoScore was used in accordance with the principle that a single immunogenic neoantigen 

can drive the immune response. Survival analysis was then performed separately for the 

mutational burden, neoantigen burden, and the maximum NeoScore.

Although an optimal NeoScore threshold was determined for the prediction of neoantigen 

immunogenicity, every patient had at least one neoantigen that exceeded the optimized 

threshold, indicating that the presence of a predicted immunogenic neoantigen was not 

sufficient to differentiate the response to immune checkpoint inhibition. Therefore, unique 

optimal thresholds for survival analysis were determined for the maximum NeoScore using 

maximally ranked statistics implemented in the MaxStat package and R statistical software 

(60). Maximally ranked statistics methods implement a search over all possible log-rank 

test statistics based on thresholds of a predictor variable (here the maximum NeoScore) 

for the largest standardized log rank test statistic. Since maximally ranked statistic methods 

optimizes the threshold to detect a difference, performance of the NeoScore and optimal 

threshold will need to be validated in an independent dataset.

Next, the association of mutational burden and neoantigen burden with survival in response 

to immune checkpoint inhibition were evaluated. For the sake of consistency, maximally 

ranked statistics were also used to select the optimal threshold for the mutational burden and 

neoantigen burden. In the Van Allen dataset, there was no association between mutational 

burden and progression-free survival in response to immune checkpoint inhibition (p=0.37) 

(Figure 7A). In the Liu dataset, a high tumor mutational burden was significantly associated 

with poor progression-free survival (p=0.047) (Figure 7B), which is consistent with the 

finding of Liu et al. 2019 (29). The neoantigen burden was strongly correlated with the 

mutational burden in both datasets (Figure 7C and D). On survival analysis, the same results 

were observed for neoantigen burden as for mutational burden where a high neoantigen 

burden was not associated with improved progression-free survival in the Van Allen dataset 

and was associated with decreased progression-free survival in the Liu dataset (data not 

shown).

When tested with the optimal threshold, patients in the Van Allen dataset with a high 

maximum NeoScore (above −0.525) had significantly improved progression-free survival 

(p = 3.5 × 10−4) (Figure 7E). Similarly, in the Liu dataset, patients with a high maximum 

NeoScore (above −0.152) had significantly improved progression-free survival (p = 8.2 × 

10−4) (Figure 7F). In both the Van Allen and Liu datasets a high maximum NeoScore was 

associated with significantly improved overall survival at the same thresholds (p = 0.002 

and p = 0.013, respectively, data not shown). Overall, these results suggest an improved 

association of the NeoScore with survival following treatment with immunotherapy, 

compared with tumor mutational burden, in tumors with high tumor mutational burden.
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Given the added expense of RNAseq data in a clinical setting, we assessed whether the 

abbreviated NeoScore would have a similar association with progression-free survival 

in response to immunotherapy. Therefore, we analyzed the association of the maximum 

abbreviated NeoScore with progression-free survival in response to treatment in the Liu 

and Van Allen dataset, as well as an additional lung cancer dataset with no available 

RNAseq data from Rizvi et al. While the abbreviated NeoScore demonstrated a significant 

association with progression-free survival in the Van Allen dataset, there was no significant 

association of the abbreviated NeoScore with progression-free survival in either of the other 

test datasets (Supplementary Figure 3). The loss of a significant association in the absence of 

the expression characteristic further emphasizes the importance of expression to the clinical 

relevance of the NeoScore model.

Discussion:

Prioritization of immunogenic neoantigens is critical for applications to both the 

development of personalized vaccines and the identification of patients that are likely to 

benefit from treatment with immune checkpoint inhibition. However, many neoantigen 

characteristics have been suggested in the literature to date with no consensus on which 

characteristics impact whether the neoantigen generates a T cell response. Additionally, 

no model has demonstrated both the ability to score each neoantigen with high sensitivity 

and specificity and significant association with survival in response to immune checkpoint 

inhibition. The successes of this study are as follows: 1) identification of those neoantigen 

characteristics of greatest importance in determining neoantigen immunogenicity, 2) the 

combination of these characteristics into a single overall immunogenicity score, the 

NeoScore, with practical applications to personalized vaccine development, 3) integration 

of the NeoScore into a web application for easy use, and 4) demonstration of the clinical 

significance of the NeoScore in melanoma.

A model-based statistical prediction approach was used to select the characteristics of SNV 

and small indel-derived neoantigens that were most predictive of immunogenicity. The 

dissociation constant and binding stability of the neoantigen:MHC class I complex, and 

the expression were the combination of neoantigen characteristics best able to discriminate 

between immunogenic and non-immunogenic neoantigens. While the identification of these 

three characteristics is consistent with the recent findings of the TESLA consortium (16), 

it is important to note that the approaches taken by our group and the original group 

differed in several key ways. First, a completely agnostic approach was applied to the 

selection of characteristics, including all characteristics that have been suggested in the 

literature to date; whereas the TESLA consortium began with those shown to have statistical 

significance. Taking a completely agnostic approach ensured the greatest potential to select 

the combination of characteristics that maximized the separation of immunogenic and non-

immunogenic neoantigens. Second, additional characteristics were included that were not 

considered by the TESLA consortium, including variant allele frequency and sequence 

similarity to the closest matched human peptide. Finally, these results were expanded by 

combining the characteristics into an overall immunogenicity score, the NeoScore. A web 

application has been made available to calculate the NeoScore or the abbreviated NeoScore 
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and provide a list of neoantigens prioritized by their predicted immunogenicity. The web 

application is expected to streamline the application of NeoScore for research purposes.

One of the key advantages of the NeoScore is that it allows for the prioritization of 

neoantigens that may not exceed the single set of thresholds provided by the TESLA 

consortium. While a threshold for the NeoScore was optimized in the TESLA dataset 

and demonstrated strong performance across the test datasets, the optimized threshold 

is necessarily conservative for two reasons. First, all datasets used to build and test the 

NeoScore consisted of neoantigens that had already been prioritized by the original group. 

Thus, the NeoScore is trained to discriminate between top candidates. Second, the NeoScore 

is trained on the natural T cell responses to neoantigens with no stimulation by a therapeutic 

agent. Treatment with immunotherapy or personalized vaccines may be able to elicit an 

immune response to neoantigens with a lower NeoScore, Therefore, all neoantigens can be 

ranked in order of their NeoScore. Researchers applying NeoScore to a new dataset can first 

rank the predicted neoantigens, then decide on the optimal number of neoantigens to test for 

a patient based on the unique neoantigen profile of the given patient.

One consideration for future applications of the NeoScore is that it is based on a 

combination of predictive tools that each come with their own sensitivity and specificity. 

While we have selected highly rated tools for MHC class I dissociation constants and 

binding stability, these tools are constantly improving. One example is that the MHC class 

I binding stability tool that we employed is trained on stability data for 25,000 peptides, 

which is over an order of magnitude less than the training data available for MHC class 

I dissociation constant predictions (54). As expanded training data becomes available, the 

predictive value of each tool is likely to increase, which in turn, will further enhance the 

predictive value of integrated models such as the NeoScore. Additionally, some recent 

work has suggested the potential for combining predictions from multiple tools in either a 

consensus or aggregate approach to further enhance the predictive value of each individual 

tool (65). Further research is needed into how to optimally aggregate the scores from 

multiple tools to enhance their application. However, the high performance of the NeoScore 

in predicting immunogenicity of individual neoantigens and significant association with 

survival in response to immune checkpoint inhibitors indicates the high performance of each 

of the individual tools combined to create the NeoScore.

A surprising finding is the lack of association between mutational burden and progression-

free survival in the Van Allen dataset and the association of increased mutational burden 

with decreased progression-free survival in the Liu dataset. These results are inconsistent 

with the association of increased mutation burden with increased response rate to immune 

checkpoint inhibition observed across cancer types (27). An explanation for the lack of 

association of mutation burden with survival following treatment with immune checkpoint 

inhibition is that the cutaneous melanoma subset consists of all tumors with a high 

mutational burden. A tumor with a particularly low mutational burden may not have any 

neoantigens, causing it to have a poor response to immune checkpoint inhibition. However, 

a high mutational burden alone does not guarantee a good response to immune checkpoint 

inhibition. As demonstrated by our work, a high maximum NeoScore has an improved 

association with progression-free survival compared to mutational burden.
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The literature to date supports that mutational burden is associated with response to therapy 

across cancers (27) or across cancer sub-types, but not within tumors with a high mutational 

burden. Within non-small cell lung cancer, there was a significant increase in response rates 

and survival in patients with a higher mutational burden than those with a lower mutational 

burden (25). These results reflect a split between the patients with a mutational signature 

from smoking carcinogens and those with no evidence of exposure to smoking carcinogens. 

In contrast, within small cell lung cancers, which are nearly universally associated with 

smoking, there was a weaker association of mutational burden with response to therapy (22). 

Three independent studies demonstrated a significant association between high mutational 

burden and improved response to immune checkpoint inhibition with either anti-CTLA-4 or 

anti-PD-1 monoclonal antibody treatment in melanoma patients (21, 26, 29). However, these 

studies included cutaneous, occult, acral, and mucosal melanoma, which may have different 

mutational profiles. As demonstrated here, there is no association between high mutational 

burden and improved progression-free survival in the Van Allen and Liu datasets when 

restricted to cutaneous melanoma. As noted by Snyder et al., the patient in their dataset with 

the highest number of mutations had minimal or no benefit from anti-CTLA-4 monoclonal 

antibody treatment. Overall, in combination with prior studies, our results highlight the 

importance of considering the immunogenicity of the neoantigen in predicting the response 

to immune checkpoint inhibition.

Despite the successes of our work to date, there are several limitations that highlight areas 

for future research. For one, the maximum immunogenicity score is not able to account for 

the response to therapy of all patients. One possible reason that the NeoScore is not able 

to fully predict treatment response is that the model did not include neoantigens derived 

from gene fusions, products of noncanonical open reading frames, canonical open reading 

frames with a frameshift, or large indels. To our knowledge, there is no available dataset 

that has validated neoantigens derived from these sources. Given that recent work has 

demonstrated that a single neoantigen from a gene fusion product can drive complete tumor 

regression (66) and non-canonical proteins disproportionately generate MHC class I binding 

neoantigens (67), patients misclassified by our model may have had neoantigens from one 

of these classes of mutations. Additionally, since each of the validated datasets tested the 

immunogenicity of neoantigens that had already been prioritized by the original group, there 

may be classes of neoantigens that are immunogenic but were not included in any test 

dataset. Consideration of additional classes of neoantigens is particularly important given 

recent evidence that there are classes of neoantigens that have very low binding to MHC 

class I (68). The inclusion of neoantigens derived from a broader set of mutations may alter 

the neoantigen characteristics selected as important by our regularized regression approach. 

For example, neoantigens derived from gene fusions, large indels, or frameshifts are likely to 

have less sequence similarity to normal human peptides than an SNV or small indel-derived 

neoantigen, causing characteristics such as the sequence similarity or amplitude to be of 

greater importance. The need to consider additional types of mutations underscores the 

importance of generating a validated dataset, including these additional mutations, and 

repeating characteristic selection.

A second reason that the NeoScore may not be able to account for the response to therapy 

of all patients is that the model does not consider whether the neoantigens ranked as 
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immunogenic were able to elicit a CD4+ T cell response. Studies have observed that the 

most effective vaccines are those with neoantigens that elicit combined CD4+ and CD8+ T 

cell responses (69–73). Additionally, work by Alspach et al. demonstrated the need for MHC 

class II-restricted neoantigen expression by tumor cells to elicit CD4+ T cell responses 

and generate effective anti-tumor immune responses both in the absence of therapy and in 

response to immunotherapy. What is still unknown is if there is any advantage to having a 

single neoantigen that elicits both a CD8+ and CD4+ T cell-mediated response compared to 

two independent neoantigens that elicit CD8+ and CD4+ T cell responses, independently. If 

the ideal circumstance is a single neoantigen capable of stimulating a combined response, 

an efficient approach may be to test the top MHC class I-restricted neoantigens for their 

potential to elicit a CD4+ T cell response. However, if two separate neoantigens are equally 

effective, a separate model for the prioritization of MHC class II-restricted neoantigens may 

be of greater clinical utility. Overall, there is a need for improved understanding of the 

interplay between MHC class I- and II-restricted neoantigens in stimulating an effective 

anti-tumor immune response.

This work has successfully identified the key neoantigen characteristics associated 

with neoantigen immunogenicity using an agnostic approach that considered all the 

characteristics suggested by the literature to date. These characteristics have been integrated 

into a single, overall score, the NeoScore, that predicts the immunogenicity of each 

neoantigen with high sensitivity and specificity. Finally, a high maximum NeoScore has 

a significant association with improved survival in response to treatment with immune 

checkpoint inhibition in cutaneous melanoma. The NeoScore is anticipated to improve 

neoantigen prioritization for the development of personalized vaccines and the determination 

of which patients are likely to respond to immunotherapy.
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Key Points:

1. MHC class I binding, stability, and expression predict neoantigen 

immunogenicity.

2. These characteristics were integrated into the NeoScore to rank 

immunogenicity.

3. A high NeoScore is associated with improved response to melanoma 

immunotherapy.
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Figure 1. Maximum Number of Validated Immunogenic Mutations Identified by the Overlap of 
Strelka and GATK Mutect2.
Comparison of the number of neoantigens derived from single nucleotide variants (SNVs) 

and small insertions and deletions (indels) by each of three different programs (Varscan2, 

GATK Mutect2, and Strelka) in the TESLA consortium dataset. Red dots represent the 

validated immunogenic neoantigens from each patient. The small circle represents validated 

immunogenic neoantigens that were not identified by the three programs.

Borden et al. Page 28

J Immunol. Author manuscript; available in PMC 2022 October 01.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Figure 2. Expression, Dissociation Constant, and Stability are Significantly Different Between 
Immunogenic and Non-Immunogenic Neoantigens.
(A) Steps in the formation of an MHC class I-restricted immunogenic neoantigen. 

(B) Computationally predicted neoantigen characteristics included in development of 

the NeoScore model in comparison to three other models. Expression consists of the 

gene-level mRNA expression and clonality or variant allele frequency of the mutation. 

Processing consists of proteasomal cleavage and TAP transport potential. MHC class I 

binding is assessed through the MHC class I dissociation constant, binding stability, and 

hydrophobicity (Figure 3) of the neoantigen. The potential to stimulate a T cell response is 

assessed by the similarity to known T cell epitopes, the sequence similarity to normal human 

peptides, and the relative MHC class I dissociation constant compared to the dissociation 

constant of the closest matched normal peptide. All ten characteristics listed under the 

NeoScore model were considered for inclusion, and those in bold (expression, dissociation 

constant, and binding stability) were the characteristics selected for inclusion in the final 

model. (C-K) Comparison of the distribution of the characteristics for immunogenic and 

non-immunogenic neoantigens. (C) Log10-transformed distribution of mRNA expression. 

(D) Distribution of variant allele frequency (VAF) calculated by GATK Mutect2. (E-F) 

Distribution of proteasomal cleavage and TAP transport potential calculated by NetCTLpan. 

(G) Log10-transformed distribution of the MHC class I to neoantigen dissociation constant 

calculated by NetMHCpan. (H) Log10-transformed distribution of the MHC class I to 

neoantigen binding stability calculated by NetMHCstabpan. (I) T cell recognition (TCR) 
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recognition probability calculated using the model from Łuksza et al. (J) Log10-transformed 

distribution of the BLOSUM62 sequence similarity between the closest matched human 

peptide and the neoantigen of interest, divided by the length of the neoantigen to 

normalize. (K) Log10-transformed distribution of the amplitude calculated as the ratio of 

the dissociation constant of the closest matched human peptide to MHC class I to the 

dissociation constant of the neoantigen to MHC class I. **:p<0.001, ***:p<10−5
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Figure 3. No Method for Calculating Neoantigen Hydrophobicity is Consistently Associated with 
Immunogenicity.
Comparison of the distribution of hydrophobicity values for the TESLA consortium, 

Carreno, Strønen, and Ott datasets between immunogenic and non-immunogenic 

neoantigens. Hydrophobicity was calculated by three methods. The TESLA consortium 

method is calculated as the number of hydrophobic amino acids divided by the total number 

of amino acids. The method based on the Chowell et al. empirical data uses the same 

calculation scheme but considers both hydrophobicity and other chemical properties such 

as side chain bulkiness and polarity in ranking the neoantigens. The Łuksza et al. method 

considers the change of an amino acid at the anchor residues compared to the closest 

matched human peptide. *:p<0.05
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Figure 4. Binding Stability and Dissociation Constant are Significantly Correlated but Both 
Contribute to Immunogenicity.
(A) Correlation between all calculated neoantigen characteristics: mRNA expression (Exp.), 

Variant Allele Frequency (VAF), proteasomal cleavage potential (Cle.), TAP transport 

potential (TAP), MHC class I to neoantigen dissociation constant (Kd), MHC class I 

to neoantigen binding stability (Stab.), TCR recognition probability (TCR), amplitude, 

defined as the ratio of the MHC class I binding of the closest matched human peptide 

and the neoantigen (Amp.), and normalized sequence similarity score for closest matched 

human peptide and the neoantigen (Sim.). The size of the circles indicates the absolute 

magnitude of the correlation. (B) Correlation of MHC class I dissociation constant with 

MHC class I binding stability of the neoantigen. Lines show the linear relationship between 

the characteristics for immunogenic (black) and non-immunogenic (gray) neoantigens, 

respectively. *:p<0.05
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Figure 5. Regularized Regression Approach Selects Dissociation Constant, Expression, and 
Stability as the Characteristics of Greatest Importance in Prioritizing Immunogenicity.
Regularized (elastic net) regression approach to the selection of neoantigen characteristics. 

(A) Process used for characteristic selection. 26 immunogenic and 26 randomly selected 

non-immunogenic neoantigens were isolated 1000 times and fit with an elastic net 

regression. For every fit, the characteristics selected by the model as well as its performance 

were tracked. (B) Number of times each characteristic was selected out of 1000 runs. 

The characteristics included are as follows: MHC class I to neoantigen dissociation 

constant (Kd), mRNA expression (Expression), MHC class I to neoantigen binding stability 

(Stability), Variant Allele Frequency (VAF), hydrophobicity of the anchor residues (Hydro), 

TAP transport potential (TAP), T cell recognition potential (TCR), normalized sequence 

similarity score for closest matched human peptide and the neoantigen (Similarity), and 

proteasomal cleavage potential (Cleavage). (C) Distribution of the area under the receiver 

operator characteristics curve (AUC) values for each of the 1000 fits. The solid black line 

indicates the mean AUC, and the dashed black lines represent the 25th and 75th percentile, 

respectively.
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Figure 6. NeoScore Outperforms the Model by Łuksza and Performs Equivalently to the Model 
by the TESLA Consortium.
Comparison of the area under the receiver operator characteristics curves (AUC) for the 

NeoScore and abbreviated NeoScore compared to the models by Łuksza, the TESLA 

consortium, and pTuneos. A) Performance of the NeoScore and abbreviated NeoScore in 

the TESLA consortium dataset (the dataset in which the model was fit). Comparison of the 

NeoScore and abbreviated NeoScore with existing models in the (B) Cohen dataset, (C) 

Strønen dataset, (D) Carreno dataset, and (E) Ott dataset.
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Figure 7. High Maximum NeoScore has Improved Association with Survival Compared to 
Mutational Burden.
Comparison of progression-free survival probability within treatment-naive, cutaneous 

melanoma patients. All splits between the groups were determined using maximally ranked 

statistics, and p-values were calculated using a log-rank test. A high tumor mutational 

burden is (A) not significantly associated with survival in the Van Allen data and (B) 

significantly associated with decreased survival in the Liu data. Mutational burden directly 

correlates with neoantigen burden in (C) the Van Allen data and (D) the Liu data. Patients 

with a high maximum (max.) NeoScore have (E) significantly increased survival in the Van 

Allen data and (F) significantly increased survival in the Liu dataset.
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Table I:

Summary of datasets used, materials used, and accession information

Dataset Materials used Accession

TESLA Consortium (16)

Raw RNAseq and WES data https://www.synapse.org/#!Synapse:syn21048999/wiki/
603788

Lists of validated neoantigens and the T cell 
response Supplementary Table S4

Cohen (35)

Raw RNAseq data https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP062169

Lists of validated neoantigens and the T cell 
response Supplementary Table 2

Strønen (36) Lists of validated neoantigens and the T cell 
response Supplementary Table S8

Carreno (7) Lists of validated neoantigens and the T cell 
response Supplementary Tables S1-S3

Ott (11) Lists of validated neoantigens and the T cell 
response Supplementary Table 4

Van Allen (21) Raw RNAseq and WES data dbGaP accession number 
(phs000452.v3.p1) https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000452.v3.p1Liu (29) Raw RNAseq and WES data

Rizvi (25) Raw WES data dbGaP accession number 
(phs000980.v1.p1) https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000980.v1.p1

J Immunol. Author manuscript; available in PMC 2022 October 01.

https://www.synapse.org/#!Synapse:syn21048999/wiki/603788
https://www.synapse.org/#!Synapse:syn21048999/wiki/603788
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP062169
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000452.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000452.v3.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000980.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000980.v1.p1


V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Borden et al. Page 37

Table II:

Comparison of the AUC and optimal threshold sensitivities and specificities for the prediction of immunogenic 

neoantigens using NeoScore vs. other models.

Dataset Model Sensitivity [95% C.I.] Specificity [95% C.I.] AUC

TESLA consortium (n = 347)

NeoScore 0.846 [0.769–1.00] 0.738 [0.523–0.844] 0.845

Abbreviated NeoScore 
1 0.923 [0.731–1.00] 0.567 [0.530–0.760] 0.772

Łuksza 0.692 [0.462–0.885] 0.561 [0.439–0.763] 0.615

TESLA consortium 0.385 0.941 --------

Cohen (n = 357)

NeoScore 0.857 [0.571–1.00] 0.546 [0.494–0.597] 0.832

Abbreviated NeoScore 
1 1.00 [1.00–1.00] 0.363 [0.311–0.414] 0.744

Łuksza 1.00 [1.00–1.00] 0.254 [0.211–0.303] 0.689

TESLA consortium 0.571 0.857 ---------

Strønen (n = 57)

NeoScore  0.364 [0.091–0.636] 0.889 [0.800–0.978] 0.681

Abbreviated NeoScore 
1 0.909 [0.727–1.00] 0.644 [0.511–0.778] 0.794

Łuksza 0.727 [0.455–1.00] 0.422 [0.289–0.556] 0.620

TESLA consortium 0.364 0.867 ---------

Carreno (n = 21)

NeoScore 0.444 [0.111–0.778] 0.750 [0.500–1.00] 0.704

Abbreviated NeoScore 
1 0.778 [0.556–1.00] 0.833 [0.583–1.00] 0.935

Łuksza 0.778 [0.553–1.00] 0.583 [0.333–0.833] 0.657

TESLA consortium 0.222 1.00 --------

pTuneos hydrophobicity 0.500 [0.125–1.00] 0.857 [0.429–1.00] 0.696

pTuneos full model 0.250 [0.125–1.00] 1.00 [0.143–1.00] 0.536

Ott (n = 165)

NeoScore 0.222 [0.056–0.389] 0.878 [0.823–0.932] 0.609

Abbreviated NeoScore 
1 0.389 [0.167–0.611] 0.782 [0.714–0.844] 0.597

Łuksza 0.626 [0.544–0.701] 0.500 [0.278–0.722] 0.575

TESLA consortium 0.056 0.959 --------

1.
The abbreviated NeoScore omits expression.
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