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Cardiovascular diseases (CVD) are a group of disorders of the heart and blood vessels and remain the leading
cause of morbidity and mortality worldwide. Over the past decades, accumulating studies indicated that the
gut microbiota, an indispensable ‘‘invisible organ”, plays a vital role in human metabolism and disease states
including CVD. Amongmany endogenous and exogenous factors that can impact gut microbial communities,
the dietary nutrients emerge as an essential component of host-microbiota relationships that can be involved
in CVD susceptibility. In this review, we summarize the major concepts of dietary modulation of the gut
microbiota and the chief principles of the involvement of this microbiota in CVD development. We also dis-
cuss the mechanisms of diet-microbiota crosstalk that regulate CVD progression, including endotoxemia,
inflammation, gut barrier dysfunction and lipid metabolism dysfunction. In addition, we describe how
metabolites produced by the microbiota, including trimethylamine-N-oxide (TMAO), secondary bile acids
(BAs), short chain fatty acids (SCFAs) as well as aromatic amino acids (AAAs) derived metabolites play a role
in CVD pathogenesis. Finally, we present the potential dietary interventions which interacted with gut micro-
biota as novel preventive and therapeutic strategies for CVD management.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The gut microbiota, the most abundant microbial community
living in the human body, has recently been considered an indis-
pensable ‘‘invisible organ” that regulates essential functions of host
physiology, including nutrients transformation and metabolism,
maintenance of intestinal barrier integrity and host immunity
homeostasis [1–3]. Numerous studies indicated that dietary nutri-
ent intake, as a key environmental factor impacting gut microbiota
composition, can induce ‘‘dysbiosis” which is defined as an altered
microbial community including richness, diversity and composi-
tion. The dysbiosis can accelerate the homeostatic imbalance
which contributes to multiple disease states [4–9], including obe-
sity, diabetes, liver diseases, cancer, brain disorders, as well as car-
diovascular disease (CVD) which remains the leading cause of
morbidity and mortality worldwide [10,11].

In human gut, more than 1,000 bacterial species have been
identified with high-throughput metagenomics sequencing tech-
niques (e.g. 16S, Shotgun) and about 160 species are largely shared
among individuals [12]. Two main phyla of bacteria, Firmicutes
and Bacteroidetes, are predominant with more than 90% of total
bacteria, and their ratio is usually considered a relative signature
for health state although it is still controversial [13]. Besides, the
phyla Actinobacteria, Proteobacteria and Verrucomicrobia are also
members of the gut microbiota but to a much lesser abundance
[14]. At the genus level, Eubacterium, Ruminococcus, Clostridium,
Lactobacillus, and also Bacteroides are dominant in healthy adult
humans [12–14]. Particularly, the concept of ‘‘enterotype” firstly
emerged in 2011 by comparing large scales of human subjects to
demonstrate the stratification of gut microbiota which were
divided into three robust clusters including Bacteroides, Prevotella,
and Ruminococcus as predominant genera in the different entero-
types. Subsequently, a new addition to enterotypes separates the
Bacteroides into two sub-enterotypes B1 and B2 in which B2 enter-
otype is highly associated with systemic inflammation [15,16]. In
general, the compositional and functional features of the gut
microbiota include a-diversity (richness of community in one sam-
ple) and b-diversity (community differences across samples), as
well as microbial metabolites production [17].

CVD is a general term for diseases affecting heart and blood ves-
sels encompassing multiple disorders like coronary artery disease
(CAD), heart failure, stroke and other conditions [18]. As a chronic
progressive health burden, the development of CVD relates to var-
ious risk factors including hypertension (HT), dyslipidemia as well
as insulin resistance and inflammation, most of which could dam-
age vascular structure and eventually lead to more direct processes
like atherosclerosis and thrombosis susceptibility [19]. Besides
these physiological factors, dietary nutrients have been highlighted
as one of the key modifiable contributors that could interact with
the gut microbiota implicating a diet-microbiota-dependent mech-
anism for the development of CVD [20].

Specifically, the large and diverse intestinal microbial commu-
nity serves as a ‘‘metabolic filter” in the gastrointestinal (GI) tract
to what we eat, our predominant environmental exposures [21].
Trillions of microbial cells residing in the intestine contribute to
the nutrient digestion and metabolism, in which the bacteria are
the most abundant community belonging to thousands of species,
but yeasts, fungi, and archaea are also involved [22]. With the vari-
ation of pH, the redox potential and adhesion sites, the microbial
density gradually increases along the GI tract until reaching the
highest level in the distal intestine where the metabolites are pro-
duced in response to dietary stimuli, some of which being corre-
lated with the development of CVD [23]. ‘‘You are what you eat”
– indeed, a growing body of studies have provided strong evi-
dences to support the diet-gut microbiota crosstalk on CVD in both
positive and negative ways [24,25]. On one side, unhealthy dietary
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nutrient intake like high consumption of saturated fat, refined car-
bohydrates, and dietary choline, has been refined to increase the
abundance of pathogenic bacteria or metabolites which trigger
systemic inflammation, damage intestinal barrier to promote
CVD susceptibility [26]. Contrarily, healthy dietary patterns with
high intake of diet rich in fibers such as fruits, vegetables, and
whole grain stimulate the growth of beneficial bacteria which
might exert potential preventive effects on CVD [26].

Herein, large body of data is reviewed in supporting our under-
standing of the diet-gut microbiota interactions in CVD. Thus, we
precisely discuss the role of gut microbiota in the pathogenic
development of CVD, the diet-microbial metabolites interactions
in the development of CVD, as well as the potential dietary inter-
ventions through gut microbiota axis as novel preventive and ther-
apeutic strategies for CVD management.
2. Dietary modulation of gut microbiota

Numerous studies have suggested that diet is an essential mod-
ulator of the compositional and functional features of the gut
microbiota in both humans and animals. The impacts of dietary
changes on microbial communities in the gut can be summarized
in three major aspects: (1) Rapid/short-term effect: this theme is
supported by the research on human subjects who switched
between plant-based (high-fiber) and animal-based (high-fat) diet.
The microbiota composition of all subjects shifted within 1–2 days
with increased abundance of Firmicutes which metabolized diet-
ary fiber with plant-based diet and increased bile-tolerant
microorganisms Alistipes and Bilophila with animal-based diet
[27]. However, short-term diet changes had no impact on entero-
types even after 10 days intervention [28]. (2) Long-term effect:
despite of rapid modulations of microbial community, long-term
dietary interventions are not only associated with the composi-
tional alterations, but also related to physiological changes. For
instance, feeding rats with high fat diet (HFD) for 8 or 12 weeks
induced increased abundance of Enterobacteriales (Proteobacteria
phylum) which was coupled with the elevation of systemic inflam-
mation, intestinal permeability and obese phenotype [29]. On the
contrary, human cohorts intervened with 3 months low-
carbohydrate or low-fat healthy diet resulted in 14 or 12 taxo-
nomic changes correlating with weight loss suggesting that long-
term interventions are necessary [30]. Besides, enterotypes are
mostly related to long-term dietary effects instead of short-term
impacts [28]. (3) Specific microbial changes in response to particular
diet: For example, dietary fiber intake promoted the increase of gut
microbiota richness or diversity [31] as well as phylum of Firmi-
cutes [27]. Bacterial species Ruminococcus bromii bloomed under
the intervention of resistant-starch diet [32]. Interestingly, not
only the microbial composition but specific microbial metabolism
is correlated with specific diet and disease patterns. For instance,
subjects with red meat enriched diet had more trimethylamine-
N-oxide (TMAO) (intestinal microbial metabolite of choline present
in red meat) in plasma than vegetarians. The elevation of TMAO
levels has been identified in human subjects with the enriched pro-
portions of enterotype Prevotella and is associated with increased
risk of CVD [33].
3. Microbial alterations in CVD

Extensive investigations have identified that the gut microbiota
plays an essential role in CVD. Indeed, early studies suggested that
the depletion of gut microbiota by antibiotic treatment raised
blood pressure in rats [34]. These discoveries have been further
confirmed in germ-free (GF) rats implicating the crucial role of
gut microbiota in the regulation of blood pressure [35]. Also, the



Table1
The alteration of gut microbiota associated with CVD conditions in human cohorts.

CVD Condition Cohorts Sequencing
Method

Diversity "Increased Abundance ;Decreased Abundance Ref.

Hypertension 99 HT
56 Pre-HT
41 Controls

Shotgun ;a-diversity
*b-diversity

Klebsiella
Prevotella
Desulfovibrio

Faecalibacterium Oscillibacter
Roseburia
Bifidobacterium
Coprococcus
Butyrivibrio

[40]

67 HT
62 Controls

16S NAa-
diversity
*b-diversity

Acetobacteroides Alistipes
Bacteroides Barnesiella
Clostridium
Desulfovibrio
Megasphaera
Microvirgula Parabacteroides

Lactobacillus
Olsenella
Paraprevotella
Prevotella
Romboutsia
Ruminococcus

[41]

183 HT
346
Controls

16S ;a-diversity
*b-diversity

Catabacter
Veillonella
Clostridium
Oscillibacter
Robinsoniella

Akkermansia
Ruminococcus
Anaerovorax
Sporobacter
Asaccharobacter

[42]

Atherosclerosis 13 Patients
12 Controls

Shotgun NA Collinsella
Clostridiales
Clostridium

Bacteroides
Roseburia
Eubacterium
Faecalibacterium

[43]

218 Patients
187
Controls

Shotgun NA Escherichia coli
Klebsiella spp.
Enterobacter aerogenes

Bacteroides spp.
Prevotella copri
Alistipes shahii

[44]

223 Patients
181
Controls

16S ;a-diversity
*b-diversity

Streptococcus anginosus
Atopobium parvulum
Actinomyces graevenitzii
Streptococcus mitis/oralis/pneumonia

Bacteroides xylanisolvens
Odoribacter splanchnicus
Eubacterium eligens
Roseburia inulinivorans Roseburia
intestinalis

[45]

CAD 39 Patients
30 High-
risks
50 Controls

16S *b-diversity F/B ratio
Lactobacillales

Bacteroides
Prevotella

[46]

70 Patients
98 Controls

16S ;a-diversity
*b-diversity

Escherichia-Shigella
Enterococcus

Faecalibacterium
Subdoligranulum
Roseburia
Eubacterium rectale

[47]

161 Patients
40 Controls

16S NA Enterobacteriaceae
Enterococcus
Streptococcus

Faecalibacterium
Roseburia
Ruminococcus
Lachnospiraceae

[48]

Heart Failure 60 Patients
20 Controls

Culture NA Candida
Campylobacter
Shigella
Yersinia

NA [49]

84 Patients
266
Controls

16S ;a-diversity
*b-diversity

Succiniclasticum
Prevotella

Lachnospiraceae
Eubacterium hallii

[50]

22 Patients
11 Controls

16S NA a-
diversity
*b-diversity

Actinobacteria
Bifidobacterium
Escherichia/Shigella

Megamonas [51]

Stroke 141 Patients
94 Controls

16S "a-diversity
*b-diversity

Enterobacter
Megasphaera
Oscillibacter
Desulfovibrio

Bacteroides
Prevotella
Faecalibacterium

[52]

30Patients
30Controls

16S NA a-
diversity
NA b-
diversity

Odoribacter
Akkermansia
Christensenellaceae
Ruminococcaceae
Enterobacter

Anaerostipes
Ruminiclostridium

[53]

140Patients
92Controls

16S *b-diversity F/B ratio
Lactobacillaceae Akkermansia
Enterobacteriaceae
Porphyromonadaceae

Roseburia
Bacteroides
Lachnospiraceae
Faecalibacterium
Blautia, Anaerostipes

[54]
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absence of microbiota in ApoE�/� mice model in standard diet
accelerated the formation of atherosclerotic plaques in the aorta
and the development of heart diseases when compared with con-
ventional ones [36]. Interestingly, the opposite effect of the micro-
biota was observed with mice infused with Angiotensin II in which
the absence of gut microbiota attenuated arterial HT and vascular
dysfunction [37]. In addition, the imbalance or maladaptation of
1530
microbial community, defined as ‘‘dysbiosis”, has been discovered
to be associated with the incidence of CVD risk and to affect the
progression of CVD. For instance, a significant dysbiosis has been
identified in hypertensive animals and was characterized by
decreased microbial richness and diversity, and increased Firmi-
cutes/Bacteroidetes (F/B) ratio [38]. These alterations in microbiota
were also discovered in Ldlr�/� mice (a hypercholesterolemic
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atherosclerosis model) with an acceleration of arterial thrombosis
[39].

In human cohorts, large number of studies have observed a gut
microbial dysbiosis in patients with HT, atherosclerosis, CAD, heart
failure and stroke (Table1). For instance, alterations of the gut
microbiota in patients with HT include a lower a-diversity and a
significant shift of b-diversity with a higher abundance of potential
pathogenic bacteria including Parabacteroides, Desulfovibrio, Prevo-
tella and Oscillibacter which are gram-negative bacteria that may
produce endotoxins (e.g. lipopolysaccharides, LPS) associated with
inflammatory status. Some gram-positive bacteria such as Clostrid-
ium have also been found in higher abundance in patients with HT
[40–42]. Concurrently, lower abundance of beneficial bacteria
including SCFAs producing bacteria like Lachnospiraceae, Lacto-
bacillus, Faecalibacterium, Ruminococcus was detected in patients
with HT [40–42]. Similar findings (Table1) were also discovered
in most of the human studies related to atherosclerosis, CAD, heart
failure and stroke [43–54]. Additionally, alterations of some differ-
ent bacterial groups were also found in CVD cohorts such as a
decreased proportion of Bacteroides and Roseburia [43–48,52,54].
Besides, a gut microbial dysbiosis was also correlated with cardiac
risk parameters in plasma. For instance, the alterations of micro-
biota were associated to the lipid metabolism dysfunctions like
lower levels of High-density lipoprotein (HDL) in plasma in CVD
patients [48]. Moreover, increased abundance of Escherichia/Shi-
gella was positively correlated to the elevated plasmatic levels of
TMAO, a gut microbial metabolite contributing to CVD pathogene-
sis [51]. However, some CAD and stroke patients have also been
identified with higher presence of potential beneficial bacteria
such as Lactobacillales or Akkermansia which was associated with
the depletion of other SCFAs producers [48,53,54]. This discrep-
ancy in human studies might be explained by the following
aspects: (1) The methodology of gut microbiota analysis: multiple
factors during the gut microbiota analysis could affect the taxo-
nomic resolution including different protocols for fecal samples
collection, storage, DNA extraction as well as different sequencing
platforms or different sequencing methods (e.g. 16S or shotgun)
[55–57]. (2) Population level related parameters in clinical studies:
numerous covariates of the subjects recruited in the clinical stud-
ies could interfere with the fecal microbiota variation such as blood
parameters, dietary habits, lifestyle, anthropometrics as well as
stool consistency [58]. (3) Medication: this is another essential fac-
tor which might result in the variation of gut microbiota. It has
been reported that individual medication or multimedication as
well as the drug dosage exhibited a strong relation to the alteration
of the gut microbiota [58,59]. Therefore, clinical studies in human
subjects should consider the above aspects to design properly new
investigations on gut microbiota related CVD pathogenesis.
4. The signature of diet-gut microbiota crosstalk in CVD
pathogenesis

4.1. Intestinal barrier dysfunctions and inflammation

In healthy state, the appropriate intestinal barrier provides a
crucial first line of defense against pathogens that is supported
by several physiological components including mucus layer,
epithelial cells connected by tight junction proteins and immune
cells [60]. However, CVD patients in heart failure or HT were often
observed with dysfunctional intestinal barrier accompanied with
increase of the systemic microbial component LPS and inflamma-
tion [61–63]. What are the risk factors to trigger the gut leakiness
and inflammation in the process of CVD? One of the hypotheses is
that long-term consumption of western diet or HFD could induce
dysbiosis and impair the gut barrier which enhanced LPS transloca-
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tion and systemic inflammation resulting in increase of CVD risk
[64–66].

In view of this, higher intake of diet rich in saturated fat or trans
fatty acids is highly associated with the increase of CVD risk while
a lower intake of dietary saturated fats reduced CVD by about 30%
[67]. In large cohortstudies, long-term (6-months) consumption of
HFD induced a microbial dysbiosis with increased proportion of
Gram-negative bacteria such as Alistipes and Bacteroides accompa-
nied with higher levels of genes involved in LPS biosynthesis [64].
Meanwhile, dietary fats have been identified to impair intestinal
barrier through activating the secretion of pro-inflammatory
cytokines (e.g. TNF-a, IFNc and IL-1b) [68,69]. The upregulation
of the pro-inflammatory cytokines further activated MLCK (Myosin
light-chain kinase) signaling pathway which reorganizes the tight
junction proteins including occludin, ZO-1 (Zonula occludens-1)
and results in the leaky gut [70–72].

When the intestinal barrier is disrupted, LPS or pathogens could
translocate into the circulation causing endotoxemia that stimu-
lates the release of systemic pro-inflammatory cytokines [73].
Once translocated in the bloodstream, endotoxin can trigger the
damage of endothelial cells through interaction with TLR-4 (Toll-
like receptor 4) on cellular surface and enhance the generation of
ROS (Reactive oxygen species) to reduce endothelial NO (Nitric
oxide) bioavailability resulting in the formation of plaque and
atherosclerosis lesion [73,74]. This hypothesis has been confirmed
in animal models, in which ApoE�/� mice under western diet dis-
played an aggravation of atherosclerotic lesions with a significant
increase of Proteobacteria (Gram-negative pro-inflammatory bac-
teria) and systemic LPS levels [75]. Moreover, western diet pro-
motes the upregulation of inflammatory cytokines (e.g. TNF-a
and IL-1b) and increases intestinal permeability coupled with
modification of tight junction proteins (e.g. occludin) in ApoE�/�

mice as well [75,76]. However, there is still a lack of data in human
cohorts to decipher at what point the impaired intestinal barrier
and associated increased endotoxemia due to western diet can
induce CVD pathogenesis.

4.2. Lipid metabolism disorders

In addition to diet-microbiota interactions on inflammation and
gut barrier functions, intestinal microbes also influence CVD via
the host lipid metabolism. Indeed, a growing body of animal and
human studies have suggested that the gut microbiota is impli-
cated in lipid metabolism disorders such as dyslipidemia or hyper-
lipidemia, which are major risk factors in the development of CVD
[77–80]. For example, GF mice have an altered cholesterol metabo-
lism [81] and the depletion of gut microbiota in ApoE�/� mice
caused a marked elevation of plasma cholesterol accompanied
with larger aortic lesions compared to conventional ApoE�/� mice
[77,78]. Moreover, microbiota transplantation from high plasma
cholesterol humans to mice instigated the phenotype of upregu-
lated circulating cholesterol coupled with the reduction of hepatic
cholesterol synthesis [78]. This could be due to cholesterol-to-
coprostanol conversion by the intestinal microbiota which could
facilitate the elimination of cholesterol from the body and lower
cholesterolemia [82]. This has been confirmed using a mathemat-
ical model of cholesterol metabolism, and recently revealed that
both bile salt metabolism and cholesterol-to-coprostanol conver-
sion by the gut microbiota can influence blood cholesterol level
[83]. In addition, an interesting recent study on human cohorts also
confirmed this point and identified that individuals harboring
coprostanol-forming microbes such as Eubacterium coprostanolige-
nes which contain cholesterol metabolizing enzymes ismA have
significantly lower fecal cholesterol levels and lower serum total
cholesterol [84]. However, controversial results were also discov-
ered in GF ApoE�/� mice with smaller plaque area despite of the
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upregulation of plasmatic total cholesterol (TC) which might be
due to the absence of endotoxemia linked to the GF status [79].

Interestingly, the absence of gut microbiota seems to attenuate
atherogenic effects of long-term dietary lipids consumption.
Specifically, HFD-fed GF Ldlr�/� mice were identified with a signif-
icant reduction in thrombus size compared with conventional
counterparts [39]. Although there is no difference in plasmatic TC
levels in both GF and conventional Ldlr�/�mice fed with HFD, lipids
enriched diet still induced about twice the level of TC in GF mice
(TC�1.6 mg/dlx103) versus GF mice fed with chow diet
(TC�0.8 mg/dlx103) [39]. In comparison, HFD induced about eight
fold increase in plasmatic TC in conventional mice (�1.6 mg/
dlx103) versus mice raised with chow diet (TC�0.2 mg/dlx103)
[39]. Similar discoveries for VLDL were also found in this study
[39]. Lipids enriched diet also enhanced the microbiota dysbiosis
in Ldlr�/� mice with an increased abundance of Clostridiaceae, Sta-
phylococcaceae, Bacillales and decreased abundance of Lactobacil-
laceae [39]. However, recent study suggested that no significant
difference was discovered between GF Ldlr�/� vs conventional
mice on late aortic atherosclerosis [85]. Taken together, the differ-
ent studies show different impacts of the gut microbiota on blood
lipid metabolism. Whether this impact has a protective or aggra-
vating effect on CVD development is still not clear. This discrep-
ancy might depend on the animal model, the age of animals, the
type of diet, the feeding period as well as the housing conditions.
Future studies could take these factors into their consideration
for a better investigation.
Fig. 1. Potential mechanisms of dietary metabolites produced by gut microbiota in CVD
microbiota to TMA which is further oxidized in the liver by FMOs to produce TMAO. TM
induce inflammation, suppress RCT, as well as accelerate platelet hyperreactivity an
enterohepatic circulation. Only about 5% of primary BAs are non-reabsorbed and deconju
including FXR, PXR or TGR5 (;) to stimulate vascular lesion formation, increase inflammat
such as Phe could be converted into phenylacetic acid via the gut microbiota and then tra
including a2A, a2B and b2-ARs to facilitate platelet responsiveness, thrombosis potential
Trp and PCS from Tyr could also predict CVD events in CKD patients which might be as
fibers could be fermented by microbiota to produce SCFAs which activate the receptors
cells dysfunction to improve CVD conditions. TMA: trimethylamine; FMOs: flavin monoox
bile acids; FXR: Farnesoid X-activated receptor; PXR: Pregnane X receptor; TGR5: Take
ARs:adrenergic receptors; IS: indoxyl sulfate; Trp: tryptophan; PCS: p-cresol sulfate; T
olfactory receptor 78; GPR41: G-protein receptor 41.
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5. Gut microbiota metabolites in CVD pathogenesis

5.1. TMAO, a dietary induced microbial biomarker for the risk of CVD

Diet-intestinal microbiota derived metabolite TMAO - TMAO
(trimethylamine-N-oxide), a gut microbial co-metabolite derived
from dietary nutrients, was first discovered and reported to predict
the risk for CVD a decade ago [86]. The dietary precursors phos-
phatidylcholine [86], choline [87], and L-carnitine [33], which are
commonly present in cheese, red meat, seafood, egg yolks and
other western style nutrients [88], are primarily metabolized by
specific gut microbial enzymes to produce high levels of trimethy-
lamine (TMA) [63,89–91]. Specifically, TMA lyase containing func-
tional microbial CutC/D genes is responsible for choline related
TMA transformation [63,66]. TMA is further absorbed into blood
stream and oxidized in the liver by flavin monooxygenases (FMOs,
mainly FMO3) to generate TMAO [63,92]. Seven different bacterial
strains expressing TMA lyase CutC/D were identified in human gut
including Anaerococcus hydrogenalis, Clostridium asparagiforme,
Clostridium hathewayi, Clostridium sporogenes, Escherichia fergu-
sonii, Proteus penneri, and Providencia rettgeri [87]. Additionally,
TMA can be synthesized from L-carnitine via microbial Rieske-
type l-carnitine oxygenase CntA/B [90]. Although CntA/B encoding
genes were identified in Proteobacteria, the L-carnitine dependent
TMA formation by commensal gut microbiota has not been demon-
strated [93]. Whereas, a very recent study discovered a novel com-
bination of two bacterial strains Emergencia timonensis and
pathogenesis. Dietary choline or L-carnitine could be metabolized by specific gut
AO has been identified as an essential biomarker to stimulate foam cell formation,
d thrombosis. Primary BAs are synthesized from dietary fats or cholesterol via
gated by gut microbiota to produce secondary BAs. BAs can interact with receptors
ion and increased severity of lipid metabolism defects. Dietary proteins rich in AAAs
nsferred into PAG in the liver. PAG further responded to G-protein coupled receptors
to promote atherosclerotic CVD. The other gut microbial derived metabolites IS from
sociated with uremic toxicity and endothelial dysfunction. On the contrary, dietary
Olf78 and GPR41 involving in the decrease of blood pressure and aortic endothelial
ygenases; TMAO: trimethylamine-N-oxide; RCT: reverse cholesterol transport; BAs:
da G protein-coupled receptor 5; Phe:phenylalanine; PAG: phenylacetylglutamine;
yr: tyrosine; CKD: chronic kidney disease; SCFAs: short chain fatty acids; Olf78:
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Ihubacter massiliensis as potential important players in carnitine
converted TMA accumulation [94]. Interestingly, the bacteria E.
timonensis has lately been identified to promote TMAO production
via l-carnitine ? cBB (gamma-butyrobetaine, precursors of
carnitine) ? TMA ? TMAO pathway [95]. However, the specific
commensal microbiota associated with carnitine-TMA transforma-
tion pathways still need to be further discovered.

Diet-microbiota derived TMAO in the modulation of CVD
pathogenesis – In order to directly discover the diet-microbiota
related TMAO pathway in CVD progression, initial studies sug-
gested that mice raised with high choline or carnitine diet showed
an elevation in circulating TMAO levels, an increase of macrophage
foam cell formation and enhancement of aortic atherosclerotic pla-
que development (Fig. 1) [33,86]. On the contrary, the capacity to
TMAO production, and choline or carnitine diet related atheroscle-
rotic plaque burden were respectively eliminated or suppressed in
GF or antibiotic treated ApoE�/� mice (C57BL/6 strain) [33,86].
Interestingly, ApoE�/� mice were discovered to develop higher
choline diet dependent aggregation of aortic lesions when receiv-
ing cecal microbiota transplantation from high TMA/TMAO pro-
ducing donor C57BL/6 mice than from low TMA/TMAO producing
donor NZW/LacJ mice [96]. Similarly, transplant of high TMA pro-
ducing microbes in GF mice induced platelet hyperresponsiveness
and enhanced thrombosis associated with high plasmatic TMAO
levels [97]. Therefore, microbiota is necessary for TMAO produc-
tion which is involved in atherosclerosis progression through sev-
eral mechanisms: (1) foam cell formation: Microbiota derived
TMAO can activate the expression of the stress-induced heat-
shock proteins (HSP) HSP70 or HSP60, which may trigger the acti-
vation of Scavenger receptors (e.g. SR-A1) and CD36 in macro-
phages to stimulate the uptake of oxidized low-density
lipoprotein (ox-LDL) and foam cell formation [33,86,98]. (2) Inflam-
mation: TMAO induced the proatherogenic inflammatory markers
expression including IL-6, cyclooxygenase 2 (COX-2), and intracel-
lular adhesion molecule 1 via the activation of mitogen-activated
protein kinase (MAPK) and NF-jB signaling pathway in Ldlr�/�

mice fed a choline-rich diet. [98,99]. In addition, the increase in cir-
culating TMAO was associated with the elevation of pro-
inflammatory cytokines TNF-a and IL-1b, and reduction of the
anti-inflammatory cytokine IL-10 [98,100]. (3) Lipid Metabolism:
TMAO could suppress the reverse cholesterol transport (RCT)
which results in the arterial cholesterol deposition to accelerate
atherosclerotic lesions [98]. (4) Platelet hyperreactivity and throm-
bosis: Diet induced high levels of microbial TMAO could stimulate
platelet to activate sub-maximal stimulus including thrombin,
adenosine diphosphate (ADP) and collagen as well as to induce
the release of intracellular calcium resulting in platelet hyperre-
sponsiveness [97]. However, some studies have shown opposite
results illustrating that dietary TMAO, choline or carnitine did
not induce the atherosclerosis in ApoE�/� or Ldlr�/� mice model
[77,101]. This discrepancy might be due to the housing conditions
and mice models, but precise reasons still need to be further dis-
covered. Interestingly, Jaworska et al recently illustrated that
TMA, but not TMAO reduced cardiomyocytes and vascular smooth
muscle cells viability [102,103]. They also found that intravenous
infusions of TMA instead of TMAO in rats showed a significant
increase of the mean arterial blood pressure indicating the delete-
rious effect of TMA on CVD [104]. More in vivo and in vitro studies
still need to be done to further confirm the role of TMA on CVD
pathogenesis and validate the related mechanism.

Human studies on circulating TMAO in CVD prediction and
prognosis - Numerous human studies have proved the role of
gut microbial-derived TMAO in prediction of CVD risk. The original
study investigated a human cohort with more than 1800 subjects
and found that elevated plasmatic TMAO were related with the
occurrence of multiple CVD subtypes including peripheral artery
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disease (PAD), CAD, and history of myocardial infarction (MI)
[86]. In clinical outcome studies, large cohorts of participants indi-
cated that circulating TMAO was positively associated with
increased risks of major adverse cardiovascular events, incident
mortality and artery infarction [105,106]. The cutoff value of plas-
matic TMAO in many studies is over 6 lM to predict the risk of all-
cause mortality [21,63] and a recent meta-analysis of over 10,000
subjects proposed 5.1 lM for CVD prognosis [107]. Additionally,
high levels of TMAO have been found associated with the increase
of pro-inflammatory monocytes and cardiovascular risk in human
cohorts [108]. Similarly, a systematic review and dose–response
meta-analysis recruited more than 13,000 participants and discov-
ered a non-linear association between the elevation of plasmatic
TMAO levels and the increase of inflammatory marker C-reactive
protein (CRP) [109]. However, not all the human studies found
similar data. For instance, there were no obvious change in gut
microbiota and blood TMAO levels in human subjects with asymp-
tomatic atherosclerosis. Whereas, patients with stroke and tran-
sient ischemic attack exhibited a significant dysbiosis of the gut
microbiota but with a decrease of plasma TMAO levels [52]. Com-
paratively, there was no significant relation between TMAO con-
centrations and atherosclerosis progression in a cohort of
participants (n = 817) of ages 35–55 over a 10-year follow-up
[110]. Interestingly, a recent study uncovered that TMA but not
TMAOwas related to high blood pressure load and CVD risk factors,
and with decreased abundance of genera Akkermansia, Faecalibac-
terium, Ruminococcus, and Subdoligranulum in human subjects with
early-stage chronic kidney disease (CKD) [111]. However, further
studies in human cohorts still need to be conducted to investigate
whether the TMAO precursor TMA is a forgotten toxin or predictor
in the modulation of early-stage CVD pathogenesis.

5.2. Bile acids

Bile acids (BAs) are hydroxylated and saturated steroids, and
facilitate the emulsification and intestinal absorption of dietary
fat and fat-soluble molecules [112,113]. In human hepatocytes,
primary Bas (cholic acid (CA) and chenodeoxycholic acid (CDCA))
are synthesized from cholesterol via catalytic enzymes such as
cholesterol 7a-hydroxylase (CYP7A1), sterol-27-hydroxylase
(CYP27A1), oxysterol 7a-hydroxylase (CYP7B1) which expressions
are regulated by the gut microbiota [114]. Then, primary BAs are
conjugated to glycine or taurine, and over 95% primary BAs are
reabsorbed and recirculated back to the liver [115]. The non-
reabsorbed BAs can be deconjugated by catalyzed enzyme bile salt
hydrolases (BSHs), which are expressed by several commensal gut
bacteria, including the Gram-positive Bifidobacterium, Clostridium,
Enterococcus, Lactobacillus and the Gram-negative Bacteroides
[116,117]. Besides deconjugation, gut microbes such as Clostridium
and Eubacterium are a source of 7-dehydoxylase to generate sec-
ondary BAs including lithocholic acid (LCA) from CDCA and deoxy-
cholic acid (DCA) from CA [118]. In addition, the oxidation and
epimerization of BAs are catalyzed via hydroxysteroid dehydroge-
nases (HSDHs), which have been discovered in various bacteria
including Actinobacteria, Proteobacteria, Clostridium and others
[119,120].

Once the microbial metabolized BAs enter into the circulating
blood, BA receptors can mediate the signaling pathways to regulate
host metabolism which has been discovered to contribute to CVD
development (Fig. 1). One of the most essential BA receptors is Far-
nesoid X-activated receptor (FXR) that is the main sensor with both
primary BAs in the liver and secondary BAs in the intestine [121].
FXR has been identified in the modulation of lipid and glucose
metabolism [121]. Interestingly, the activation of FXR in
atherosclerosis prone mice showed protective effects in the forma-
tion of atherosclerotic lesions [122]. Correspondingly, the deletion
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of FXR in ApoE�/� caused an increased severity of lipid metabolism
defects with enhanced aortic plaque formation [123]. In contrast,
other studies in FXR/ApoE or FXR/Ldlr double deficiency mice
showed reductions of aortic lesions and plasma LDL cholesterol
[124,125]. Of interest, FXR has also been discovered to modulate
TMAO pathway via regulating FMO3 activity [126]. Another impor-
tant BAs receptor is Takeda G protein-coupled receptor 5 (TGR5),
whose activation by secondary BAs has been identified to attenu-
ate vascular lesion formation via decreased intraplaque inflamma-
tion, plaque macrophage content and lipid loading [127]. Pregnane
X receptor (PXR) is another nuclear receptor which is associated
with BAs metabolism and is activated by secondary BAs (e.g.
LCA) [128]. In contrast to other receptors, the activation of PXR ele-
vated the level of lipoproteins VLDL, LDL and CD36 expression to
aggregate the atherosclerotic formation in ApoE�/� mice [128],
while the inhibition of PXR in ApoE�/� mice alleviated the aortic
lesions area with the decrease of lipid uptake in macrophages
and CD36 expression [129].

Although most studies on the mechanism of BAs in CVD patho-
genesis are on mice model, circulating levels of BAs have been dis-
covered in association of CVD phenotypes in clinical cohorts. For
instance, decreased primary and secondary BAs levels in human
subjects have been found with reduced overall survival in chronic
heart failure patients [130]. In addition, lower fasting plasmatic
total BAs were significantly associated with the severity of CAD,
MI and the presence of coronary lesions [131]. Collectively, gut
microbiota derived BAs regulate the development of CVD via mul-
tiple types of BA receptors, and plasmatic BAs might be another
essential predictor for CVD occurrence which still need to be fur-
ther investigated.

5.3. Short chain fatty acids

Short chain fatty acids (SCFAs) are the major microbial products
of dietary fibers (mainly polysaccharides) fermentation, and con-
sist mainly of acetate, butyrate and propionate [132]. Specific
members of the gut microbiota participate in particular fermenting
pathways for SCFAs synthesis [133,134].

Interestingly, the intestinal microbiota has been identified to
modulate the protective association between the diet rich in fibers
and CVD risk. Specifically, numerous studies have illustrated the
functional role of dietary fibers or SCFAs in alleviating HT or other
CVD subtypes (Fig. 1). One of these studies has found that both
high fiber diet and acetate supplementation could reduce systolic
and diastolic blood pressures, cardiac fibrosis, and left ventricular
hypertrophy, which was associated with improved gut dysbiosis
and increased abundance of Bacteroides acidifaciens [135]. Simi-
larly, propionate treatment protected the mice from hypertensive
cardiovascular damage, while butyrate producing bacteria (e.g.
Roseburia intestinalis) decreased the aortic atherosclerotic lesion
area [136,137]. The studies discovered that the G-protein-
coupled SCFAs olfactory receptor 78 (Olfr78) and G-protein recep-
tor 41 (GPR41) participated in the regulation of host blood pres-
sure and endothelial function [138,139]. In specific, propionate
induced an acute hypotensive response in wild-type (WT) mice
by modulating the disruption of Olfr78 and GPR41 expression
[138]. Whereas, antibiotic treated Olfr78�/� mice but not wild-
type mice showed an elevation in blood pressure, and GPR41�/�

mice also had systolic HT compared with WT mice [138,139].
Moreover, a very recent study suggested that both acetate and
butyrate improved rat aortic endothelial dysfunction by increasing
the bioavailability of NO, through GPR41/43 activation for butyrate
only [140]. Further studies still need to be conducted to uncover
the mechanistic role of SCFAs in regulation of CVD pathogenesis.

In humans, most the studies of CVD risk are about SCFAs related
blood pressure modulation. Early clinical intervention study found
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that increase intake of dietary fibers was associated with the
reduction of blood pressure in patients with HT [141]. Similar pro-
tective effects of viscous soluble fibers on blood pressure were also
discovered in a meta-analysis study [142]. By contrast, a recent
intervention study reported that high fiber high protein diet might
increase the risk of CVD by upregulating circulating SCFAs level
[143]. Specifically, high protein high fiber diet induced higher pro-
pionate level which was associated with upregulation of LDL
cholesterol and blood pressure; and higher butyrate level which
was correlated with upregulation of glucose and downregulation
of HDL cholesterol [143]. However, it is still limited on the direct
demonstration of the SCFAs effect on human CVD risk or protection
which need to be further clarified.
5.4. Other gut microbial metabolites

Aromatic amino acids (AAAs) are aromatic ring containing
amino acids including phenylalanine (Phe), tryptophan (Trp) and
tyrosine (Tyr) [144]. The major sources of AAAs are dietary pro-
teins such as beef, pork, chicken or fish [145]. Interestingly,
researchers discovered a pathway from the gut microbiota Clostrid-
ium sporogenes that generates AAAs metabolites [144]. Recently,
several striking studies uncovered a robust relation between the
Phe-derived microbial metabolite phenylacetylglutamine (PAG)
and major adverse cardiac events (e.g. myocardial infarction/MI,
acute ischemic stroke or coronary artery disease) (Fig. 1) [146–
148]. In specific, dietary Phe was converted into phenylacetic acid
via the gut microbiota enriched in porA gene and subsequent con-
verted into PAG in the liver. PAG further activated G-protein cou-
pled receptors including a2A, a2B and b2-adrenergic receptors to
facilitate platelet responsiveness, thrombosis potential in animal
models of arterial injury [146]. Similarly, gut microbial derived
metabolite indoxyl sulfate (IS) from Trp and p-cresol sulfate
(PCS) from Tyr have also been identified as valuable markers to
predict CVD events in patients with CKD [149,150]. This might be
due to the deleterious effects of IS and PCS through induction of
uremic toxicity and endothelial dysfunction [150–152]. However,
some studies discovered that IS, PCS, or PAG were not associated
with CVD outcomes [153,154]. The discrepancies might be due to
the threshold effect from different studies. Further investigations
still need to be conducted to confirm the role of these gut microbial
metabolites on CVD progression..
6. Dietary interventions in CVD prevention through gut
microbiota

6.1. Dietary patterns

Healthy dietary patterns have been suggested to prevent the
CVD progression (Fig. 2) including Mediterranean Diet (Med-
diet), Dietary Approaches to Stop Hypertension (DASH) [10] and
feeding patterns such as intermittent fasting (IF) [155].

Types of diets – Multiple clinical trials have confirmed the pro-
tective effect of Med-diet on major vascular events, coronary
events, stroke and heart failure [156,157]. This effect is associated
with the increase of microbiota diversity and microbial metabolite
SCFAs [158] as well as lower levels of gut microbiota derived
metabolite TMAO [159] and plasmatic LPS [160]. However, no
direct finding has been investigated until very recently that the
long-term intervention of Med-diet could protect CVD through
gut microbiota modulation [161]. Specifically, long-term interven-
tion of Med-diet could significantly alter the overall gut micro-
biome profiles with the enrichment of dietary fiber metabolizers
such as Faecalibacterium prausnitzii and Bacteroides cellulosilyticus.
In particular, Med-diet showed a strong protective effect on CVD



Fig. 2. Dietary interventions that target the gut microbiota for potential therapeutics in CVD prevention. Dietary patterns such as healthy Mediterranean diet and feeding
pattern like intermittent fasting showed strong protective effects on CVD risk factors including inflammation, endotoxemia, hypertension and oxidative stress. These effects
may be due to changes in microbiota composition and microbial metabolites production. In addition, multiple dietary components have been identified to exert therapeutic
potentials on CVD through microbiota modulation. For instance, the consumption of dietary polyphenols from fruits and vegetables could enrich the ‘‘beneficial bacteria” and
increase production of SCFAs, decrease TMA production as well as improve lipid metabolism to protect CVD. Dietary consumption of food rich in fibers, prebiotics and
probiotics could indirectly or directly interact with gut microbiota to increase the SCFAs production and attenuate blood lipids, endotoxemia, inflammation, hyperglycemia,
blood pressure and vascular endothelia dysfunction to improve CVD conditions. Similarly, dietary Chinese medicine also showed the potential properties for CVD prevention
via the interactions with the microbiota by improving lipid metabolism, alleviate inflammation and TMAOs as well as improve the gut barrier functions. CVD: Cardiovascular
disease; SCFAs: short chain fatty acids; TMAOs: Trimethylamine N-oxide.
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risk factors including lipid metabolism, inflammation and glucose
homeostasis in the absence of Prevotella copri [161]. Although mul-
tiple data have illustrated that DASH diet could improve cardiac
risk factors with decrease of HT and dyslipidemia [162], there is
still lack of data about the direct linkage between DASH diet and
microbiota modifications in CVD preventions.

Feeding patterns – Intermittent fasting (IF), one of the impor-
tant dietary feeding patterns, is a practice of periodic energy
restriction which has been discovered to reduce the CVD risk via
the alteration of gut microbiota [155,163]. Specifically, sponta-
neously hypertensive stroke-prone rats showed a striking shift of
gut microbiota in b-diversity after 50 days of IF intervention which
was associated with the reduction of HT via modulation of the bile
acids metabolism [155]. Those findings have been confirmed using
fecal transplantation to GF rats [155]. Moreover, clinical interven-
tions in human cohorts with IF during 8 weeks significantly
improved vasodilatory parameters and attenuated oxidative stress,
inflammation associated with increased SCFAs production by the
microbiota and decreased plasmatic LPS [163]. Interestingly,
short-term 5 days fasting also reduced the blood pressure and
body weight with the modulation of the microbiota including
Desulfovibrionaceae, Akkermansia, and Ruminococcaceae [164].
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6.2. Dietary components

Dietary polyphenols in fruits and vegetables – Polyphenols are
a large family of organic compounds commonly found in plant
products, particularly fruits and vegetables. More than 90% of total
polyphenols is non-absorbable in the small intestine and further
metabolized by the gut microbiota in the large intestine [165]. A
growing body of studies supported the effect of dietary polyphe-
nols on the modification of gut microbiota and CVD protection
[166–168]. For instance, resveratrol (found in fruits such as grapes,
apples and berries) has been identified to attenuate atherosclerosis
in ApoE�/� mice by downregulating TMAO levels and upregulating
BAs synthesis which was associated with increased abundance of
beneficial bacteria Bacteroides, Lactobacillus, Bifidobacterium, and
Akkermansia [166]. Oral administration of quercetin (found in veg-
etables such as onions, broccoli and tomatoes) has been discovered
to suppress body weight gains and ameliorate the extent of
atherosclerotic lesions with diminished levels of cholesterol,
atherogenic lysophosphatidylcholine and reduced abundance of
gram-negative bacteria Verrucomicrobia together with the increase
of microbiome diversity [167]. In human subjects, interventions
with diet rich in polyphenols found that dietary polyphenols could
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significantly increase microbial diversity and Ruminococcaceae
related with the improvement of cardiometabolic risk factors such
as plasmatic triglycerides and cholesterol in large VLDL [168]. Col-
lectively, polyphenols in fruits and vegetables might be potential
therapeutic interventions for CVD, and a part of their protective
effect could be mediated through gut microbiota modifications.

Dietary fibers and prebiotics – Dietary fibers are non-digestible
carbohydrates including water-soluble or insoluble forms which
are commonly presented in fruits, vegetables, whole grains, nuts
and legumes etc. [169]. Dietary fibers could not be absorbed in
the small intestine and ‘‘feed” the healthy gut microbiota leading
to increased diversity and production of SCFAs [169]. As mentioned
previously, SCFAs activate specific receptors leading to improved
HT and aortic endothelial cells dysfunction [138–140]. Indeed, a
very recent study discovered that chickpea dietary fiber increased
the microbial diversity and the relative abundance of Bacteroides
and Lactobacillus and upregulated levels of propionic acid [170].
Additionally, chickpea dietary fiber could improve hyperglycemia
via similar modification of gut microbiota [170]. Whole grain oat
also decreased plasma cholesterol levels and improve insulin sen-
sitivity which correlated with increased beneficial Lactobacillaceae
in the microbiota [171,172]. Similarly, whole grain products con-
sumption in human cohorts also showed lower levels of total and
LDL cholesterol and higher abundance of Bifidobacterium [173].

Prebiotics are plant derived or non-digestible food ingredients
which stimulate the growth of ‘‘friendly” microorganisms in the
GI tract [174]. Most prebiotics are dietary fibers, while not all diet-
ary fibers can be categorized as prebiotics [175]. Common prebi-
otics include oligosaccharides and polysaccharides such as inulin,
oligofructose, b-glucans which can ordinarily induce specific mod-
ifications of the gut microbiota [174]. Many studies have interest-
ingly investigated the beneficial effects of prebiotics on host
metabolism to improve CVD conditions (Fig. 2) through three main
aspects: (1) Reduce blood lipids: Parnell et al. discovered that sup-
plementation of prebiotic fibers (e.g. inulin) could lower the plas-
matic cholesterol levels as well as reduce the TAG accumulation
in the liver [176–178]; (2) Diminish endotoxemia and inflammation:
Cani et al. found that prebiotic oligofructose could increase the
population of Bifidobacteria with negative relation to endotoxemia
and inflammation in plasma and adipose tissues [179]; (3) Decrease
blood pressure: Kaye et al. uncovered very recently that the supple-
mentation of diet rich in prebiotic fibers could diminish both sys-
tolic and diastolic blood pressure through GPR43 signaling
pathway [180].

Probiotics - Probiotics are defined as ‘‘live microorganisms that,
when administered in adequate amounts, confer a health benefit
on the host.” [174]. Large scales of fermented products in human
diets such as yogurt, sauerkraut, kefir, Kimchi contain probiotic
strains [174]. As prebiotics, probiotic strains have also been identi-
fied to protect against CVD progresses (Fig. 2) in more aspects: (1)
Ameliorate vascular endothelial function: administration of Lacto-
bacillus plantarum 299v showed the improvement of
endothelium-dependent vasodilation in resistance arteries from
patients with CAD [181]. Similarly, Lactobacillus fermentum
CECT5716 treatment reduced vascular oxidative stress and impro-
vemed endothelial function in rats [182]. (2) Decrease blood glucose
and oxidant activity: intervention with probiotic yogurt signifi-
cantly lowered the blood glucose and increase total antioxidant
status [183]. (3) Reduce cholesterol: supplementation with Bifi-
dobacterium longum BB536 has significant effects on the reduction
of total cholesterol, liver lipid deposition and adipocyte size [184].
(4) Attenuate endotoxemia and inflammation: oral introduction of
Akkermansia muciniphila has been shown to reduce atherosclerotic
lesions by improving systemic endotoxemia-induced inflammation
through restoration of the gut barrier function [64]. In addition,
supplementation with Lactobacillus reuteri V3401 reduced the
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levels of inflammatory markers such as TNF-a, IL-6, IL-8 which
was associated with the reduction of CVD risk [185].
6.3. Dietary Chinese medicine

Some natural ingredients from Chinese medicine have also been
used as potential CVD therapeutics via the modulation of gut
microbiota (Fig. 2). Particularly, berberine (BBR), a bioactive iso-
quinoline alkaloid which is widely presented and extracted from
various Chinese medicinal plants has been proved to exert many
beneficial effects. Wu et al. recently discovered that high dose of
BBR not only improved lipid metabolism via attenuating reduced
total cholesterol and VLDL cholesterol levels, but also downregu-
lated pro-inflammatory cytokines TNF-a, Il-1b, IL-6 and upregu-
lated anti-inflammatory IL-10 levels which were correlated with
the increased abundance of Alistipes and Roseburia involved in SCFA
production [186]. Additionally, BBR could reduce choline-induced
atherosclerosis by suppressing TMAO production through remod-
eling gut microbiota compositions [187]. Similarly, red yeast rice
(RYR), another Chinese folk medicine, could alleviate the plaque
formation with the reduction of total cholesterol and LDL levels
which are associated with decreased ratio of Firmicutes/ Bac-
teroidetes as well as reduced abundance of Alistipes and
Flavonifractor [76,188]. RYR intervention also improved gut barrier
function, and attenuated inflammation via TLR signaling pathway
[76]. Furthermore, Ganoderma lucidum (also known as Lingzhi),
a type of medicinal mushroom, has been discovered to reduce obe-
sity, endotoxemia, chronic inflammation as well as restore intesti-
nal barrier function by decreasing endotoxin bearing
Proteobacteria levels and increasing beneficial bacteria including
Clostridium and Eubacterium [189].
7. Summary and outlook

Over the past decades, accumulating studies demonstrated an
essential and complex association between gut microbiota and car-
diovascular disease. As one of the important modulators in gut
microbiota, dietary components have been identified to modify
the microbial compositions which were linked with the systemic
endotoxemia, inflammation, gut barrier dysfunction, as well as
lipid metabolism dysfunction to increase the CVD risk. While, more
research data suggested the principal effect of intestinal micro-
biota on dietary metabolism in modulating CVD pathogenesis
including: (1) metabolizing dietary choline or L-carnitine to induce
the release of TMAO which promote the atherosclerotic progres-
sion; (2) regulating BAs metabolism which is likely to regulate
the atherosclerotic formation via multiple receptors pathway; (3)
generating AAAs metabolites PAG, IS, IPA or PCS which can acceler-
ate the atherosclerosis formation; (4) fermenting dietary fibers to
generate SCFAs which mostly exert some beneficial effects on
CVD progression. These findings provide some excellent opportu-
nities for developing novel potential prevention and therapeutic
methods for CVD such as healthy diets and feeding patterns, diet-
ary interventions with healthy components including dietary
polyphenols from fruits and vegetables, dietary fibers and prebi-
otics, probiotics as well as the dietary Chinese medicine
interventions.

Although numerous intestinal bacteria have been identified in
association with CVD risk, much more works remain to discover
the specific commensal microbes and the precise mechanisms or
pathways behind those complex relationship between the dietary
induced gut microbiota modification and CVD pathogenesis. How-
ever, there are still some limitations in current research: (1)
Regarding gut microbiota analysis, different studies follow differ-
ent protocols or methodologies for fecal samples collection, storage
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and DNA extraction, or choose different sequencing platform or
methods. These dissimilarities might impact the consistency and
result in the variations of gut microbiota. (2) In the clinical human
cohort studies, numerous parameters of the recruited human sub-
jects might affect the consistency of microbiota discoveries, such as
dietary habits, lifestyle, and medications. (3) In animal studies, dif-
ferent age, housing condition, or different diet, feeding period
could also impact the gut microbiota. Therefore, it is crucial to
design the study properly to reach the reliable discoveries for
future investigations.
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