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Objective. Ovarian cancer (OvCa) is the most lethal gynaecological malignancy worldwide. We aimed to illustrate the potential
function and molecular mechanism of exosomal microRNA-543 (miR-543) in the oncogenesis and development of OvCa.
Methods. Differentially expressed microRNAs in exosomes derived from OvCa cell lines were identified by bioinformatic
analysis and verified by RT-PCR. Cell proliferation ability was estimated by clonogenic and 5-ethynyl-2′-deoxyuridine assays
in vitro and in vivo. Potential involved pathways and targets of exosomal miRNAs were analysed using DIANA and verified by
pyrosequencing, glucose quantification, dual-luciferase reporter experiments, and functional rescue assays. Results.
Bioinformatic analysis identified miR-543 and its potential target genes involved in the cancer-associated proteoglycan
pathway. The expression of miR-543 was significantly decreased in exosomes derived from OvCa cell lines, patient serum, and
OvCa tissues, while the mRNA levels of insulin-like growth factor 2 (IGF2) were increased. Furthermore, the overexpression of
miR-543 resulted in the suppression of OvCa cell proliferation in vitro and in vivo. Moreover, miR-543 was significantly
negatively correlated with IGF2 in OvCa tissues in comparison with paracarcinoma tissues. Notably, upregulation of miR-543
led to increased cell supernatant glucose levels and suppressed cell growth, which was rescued by overexpression of IGF2.
Conclusions. Exosomal miR-543 participates in the proteoglycan pathway to suppress cell proliferation by targeting IGF2 in OvCa.

1. Introduction

Ovarian cancer (OvCa) is the most lethal gynaecological
malignancy globally, with an unimproved 5-year survival
rate of less than 45% and a 10-year survival rate of less than
30% during the last 30 years [1–3]. Maintenance therapy,
which has been developed from targeted treatment and is a
newly implemented but important approach following
debulking surgery and chemotherapy, is an essential and
promising component of the whole-course management of
OvCa, especially at the late stage (FIGO IIB-IV) [4]. Cur-
rently, antiangiogenic drugs [5, 6] and poly (ADP-ribose)

polymerase inhibitors (PAPRi) [7] are the two main strate-
gies of maintenance therapies. Eligible OvCa patients under-
going the appropriate maintenance therapy have a
significantly improved prognosis [7, 8]. However, the hetero-
geneity of OvCa and resistance to maintenance therapies
acquired in advanced disease pose major obstacles to the uni-
versal use of this therapeutic strategy. Therefore, a better
understanding of OvCa pathophysiology and the exploration
of new potential diagnostic and therapeutic targets for over-
coming the current issues are required.

Herein, increasing evidence reveals the significance of
exosomes in OvCa pathogenesis and progression. Epithelial
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ovarian cancer (EOC) is the most common type of OvCa
(accounting for approximately 80% of cases) and has the
highest mortality among all types of OvCa [9, 10]. Exosomes
are endosome-packaged, 30-150nm lipid bilayer extracellular
vesicles that are produced by most cells, including cancer cells
and immune cells [11]. In addition, exosomes function as
important regulatory signaling transporters between parental
invasive cancer cells and target cells and are involved in
cellular energy metabolism [12], angiogenesis [13, 14], protu-
morigenic signaling pathways [15], immune escape [16],
proliferation, and metastasis [17]. Specifically, exosomes are
enriched in extracellular RNA (miRNAs and mRNAs) and
proteins and express exosomal-specific markers (CD9,
CD63, and TSG101) but lack glycolytic enzymes, extracellular
DNA, and cytoskeletal components [18]. Therefore, exosomes
likely regulate tumour energy metabolism by delivering extra-
cellular RNAs from tumour cells to target cells.

However, the mechanisms linking OvCa metabolic dys-
regulation and exosomal miRNAs are incompletely under-
stood. This manuscript focuses on revealing correlations
between exosomal miRNAs and energy metabolism in OvCa
and investigates possible molecules as tumour diagnostic
and therapeutic targets.

2. Materials and Methods

2.1. miRNA Microarray Data. To study miRNAs in OvCa-
derived exosomes, we used the keyword “ovarian cancer
exosome miRNA” to search the Gene Expression Omnibus
(GEO) database [19] and found one miRNA microarray
dataset, GSE76449 [20]. One normal human ovarian surface
epithelial cell line (HIO180), six different invasive OvCa cell
lines, namely, HEYA8_MDR (multidrug-resistant), A2780_
CP20 (cisplatin-resistant), and SKOV3_TR (Taxol-resis-
tant), and the chemosensitive OvCa cell lines HEYA8,
A2780_PAR, and SKOV3_ipl and their exosomal samples
were analysed by 4.0 miRNA Affymetrix chips. Two biolog-
ical repeats were employed in each sample. The series matrix
and platform files were downloaded as TXT files.

2.2. Identification of Differentially Expressed miRNAs (DE-
miRNAs). Data were investigated by using GEO2R (http://
www.ncbi.nlm.nlh.gov/geo/geo2r/). Significant miRNAs with
the thresholds of ∣log fold change ðlogFCÞ ∣ >0:58 and P value
< 0.05 were subjected to cluster analysis. To further determine
the reliability of the bioinformatic analysis, the overlapping
miRNAs were shown using a Venn diagram. The DE-
miRNAs were further selected by their differential expression
in both cancer cell-isolated exosomes vs. normal cell-isolated
exosomes and OvCa cells vs. normal cells. Heatmaps and vol-
cano plots of DE-miRNAs were generated using R software.

2.3. Prediction of Key Targeted Genes by DE-miRNAs. The
online analysis tool DIANA (http://diana.imis.athena-
innovation.gr/DianaTools/) predicted DE-miRNA-targeted
genes and Kyoto Encyclopedia of Genes andGenomes (KEGG)
pathways. DIANA-MicroT-CDS was used to predict target
genes of DE-miRNAs, and mirPath v.3 was used for the DE-
miRNA pathway analysis. To further investigate the targeted

genes in the glucose-related metabolic pathway, we annotated,
visualized, and integrated them by using the STRING database
(http://string-db.org) to construct a protein-protein interaction
(PPI) network. The DAVID online database was applied to
analyse key genes in terms of KEGG pathways and Gene
Ontology (GO) terms, which included the biological process
(BP), molecular function (MF), and cellular component (CC)
ontologies.

2.4. Association of Targeted Genes, Patient Prognosis, and
Cancer Stages. GEPIA2 (http://gepia2.cancer-pku.cn/#index)
is an online survival analysis tool that was used to identify genes
associated with the age, histological grade, stage, treatment, and
overall survival (OS) of OvCa. Kaplan-Meier survival curves
were constructed for the high- and low-expression groups.

2.5. Cell Culture and Human Tissues. Human OvCa cell lines
(SKOV3, COCI, CAOV3, OVCAR3, SW626, OV90, and
HEY) and a human normal ovarian cell line (IOSE80) were
obtained from the Shanghai Cancer Institute. OV90 cells
were cultured in MCDB105/medium 199 complete medium
(ScienCell, Shanghai, China). SKOV3 cells were cultured in
McCoy’s 5A medium (HyClone, Logan, USA), and the other
seven OvCa cell lines were cultured in DMEM (HyClone,
Logan, USA). All the media were supplemented with 10%
(volume/volume) foetal bovine serum (FBS) (Gibco, Invitro-
gen, USA) and 1% (volume/volume) penicillin/streptomycin
(P/S). All cell lines were incubated in a 37°C humidified
incubator with 5% CO2. We enrolled 30 patients pathologi-
cally diagnosed with EOC and 30 normal controls at Fujian
Provincial Maternal and Children Hospital from September
2016 to September 2020. Samples of cancer-adjacent tissues
and OvCa lesions were collected for methylation analysis.
All experiments involving human tissue samples in this
study were approved by the Ethics Committee of Fujian Pro-
vincial Maternal and Children Health Hospital, and written
informed consent was obtained.

2.6. Cell Transfection. A lentiviral vector carrying miR-543
(3′-GTCCGGACTCAGATCTCGAGCTTGACGGTTG
CCCGGTGCGCATCAG GACCCATGTGCTCTCAG-5′)
was transfected into SKOV3 and HEY cells in the logarith-
mic growth phase following the manufacturer’s protocol
(Invitrogen, California, USA). The expression of miR-543
was assessed by using quantitative reverse transcription
PCR (qRT-PCR) to verify the transfection efficiency.

2.7. Exosome Purification and Identification. Serum samples
were obtained from all participants after fasting for 8 hours.
Exosomes were extracted from patient serum using a total
exosome isolation kit following the manufacturer’s protocol
(Invitrogen, California, USA). Additionally, the culture
medium of transfected cells was collected and centrifuged to
remove cell debris and other impurities. Then, the exosomes
were extracted and purified according to the instructions.
Finally, a Zetaview instrument was utilized for transmission
electron microscopy (TEM) and nanoparticle tracking analy-
sis (NTA) to verify the exosomes. For TEM, exosomes were
fixed successively with 4% glutaraldehyde and 1% osmium
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Figure 1: Continued.
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tetroxide (OsO4). The specimens were dehydrated in graded
ethanol solutions from 50% to 100% for 10 minutes and then
embedded in EPON resin. The embedded tissue was cut into
100nm thin sections and restained with uranyl acetate and
lead citrate. TEM was utilized for exosome observation and
imaging.

2.8. qRT-PCR. Total RNA was extracted by lysis of target
cells and exosomes with the TRIzol reagent (Invitrogen, Cal-
ifornia, USA) according to the manufacturer’s protocol. The
purity and concentration of total isolated RNA were deter-
mined by using a UV-Vis spectrophotometer Q5000 (Quawell,
California, USA) at a wavelength of 260nm. Total isolated RNA
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Figure 1: Profiles of significant DE-miRNAs in OvCa cells and OvCa-derived exosomes. Heatmaps and volcano plots indicate the levels of
differential miRNA expression in OvCa cell lines (a, b) and OvCa-derived exosomes (c, d). (e) Analysis of DE-miRNAs shown in the Venn
diagram. (f) Cluster dendrogram of possible DE-miRNAs involved in metabolism-related pathways predicted by DIANA tools. (G)
Heatmaps of DE-miRNAs involved in metabolism-related pathways using DIANA tools. Abbreviation: OvCa: ovarian cancer; DE:
differentially expressed.
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Figure 2: Continued.
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Figure 2: Predicted key targeted genes of miR-543 involved in the proteoglycan pathway by using bioinformatic analysis. (a) Protein-
protein interaction (PPI) network of predicted targets of miR-543. (b) Gene Ontology (GO) analysis of predicted key targeted genes of
miR-543. (c–i) Correlation between predicted target genes of miR-543 and patient survival of OvCa. Abbreviations: CC: cellular
component; MF: molecular function; BP: biological process.
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was then subjected to RT with the microRNA RT kit (Promega,
Wisconsin, USA) using a two-step process according to the
instructions from the manufacturer. qRT-PCR was performed
with GoTaq Green Master Mix (Promega, Wisconsin, USA).
U6 (Sangon Biotech, China) was used as an internal reference
to standardize miRNA concentrations (forward primer
sequence: 5′-CTCGCTTCGGCAGCACA-3′, reverse primer
sequence: 5′-AACGCTTCACGAATTTGCGT-3′). The for-
ward primer sequence of miR-543 was 5′-CGAAACATTCG
CGGTGCA-3′, and the reverse primer sequence was 5′-
AGTGCAGGGTCCGAGGTATT-3′. The miRNA expression
value was determined using an ABI7500 instrument purchased
from Applied Biosystems. The 2−ΔΔCt method was used to cal-
culate the expression of target miRNAs and genes to generate
relevant standard curves.

2.9. Cell Counting Kit-8 (CCK8) Assay. The cell proliferation
assay was performed with the CCK-8 (Beyotime, Shanghai,
China) assay following the manufacturer’s instructions.

2.10. Colony Formation Assay. The transfected cells were
resuspended, diluted, and inoculated into a 6-well plate at
a density of 1 × 103/ml in serum-free medium. After 14 days,
the colonies were fixed with 4% paraformaldehyde, stained
with 0.5% crystal violet, imaged, and counted.

2.11. EdU Proliferation Assay. To measure ovarian cancer
cell proliferation, a 5-ethynyl-2′-deoxyuridine (EdU) assay
was performed following the manufacturer’s protocol (US
EVERBRIGHT, Suzhou, China). SKOV3 and HEY cells
transfected with NC or miR-543 were plated in 6-well plates
at a density of 1 × 106 cells/well and then treated with 10 nM
docetaxel for 48 hours. Harvested cells were washed twice
with PBS and incubated in 10μmol/L EdU (US EVERB-
RIGHT, Suzhou, China) diluted with serum-free DMEM
for 2 hours. Then, the cells were fixed, subjected to DNA
staining, and imaged using fluorescence microscopy, and
five random fields were calculated.

2.12. Analysis of Glucose Concentration in Cell
Supernatants. The glucose concentration in the cell super-
natant was determined by utilizing a Glucose Assay Kit

(Rongsheng Bio, Shanghai, China) according to the manu-
facturer’s instructions.

2.13. WB Analysis. The target cells were lysed with the appro-
priate volume of RIPA buffer (Beyotime, Nanjing, China) sup-
plemented with PMSF (Thermo Fisher, Waltham, USA).
Then, the concentration of the extracted protein was quanti-
fied with a BCA Protein Assay Kit (Beyotime, Nanjing, China)
by plotting a standard curve. After SDS-PAGE separation, the
protein samples were transferred to PVDF membranes
(Millipore, Bedford, MA). The membranes were successively
blocked with 5% BSA, incubated overnight with primary anti-
bodies against IGF1, IGF2, and GAPDH (Cell Signaling Tech-
nology, Massachusetts, USA) at 4°C, and incubated for 1-2
hours with HRP-conjugated goat anti-rabbit or anti-mouse
secondary antibody (ImmunoWay, Newark, USA). The bands
were visualized by using a DAB HRP Color Development Kit
(Beyotime, Nanjing, China) and imaged by the Fluor Chem R
chemiluminescence system (ProteinSimple, California, USA).
The intensity of the bands was measured and analysed quan-
titatively with GAPDH as the control.

2.14. Subcutaneously Implanted Tumour Model. BALB/c
female nude mice aged approximately 5 weeks were pur-
chased from Charles River Laboratories (Zhejiang, China)
and housed in pathogen-free cages. Then, miR-543-up and
negative control HEY cells resuspended in 0.1ml PBS were
injected subcutaneously into the right flanks of nude mice
at a density of 1 × 106/ml suspended in 200μl PBS. The
tumour volume was estimated and recorded once a week
by the formula volume = π/6 × length × width × height. The
tumours were excised from the mice and imaged after 8
weeks. The procedure was approved by the Ethics Commit-
tee for Animal Experiments of Fujian Province Maternal and
Children Hospital.

2.15. Dual-Luciferase Reporter Assay. The amplified 3′-UTR
of IGF2 was cloned upstream of the firefly luciferase gene
(Promega,Wisconsin, USA) to construct the wild-type lucifer-
ase reporter plasmid. Meanwhile, the mutant plasmid of the
IGF2 3′-UTR was constructed by mutating the predicted
miR-543 binding site using amutagenesis kit (Gene, Shanghai,

Table 1: KEGG pathways.

Pathway ID Pathway description Count in gene set FDR (false discovery rate)

05205 Proteoglycans in cancer 23 8:86e − 43
05200 Pathways in cancer 14 9:67e − 18
04510 Focal adhesion 12 1:44e − 16
05218 Melanoma 8 5:57e − 13
04015 Rap 1 signaling pathway 10 7:77e − 13
04810 Regulation of actin cytoskeleton 10 7:88e − 13
04012 ErbB signaling pathway 8 1:49e − 12
05215 Prostate cancer 8 1:58e − 12
05211 Renal cell carcinoma 7 2:21e − 11
05100 Bacterial invasion of epithelial cancer 7 5:19e − 11
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Figure 3: Continued.
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China). The luciferase activity of cells transfected for 48 hours
was tested with the Dual-Glo Luciferase Reporter Assay Sys-
tem (Promega, Wisconsin, USA). All steps followed the corre-
sponding manufacturer’s instructions.

2.16. Pyrosequencing. Pyrosequencing was performed to detect
the methylation distribution of OvCa tissues compared with
adjacent normal tissues. First, PyroMark Assay Design 2.0 (Qia-
gen, Frankfurt, Germany) was used to design primers for
sequencing and amplification. Then, genomic DNA was sub-
jected to bisulfite conversion to convert unmethylated cytosine
into thymine, and the target region was amplified with specific
primers by using a PyroMark® PCR kit (Qiagen, Frankfurt,
Germany) according to themanufacturer’s instructions. Finally,
pyrosequencing of single-stranded DNA was performed in
PyroMark Q96/48 ID (Qiagen, Frankfurt, Germany) following
the protocol provided by the manufacturer, and the corre-
sponding extent of methylation was determined by analysing
the percentage of cytosine/thymine in the target segment.

2.17. Immunohistochemical (IHC) Assay. Tissues from sub-
cutaneously implanted tumours in the mouse model were
sliced into 4μM sections and prepared for IHC staining. Anti-
body dilutions were 1 : 50 for the Ki67 mouse polyclonal anti-
body (ImmunoWay, Texas, USA). The IHC procedure was
performed following the manufacturer’s recommendations.

2.18. Statistical Analysis. SPSS software version 21.0 (SPSS
Inc., NY, USA) was used for statistical analysis. Student’s t
-test was performed to compare the differences between
two independent-sample groups. P < 0:05 was considered
to indicate a statistically significant difference.

3. Results

3.1. Key Targeted Genes in the Proteoglycans in the Cancer
Pathway. GSE71449 was downloaded and processed from
the GEO database. Significantly DE-miRNAs were identified
and are shown in a heatmap and volcano plots, respectively
(Figures 1(a)–1(d)). A Venn diagram indicated that of the 24
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Figure 3: In vitro and in vivo functional assays of miR-543 in OvCa. (a) Relative miR-543 quantitative expression in normal ovarian cell
lines and wild-type OvCa cell lines. (b) The stable upregulated expression of miR-543 was tested in SKOV3 and HEY cells by RT-PCR.
Then, the stable clone forming (c, e) and Edu (d, f) assays revealed a significantly decreased proliferation ability after stable
overexpression of miR-543. (g, h) In vivo assays showed that the tumour volume of the OvCa subcutaneous xenograft of lv-HEY-miR-
543-up cells was significantly lower than that of the control cells. (i, j) Ki67 staining was significantly decreased in the subcutaneous
xenograft of lv-HEY-miR-543-up cells compared with that in controls. Abbreviation: lv: lentivirus; Edu: 5-ethynyl-2′-deoxyuridine. ∗P <
0:05 vs. control (unpaired t-test), ∗∗P < 0:01 vs. control (unpaired t-test), and ∗∗∗P < 0:001 vs. control (unpaired t-test).
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Figure 4: Regulatory network of miR-543 in inhibiting proliferation in EOC. (a) Similar to the bioinformatic analysis results, the expression
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DE-miRNAs, 7 were significantly downregulated in OvCa
cells vs. normal cells and their derived exosomes (Figure 1
(e)).

Metabolism is vital in the progression of OvCa [21]. To
identify metabolism-related pathways, we used DIANA tools
and found that the DE-miRNAsmainly regulated 12 pathways
(miRNA-4876-3p was excluded due to a lack of annotation in
the database) (Figure 1(f)). The DE-miRNA-enriched
metabolism-related pathways included biosynthesis of unsatu-
rated fatty acids, proteoglycans in cancer, glycosphingolipid
biosynthesis-lacto and neolacto series, and other pathways
(Figure 1(g)). The results demonstrated that miR-543 was
involved in the highest number of pathways and proteogly-
cans in OvCa and was selected for further study for its crucial
role in tumour proliferation and angiogenesis [22]. Overall, a

total of 26 genes were included because they were the pre-
dicted miR-543 targeted genes that regulated proteoglycans
in OvCa.

To elucidate the unknown genes unique to EOC involved
in glucose metabolism, we constructed an interaction network
of the 26 predicted miR-543 target genes by applying the
STRING online database. Consequently, the interlinked net-
work between genes from the predicted genes closely related
to the proteoglycans in the cancer pathway is illustrated in
Figure 2(a). Furthermore, GO functional enrichment was per-
formed for these genes. All results were ranked by statistically
enriched score [−log ðP valueÞ], and the top hits of each cate-
gory are displayed in Figure 2(b). In terms of biological pro-
cesses, the top 3 enriched terms were response to growth
factor, cellular response to growth factor stimulus, and tissue
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Figure 5: Rescue assays of IGF2 in lv-HEY-miR-543-up cells. (a) The transiently upregulated expression of IGF2 in lv-HEY-miR-543-up
cells and controls was verified by qRT-PCR. (b, c) The expression of IGF2 among lv-HEY-miR-543-up-NC-IGF2, lv-HEY-miR-543-up-
IGF2 transient up, lv-NC-miR-543-NC-IGF2, and lv-NC-miR-543-IGF2 transient up at mRNA and protein levels. (d) The concentration
of glucose in the cell supernatant was significantly decreased after rescue of the expression of IGF2. In addition, the Edu (e, f)
proliferative abilities were all rescued by upregulating the expression of IGF2 in lv-HEY-miR-543-up cells. IGF2 was significantly
downregulated after being cocultivated with OvCa-derived exosomes than that with controls. Meanwhile, the glucose secretion was
significantly increased, and the proliferation ability in OvCa cells was significantly decreased after the treatment of exosome-derived
miR-543 in tumour cells (g–l). Abbreviation: lv: lentivirus; Edu: 5-ethynyl-2′-deoxyuridine. ∗P < 0:05 vs. control (unpaired t-test), ∗∗P <
0:01 vs. control (unpaired t-test).

13Journal of Immunology Research



development. In addition, cellular response to fibroblast
growth factor stimulus, protein binding, and receptor binding
were the top 3 enriched terms in the cellular component anal-
ysis, while membrane raft, cytosol, and caveola were the top
enriched terms in the molecular function analysis. Apart from
proteoglycans in cancer, pathways in cancer and focal adhe-
sion were ranked in the top three pathways in the KEGG anal-
ysis (Table 1).

3.2. Correlation between Key Genes, Patient Clinicopathological
Factors, and Survival. To determine the correlation between
the patient prognosis and stage in patients with EOC,
Kaplan-Meier survival curves and stage plots comparing the
expression of the 24 predicted target genes of miR-543 and
patient prognosis and stage in TCGA cohort were generated.
IGF2 (P = 0:042) was identified as a strong indicator of the
clinical survival time of EOC patients (Figure 2(c)). Besides,
ITGB1, HGF, TWIST1, IGF-1, PPP1R12A, and BRAF exhib-
ited no significant correlations with overall survival time
(Figures 2(d)–2(i)). However, none of the genes manifested
statistically significant differences in the tumour stage, patient
age, or tumour grade.

3.3. Overexpression of miR-543 Inhibits the Proliferation of
EOC. Tumour invasion and colony formation are vital and
final malignant behaviours during EOC progression. To test
whether miR-543 is required for cell invasion and prolifera-
tion, we examined the expression of miR-543 in wild-type
normal ovarian cells and OvCa cells (Figure 3(a)). Based
on the results, we overexpressed miR-543 in SKOV3 and
HEY cells because they had relatively low expression of miR-
543 among the tested OvCa cells. Further experiments con-
firmed obvious overexpression of miR-543 in these two cell
lines by stable transfection (Figure 3(b)). Furthermore, overex-
pression of miR-543 significantly decreased the proliferation
rates of SKOV3 and HEY cells in colony formation assays
(Figures 3(c) and 3(e)) and the suppressed proliferative func-
tion was explored in the Edu assay (Figures 3(d) and 3(f)).

We further investigated whether miR-543 also plays a pro-
liferative suppressor role in EOC in vivo. Similar to the in vitro
results, we observed that nude female mice injected with HEY
cells overexpressing miR-543 presented obviously smaller
tumours than those injected with control cells (Figures 3(g)–3
(h)). The in vivo assays provided additional evidence that
miR-543 plays a tumour suppressive role during EOC
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progression. Ki67, which represents the proliferation ability
in vivo, was expressed at significantly lower levels by IHC after
overexpressing miR-543 in a subcutaneous xenograft mouse
model in comparison with that of controls (Figures 3(i) and 3
(j)).

3.4. Exosomal miR-543 Is a Strong Indicator of OvCa. Data-
set (GSE71449) analysis showed that the level of miR-543
expression was significantly lower in exosomes derived from
OvCa cells than in exosomes derived from normal ovarian
cells. To confirm the differential expression in clinical sam-
ples, we next investigated the expression of miR-543 in exo-
somes derived from patients with EOC, EOC tissues, and the
corresponding controls. The expression of miR-543 was sig-
nificantly lower in EOC tissues (n = 60) than in normal ovar-
ian tissues (n = 60) (P = 0:026, Figure 4(a)). Exosomes
extracted from EOC patient serum and controls were tested
by TEM and NTA. Figure 4(b) shows that the exosomes
were confirmed to be typical round-plate structures with
sizes of 30-150 nm. Consistent with the findings in tissues,
the exosomal level of miR-543 was significantly lower in
EOC patients than in the normal ovary controls
(P = 0:0047, Figure 4(c)).

3.5. Regulatory Network of miR-543 in Inhibiting
Proliferation in EOC. Methylation of miRNAs is closely
associated with tumour proliferation and is known to be
increased in gastrointestinal cancer [23]. Therefore, we
assessed the methylation frequency of miR-543 in EOC tis-
sues and paired normal tissues. As shown in Figure 4(d),
the methylation frequency of miR-543 was considerably
higher in EOC tissues (96% ± 3%) than in adjacent tissues
(93% ± 3%). Therefore, methylation was shown to downreg-
ulate miR-543 in EOC progression.

Bioinformatic analysis allowed us to identify potential
targets of miR-543 that are associated with the proteoglycans
in cancer pathway. After stable overexpression of miR-543
in SKOV3 cells, the mRNA levels of IGF2 (P = 0:0076),
IGF1 (P = 0:022), and TWIST1 (P = 0:019) were notably
decreased in comparison to those in the control cells, as
demonstrated using RT-PCR assays (Figure 4(e)). IGF2 is
an essential glucose regulatory factor that promotes the pro-
liferation of several cancers [24, 25]. Because according to
RT-PCR, the reduction degree of IGF2 was the most signif-
icant, we next tested the concentration of glucose in the
supernatant of miR-543-overexpressing cells. As expected,
the level of glucose was significantly higher in miR-543-
overexpressing cells than in control cells (Figure 4(f)). We
further performed the WB assay to demonstrate that miR-
543 reduced IGF2 in SKOV3 cells at the protein level
(Figure 4(g)). Figures 4(h)–4(l) show that IGF2 was rela-
tively conversely expressed in OvCa cell lines and trans-
planted tumor in the mouse model at the protein and
mRNA levels, respectively, compared with the expression
of miR-543.

3.6. IGF2 Is Responsible for the miR-543-Mediated Suppression
of Proliferation in EOC. Only one predicted binding site of
miR-543 in the 3′-UTR of IGF2 mRNA (5736-5742nt) was

found. Subsequently, to confirm that IGF2 is a direct target
of miR-543, we conducted a luciferase reporter assay and
found a 56.3% reduction in luciferase activity when SKOV3
cells were cotransfected with miR-543 compared with the con-
trol cells, suggesting that miR-543 directly targets IGF2
(Figure 4(m)). Moreover, we quantified IGF2 and miR-543
mRNA levels in ovarian cancer and paracancerous tissues.
These results showed that miR-543 was significantly nega-
tively correlated with IGF2 (Figure 4(n)).

To prove that downregulation of IGF2 is essential for
miR-543-mediated suppression of proliferation in EOC, we
next performed functional rescue assays. HEY cells overex-
pressing miR-543 (miR-543-up cells) were cotransfected
with an IGF2-overexpressing plasmid (Figure 5(a)). The dif-
ference in IGF2 expression at the protein level was analysed
in Figures 5(b) and 5(c). Conversely, the concentration of
glucose in the cellular supernatant was significantly lower
in the cotransfected cells than in the control cells (Figure 5
(d)). The glucose supply is very important for tumour prolif-
eration. Consequently, upregulation of IGF2 in miR-543-up
HEY cells reversed the suppressive effect of miR-543 in the
EdU assay (Figures 5(e)–5(f)) in vitro.

Besides, 50μg/ml of exosomes extracted from CAOV3
cells (expressing the most miR-543 in Figure 3(a)) was added
intoHEY cell lines and cocultured for 24 hours. AtmRNA and
protein levels, Figures 5(h)–5(i) show that the expression of
IGF2 was significantly downregulated after being cocultivated
with OvCa-derived exosomes compared with controls. Mean-
while, the glucose secretion was significantly increased and the
proliferation ability in OvCa cells was significantly decreased
after the treatment with exosome-derived miR-543 in tumour
cells (Figures 5(g)–5(l)).

These functional rescue results indicated that IGF2 is a
bona fide target of miR-543 in the suppression of OvCa prolif-
eration, and the associated mechanism is shown in Figure 6.

4. Discussion

OvCa is a highly heterogeneous cancer with a poor 5-year
survival rate of less than 45% [3]. To improve the unsatisfac-
tory clinical outcome of OvCa, there is a pressing need to
identify more effective drug targets and cancer-associated
molecular mechanisms. To date, studies have revealed that
exosomal miRNAs show a range of cancer-regulating prop-
erties, including the control of cancer growth. Exosomal
miRNAs that are differentially expressed in cancer result in
abnormal proteoglycan pathways, thus leading to tumour
growth and metastasis [26]. In the current study, database
analysis revealed that the expression of miR-543 was signif-
icantly lower in exosomes derived from OvCa cells than in
those derived from normal ovarian cells. Furthermore, pre-
dicted miR-543 targets were enriched in the proteoglycans
in the cancer pathway. Both in vitro and in vivo functional
assays indicated that the miR-543 mimic significantly sup-
pressed the invasive and proliferative abilities of OvCa cells.
We also observed that methylation reduced miR-543 in
OvCa tissues compared to adjacent normal tissues. Impor-
tantly, IGF2, which is involved in the proteoglycan pathway,
was identified as a direct target of miR-543 and rescued
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miR-543-related suppression of proliferation in OvCa cells.
These findings provide additional evidence of a suppressive
role of miR-543 and indicate the diagnostic and therapeutic
value of miR-543 for OvCa progression.

The basic and terminal hallmark of tumour development
is proliferation, in which reprogramming of the energy
metabolism pathway occurs [27]. Reprogramming of energy
metabolism is a complex process that includes metabolism-
related enzymes and membrane transporters. Exosomes
carry molecular cargo to transfer signals from tumour cells
into the tumour and tumour microenvironment, thus regu-
lating metabolism and consequently proliferation. Recent
experimental assays have shown that exosomes released by
tumour cells into the tumour microenvironment are an
important source of functional RNAs and proteins but lack
“free circulating” DNA, glycolytic enzymes, and cytoskeletal
components [18]. Therefore, “free circulating” RNAs in
tumour-derived exosomes likely regulate glycolytic enzymes
and cytoskeletal constituents by targeting metabolic and
cytoskeletal genes. Lactate derived from glucose or glycogen
breakdown is an important energy supplement for tumour
proliferation [28]. Most published studies have investigated
exosomal miRNAs derived from cultured tumour cells,
which may not be consistent with those derived from OvCa
patients. In the current study, we initially provided evidence
that miR-543 secreted by OvCa patient exosomes was down-
regulated and promoted proliferation by regulating the tar-
get IGF2 to participate in proteoglycan pathways, which
regulate metabolism and cytoskeletal synthesis [29].

Similar to our results, miR-543 has been identified as a
tumour suppressor in pancreatic cancer, colorectal cancer
[30], breast cancer [31], glioma [32], and cervical cancer
[33]. However, other studies have indicated an oncogenic
role of miR-543 in digestive and urinary system cancers
[34]. These controversial findings indicate that miR-543 is
involved in a number of pathways in different cancer dis-
eases. Yu et al. reported that miR-543 was downregulated
at the cellular and tissue levels in OvCa [35, 36]. Moreover,
mechanistic analysis showed that lncRNA PVT1 and placen-
tal growth factor significantly reduced miR-543 expression,
and SERPINI1 and TWIST1 were the target genes. Cur-
rently, there is no experimental evidence that shows the role
of methylation and target genes of miR-543 involved in
metabolism in OvCa. In the current study, we demonstrated
that methylation downregulated miR-543 in OvCa tissues
and exosomes, and IGF2 is a critical direct downstream met-
abolic target involved in tumour proliferation [19, 37].

Epigenetic alterations, such as changes in miRNA-
mediated processes and RNA methylation, are involved in
proliferation in various types of invasive cancers [38]. This
is the first study to show the high level of miR-543 methyla-
tion in OvCa, and its delivery by exosomes leads to IGF2
dysfunction. IGF2 binding activates IGF1R and IGF2R and
is associated with aberrant glucose metabolism and proteo-
glycan dysregulation, which is responsible for cancer devel-
opment [39]. Proteoglycans are important molecules that
participate in cytoskeletal processes, such as the synthesis
of the extracellular matrix and cell membrane. Furthermore,
high expression of IGF2 was correlated with poor clinical

outcome, chemoresistance, and increased proliferation and
migration of OvCa [40–42]. Drugs that block IGF2 and
decrease glucose levels, such as metformin, have become a
promising approach to prevent and treat cancer [43, 44].
Similar results were observed in the current study, whereby
miR-543 overexpression in OvCa cells significantly
increased the concentration of glucose in the medium and
suppressed proliferation, while rescuing IGF2 expression in
miR-543 mimic-transfected OvCa cells resulted in decreased
glucose in the medium and increased cell growth.

In conclusion, our findings provide evidence for OvCa-
secreted exosomes that downregulate miR-543 by methylation
and thus rescue the inhibitory effect on IGF2 to promote prolif-
eration. These findings improve our understanding of the
involvement of miR-543 inmetabolism and cytoskeletal biology
and identify miR-543 as a candidate for clarifying OvCa devel-
opment and a crucial therapeutic and diagnostic biomarker.
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