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Abstract

Exposures to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) have been associated 

with the emergence of depressive symptoms in older adulthood, although most studies used 

cross-sectional outcome measures. Elucidating the brain structures mediating the adverse effects 

can strengthen the causal role between air pollution and increasing depressive symptoms. We 

evaluated whether smaller volumes of brain structures implicated in late-life depression mediate 

associations between ambient air pollution exposure and changes in depressive symptoms. This 

prospective study included 764 community-dwelling older women (aged 81.6 ± 3.6 in 2008–2010) 

from the Women’s Health Initiative Memory Study (WHIMS) Magnetic Resonance Imaging study 

(WHIMS-MRI; 2005–06) and WHIMS-Epidemiology of Cognitive Health Outcomes (WHIMS-

ECHO; 2008–16). Three-year average annual mean concentrations (scaled by interquartile range 

[IQR]) of ambient PM2.5 (in μg/m3; IQR = 3.14 μg/m3) and NO2 (in ppb; IQR = 7.80 

ppb) before WHIMS-MRI were estimated at participants’ addresses via spatiotemporal models. 

Mediators included structural brain MRI-derived gray matter volumes of the prefrontal cortex 

and structures of the limbic-cortical-striatal-pallidal-thalamic circuit. Depressive symptoms were 

assessed annually by the 15-item Geriatric Depression Scale. Structural equation models were 

constructed to estimate associations between exposure, structural brain variables, and depressive 

symptoms. Increased exposures (by each IQR) were associated with greater annual increases in 

depressive symptoms (βPM2.5 = .022; 95% Confidence Interval (CI) = .003, .042; βNO2 = = .019; 

95% CI = .001, .037). The smaller volume of prefrontal cortex associated with exposures partially 

mediated the associations of increased depressive symptoms with NO2 (8%) and PM2.5 (13%), 

and smaller insula volume associated with NO2 contributed modestly (13%) to the subsequent 

increase in depressive symptoms. We demonstrate the first evidence that the smaller volumes of 

the prefrontal cortex and insula may mediate the subsequent increases in depressive symptoms 

associated with late-life exposures to NO2 and PM2.5.
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1. Introduction

Depressive symptoms in later-life (age ≥65) are more common in women compared 

to men, negatively impact quality of life, and pose a significant economic and public 

health concern (Zivin et al., 2013). Both clinical and epidemiologic data highlight the 

role of cerebrovascular disease (van Agtmaal et al., 2017), inflammation (Kiecolt-Glaser 

et al., 2015), oxidative stress (Diniz et al., 2018), and neurodegenerative disorders (Chi 

et al., 2015), for their contributions to new emergence of depressive symptoms in older 

adulthood (Fiske et al., 2009). These aforementioned factors may then lead to atrophy in 

neuroanatomical structures that regulate mood and emotion, including the prefrontal cortex 

and other structures of the limbic-cortical-striatal-pallidal-thalamic circuit (Rashidi-Ranjbar 

et al., 2020a; Rashidi-Ranjbar et al., 2020b; Sheline, 2003).

Identifying environmental factors that may negatively impact brain health and the 

development of depressive symptoms may aid in identifying targets for public health 

interventions. Long-term exposures to ambient air pollutants such as fine particulate matter 

(PM2.5; particulate matter with aerodynamic diameter less than 2.5 μm) and gaseous 

nitrogen dioxide (NO2) may be important environmental risk factors for the emergence 

of depressive symptoms or clinical depression (Bakolis et al., 2021; Braithwaite et al., 2019) 

in older adulthood, although findings have been mixed (Allaouat et al., 2021; Dores et 

al., 2021). A recent meta-analysis, mostly based on studies with cross-sectional outcome 

measures, reported that increased PM2.5 exposure was associated with a 7% increased risk of 

depression while higher NO2 was associated with a 4% increased risk of depression (Borroni 

et al., 2021). Several animal studies have demonstrated that the adverse effects of exposure 

to PM2.5 and NO2 may contribute to inflammation (Campbell et al., 2005), increased 

oxidative stress (Salvi et al., 2020), and neurodegenerative disease processes (Costa et al., 

2020). Epidemiological studies also suggest that PM2.5 and NO2 may contribute to atrophy 

to the prefrontal cortex and structures of the limbic-cortical-striatal-pallidal-thalamic circuit 

that are implicated in the emergence of depressive symptoms in later life (Casanova et al., 

2016; Cho et al., 2020; Delgado-Saborit et al., 2021; Gale et al., 2020). Despite the potential 

adverse effect of air pollution on brain structures associated with later life depressive 

symptoms there has been no previous studies that directly linked air pollution to altered 

brain structure and subsequent emergence of depressive symptoms. Demonstrating that air 

pollution may contribute to brain aging followed by the emergence of depressive symptoms 

is important for strengthening the potential causal association between air pollution and 

emergence of depressive symptoms in older adulthood (Greenland et al., 2004; Ioannidis, 

2019).

We conducted a longitudinal study to examine the association between long-term exposure 

to ambient air pollutants (PM2.5 and NO2) and changes in depressive symptoms. We 

then investigated the extent to which brain structures affected by air pollution mediate 
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the putative adverse exposure effects on depressive symptoms. We hypothesize that 

brain structures implicated in late-life depression will partially mediate putative adverse 

associations between residing in locations with higher concentrations of ambient air 

pollutants and increased depressive symptoms over time.

2. Materials and methods

2.1 Study design and population

Our study was based on 764 community-dwelling older women who were initially enrolled 

in the Women’s Health Initiative (WHI) Memory Study (WHIMS; n=7,479) (Shumaker 

et al., 1998) in 1996–1998 and subsequently followed in both the WHIMS of Magnetic 

Resonance Imaging (WHIMS-MRI) (Coker et al., 2009; Jaramillo et al., 2007) and the 

WHIMS of the Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) (Espeland 

et al., 2017). Between April 2005 and January 2006, 1,403 WHIMS participants underwent 

structural magnetic resonance imaging (sMRI) through participation in the WHIMS-MRI 

study. Of those sMRI scans, 1,289 met quality control standards and were processed. 

Starting in 2008, 816 of those women were further followed for the WHIMS-ECHO study 

with annual phone-based neuropsychological assessments. For this study, we excluded 

women with prevalent dementia at the WHIMS-ECHO baseline (n=22) and those with 

missing covariate data (n=30). Up to six (baseline and 5 annual follow-up) assessments 

were included in the present analyses. Panel A of Figure 1 presents a flowchart of study 

participation, while panel B presents a timeline of various assessments.

2.2 Exposure: Three-year average annual exposure to ambient PM2.5 and NO2 : Estimated 
between 2002–2005

The annual mean concentrations of ambient PM2.5 (in μg/m3) and NO2 (in ppb) for the 

3-years prior to the sMRI were estimated at each participant’s residential addresses via 

regionalized universal kriging models as previously described (Sampson et al., 2013; Young 

et al., 2016). Exposure estimation models were cross-validated with an R2 of 0.88 for PM2.5 

and 0.85 for NO2. The aim of the study was to examine effects of long-term exposure; 

therefore, we utilized the 3-year average annual concentrations of PM2.5 and NO2 spanning 

the 3-year time window prior to the WHIMS-MRI in these analyses. All air pollution 

estimates accounted for residential mobility, and the length of stay at each residential 

location within the 3-year time window was utilized as the weight in each estimation of 

air pollution. See the supplemental methods for additional detail regarding the air pollution 

estimation.

2.3 Mediator: sMRI and data processing protocols: Completed in 2005–2006

Standard T1-, T2-, proton density-weighted, and FLAIR scans were acquired with 1.5T 

scanners. All WHIMS-MRI sites implemented standardized scan acquisition protocols 

(Coker et al., 2009; Jaramillo et al., 2007), which were developed by the WHIMS-MRI 

Quality Control Center. A fully automated pipeline was applied for processing structural 

MRIs. T1-weighted scan of each subject was first corrected for intensity inhomogeneities 

(Tustison et al., 2010). A multi-atlas skull stripping algorithm was applied for the removal 

of extra-cranial material (Doshi et al., 2013). Anatomical regions of interest (ROIs) 
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were identified using an extensively validated Multi-atlas region Segmentation utilizing 

Ensembles (MUSE) method (Doshi et al., 2016). The MUSE algorithm follows the multi-

atlas image registration and label fusion framework. In this framework, multiple atlases with 

reference labels are independently registered to the target scan using deformable registration. 

Candidate labels from multiple registrations are fused together to calculate a consensus 

segmentation. This process has important advantages, the most notably the robustness 

against scanner differences and individual registration errors by the virtue of the ensemble 

label fusion process.

We examined total ROI volumes of GM identified in previous research as being vulnerable 

to neurotoxic effects of air pollution (Casanova et al., 2016; Cho et al., 2020; Gale et al., 

2020; Power et al., 2016) or associated with late-life depression (Sexton et al., 2013). These 

brain regions include: prefrontal cortex (consisting of a summation of the following bilateral 

structures: anterior orbital gyrus, lateral orbital gyrus, medial orbital gyrus, posterior orbital 

gyrus, frontal pole, middle frontal gyrus, opercular part of the inferior frontal gyrus, orbital 

part of the inferior frontal gyrus, superior frontal gyrus, triangular part of the inferior frontal 

gyrus, gyrus rectus, medial frontal gyrus, superior frontal gyrus medial segment, subcallosal 

area, central operculum, frontal operculum, and parietal operculum), anterior cingulate 

gyrus, insula, amygdala, limbic medial temporal lobe (consisting of a summation of the 

entorhinal area and parahippocampal gyrus), hippocampus, thalamus, and basal ganglia 

(consisting of a summation of following bilateral structures: accumbens, caudate, pallidum, 

and putamen). All brain volumes were standardized on a z-score metric based on the sample 

mean and deviation.

2.4 Outcome: Depressive symptoms: Measured annually 2008–2018

Depressive symptoms were measured in WHIMS-ECHO by the 15-item Geriatric 

Depression Scale (GDS-15). The GDS-15 was administered over the phone at the 

WHIMSECHO baseline and subsequent annual follow-up assessments. The GDS-15 is a 

reliable and valid measure of depressive symptoms (Burke et al., 1995) with ability to 

detect change over time (Vinkers et al., 2004). A higher score reflects greater depressive 

symptoms.

2.5 Assessment of covariates

Information on demographics (age, race/ethnicity), geographic region of residence 

(Northeast, South, Midwest, and West), socioeconomic status (education, household income, 

and employment status), and lifestyle (smoking, alcohol use, physical activities) were 

collected via self-report at the WHIMS baseline. Self-reported clinical characteristics 

included: use of postmenopausal hormone therapy, history of cardiovascular disease, 

hypercholesteremia, hypertension, and diabetes mellitus. Good reliability and validity of 

the self-reported medical histories have been previously documented (Heckbert et al., 

2004). Census data was used to capture a composite score of neighborhood socioeconomic 

characteristics. This composite score included education, employment, income, percent of 

households receiving public assistance, percent of households with children headed only 

by a female, and median household income within the participant’s neighborhood (Diez 

Roux et al., 2001). Depressive symptoms at the WHIMS baseline were measured using the 
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Burnam screening algorithm that was based on the derived scores combining six items from 

the Center for Epidemiologic Studies Depression Scale and two items from the National 

Institute of Mental Health Diagnostic Interview Schedule (Burnam et al., 1988).

2.6 Statistical analysis

GDS-15 scores were transformed (see supplemental methods) and z-score standardized 

based on the mean and standard deviation at WHIMS-ECHO baseline. Multilevel structural 

equation models (SEMs) were constructed to characterize longitudinal trajectories of 

depressive symptoms (baseline and linear changes of standardized GDS-15 scores) 

across the WHIMS-ECHO study period and examine respective associations with 

exposure to air pollutants. Years since the WHIMS-ECHO baseline was used as the 

time-scale for the repeated assessments of depressive symptoms. The between-individual 

portion of the multilevel SEM assessed associations between exposure and estimates 

of baseline and annual linear changes in depressive symptoms. The estimated exposure 

effect on baseline depressive symptoms was adjusted for the full list of selected 

covariates: age at MRI, race/ethnicity, geographic region of residence, education, household 

income, employment status, lifestyle factors (smoking; alcohol use; physical activities), 

neighborhood socioeconomic characteristics, and clinical characteristics (any prior hormone 

use ever, hypercholesterolemia, hypertension, diabetes, and history of cardiovascular 

disease). The exposure effect on changes in depressive symptoms were only adjusted for 

covariates found to be significantly associated with linear changes in depressive symptoms, 

including education, region of residence, race/ethnicity, and cardiovascular disease. Separate 

models were fitted for PM2.5 and NO2. Both exposure variables were scaled based on the 

interquartile range (IQR) of 7.80 ppb for NO2 and 3.14 μg/m3 for PM2.5.

Next, a series of SEMs were constructed to examine associations between 3-year average 

exposure prior to the WHIMS-MRI and standardized sMRI-derived ROI of the hypothesized 

mediators. All associations between exposures and sMRI variables were adjusted for the 

above-mentioned full list of covariates and intracranial volume. The Benjamini-Hochberg 

procedure (Hochberg and Benjamini, 1990) was utilized to adjust p-values for multiple 

comparisons. Separate models were constructed for PM2.5 and NO2.

We utilized multilevel mediation SEMs to assess whether the observed adverse exposure 

effects, if any, on the annual increase in depressive symptoms were mediated by sMRI 

variables significantly associated with air pollution levels. Figure 2 illustrates a simplified 

depiction of the between-individual portion of the multilevel mediation SEM. Structural 

brain MRI variables that were significantly associated with exposure and possibly acting as 

the putative mediator were added to the between-individual portion of the multilevel model 

and evaluated in separate models. The direct effect was defined as the effect of exposure 

on changes in depressive symptoms independent of the hypothesized sMRI mediators. 

The indirect effect was defined as the extent to which each sMRI factor mediated the 

exposure effect on changes in depressive symptoms. This indirect effect was estimated 

using the product of coefficient approach by multiplying two SEM paths: 1) the effect 

of exposure on sMRI factor and, 2) the effect of sMRI factor on change in depressive 

symptoms (MacKinnon et al., 2007). The significance of the indirect effect was determined 
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by generating asymmetric 95% confidence intervals with Monte Carlo simulation (Selig 

and Preacher, 2008). The direct effects of exposure and structural brain variables on level 

of depressive symptoms were also estimated in these models but not depicted in Figure 2. 

The effects reported in the multilevel mediation SEMs were adjusted for the same set of 

covariates as previously described along with intracranial volume.

We conducted four sensitivity analyses to examine the robustness of our study findings. 

We first excluded women (n=59) with either prevalent stroke at the beginning of the 

study period or incident stroke by 2017 and re-ran these analyses to examine whether our 

findings could be explained by stroke risk. Second, we excluded women who developed 

dementia (n=108) by June 2018 (see supplemental methods for dementia ascertainment), 

to explore whether any observed associations remain among women who were dementia 

free during the entire study period. Next, we conducted sensitivity analyses further 

adjusting for depressive symptoms measured at the WHIMS baseline (between 1996–1998), 

considering the possibility that depressive symptoms measured at the WHIMS baseline 

might have confounded our findings. Lastly, we conducted sensitivity analyses removing 

the clinical characteristics except for hormone therapy use (e.g., the clinical covariates of 

hypercholestermia, hypertension, cardiovascular disease, and diabetes mellitus) to ensure we 

were not overfitting the model.

3. Results

The majority of the 764 participating older women (81.6 ± 3.6 years old at the WHIMS-

ECHO baseline) were white (91.5%) and had attained education more than high school 

(71.9%). Supplementary Table S1 presents population characteristics of women included in 

the analyses compared to women from the larger WHIMS and WHIMS-ECHO cohort who 

were excluded from the analyses. Compared to women from the WHIMS-MRI cohort who 

were excluded due to not participating in the WHIMS-ECHO study, women included in our 

analyses were younger at the time of the MRI, more likely to be a past smoker, more likely 

to drink one or less alcoholic drink per day, and less likely to have a history of hypertension 

or diabetes. Compared to women from the WHIMS-ECHO cohort who were excluded due 

to not participating in the WHIMS-MRI study, women included in our analyses were more 

likely to reside in the Midwest, self-identify as non-Hispanic White, not have completed a 

college education, were retired at study baseline, never have smoked cigarettes, and not have 

hypertension or diabetes.

Table 1 compares the distribution of the 3-year average PM2.5 and NO2 exposure prior to 

the WHIMS-MRI by population characteristics. As compared to Caucasians, women who 

self-identified as Hispanics or African-Americans tended to reside in locations with higher 

exposure to NO2 and PM2.5. As compared to women residing in the South, women from the 

Northeast and Midwest were residing in locations with had higher estimates of PM2.5. Older 

women residing in the West had average higher levels of NO2 exposure, as compared to 

those from the other regions. Women who reported having less than a high school education 

were living in locations with higher levels of NO2, as compared to women with at least a 

high school education. The 3-year average PM2.5 and NO2 were strongly correlated with 

each other (Pearson r = .64; 95% confidence interval [CI] = .60; .68)
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Over the WHIMS-ECHO follow-up, as estimated by the multilevel SEM without air 

pollution exposure, there was a statistically significant mean annual increase in depressive 

symptoms (β=.058; 95% confidence interval = .040; .071) with significant between-

individual variability in both symptoms at baseline and annual increases over time (see 

Supplemental Table S2 for descriptive statistics of GDS-15 over time and Supplemental 

Table S3 for growth parameter estimates). After adding air pollution variables, we found 

residing in locations with higher PM2.5 and NO2 were both associated with annual increases 

in depressive symptoms (Table 2), but there were no statistically significant associations 

with baseline depressive symptoms. For each IQR increment of PM2.5, the average rate of 

annual increase in depressive symptoms was significantly accelerated by .019 (95% CI = 

.001; .037) standard deviations (SD). One increase in IQR of NO2 (7.80 ppb) was associated 

with an acceleration of .022 (95% CI = .003; .042) SDs. As compared with the influence 

by cardiovascular disease (βCVD = .042; p = 0.052), the strength of association between air 

pollution and annual increases in depressive symptoms was approximately 60% of the effect 

of having a history of cardiovascular disease at WHI baseline.

The Pearson product-moment correlations between the ROI volumes of GM are presented in 

Supplementary Table S4 Older women residing in locations with higher NO2 tended to have 

smaller volumes of the prefrontal cortex, insula, anterior cingulate gyrus, amygdala, limbic 

medial temporal lobe, and basal ganglia (Supplementary Table S5). Older women residing 

in locations with higher concentrations of PM2.5 had significantly smaller volumes of the 

prefrontal cortex, anterior cingulate gyrus, and limbic medial temporal lobe (Supplementary 

Table S6). The observed associations between NO2 and PM2.5 with grey matter volumes in 

other areas were non-remarkable.

Results of the multilevel SEM mediation analyses examining the mediating roles of sMRI 

variables associated with exposures are presented in Tables 3 (for NO2) and Table 4 

(for PM2.5). As compared to the total effect estimates (Table 2), the estimated direct 

effects of NO2 and PM2.5 on increases in depressive symptoms were modestly attenuated 

after adjusting for the sMRI volumes. Older women with higher NO2 or PM2.5 had 

significantly smaller volumes of the prefrontal cortex and anterior cingulate gyrus. NO2 

exposure was also associated with smaller volumes of the amygdala, limbic medial temporal 

lobe, and basal ganglia. Women with smaller insula tended to have significantly greater 

annual increases in depressive symptoms while women with smaller prefrontal cortex had 

marginally significant greater increases in depressive symptoms. The resulting indirect 

effects of NO2 or PM2.5 on increases in depressive symptoms mediated by smaller volumes 

of the prefrontal cortex was statistically significant explaining 9% of the total effect of NO2 

and 13% of the total effect of PM2.5 on increases in depressive symptoms. The insular 

cortex also significantly mediated the adverse effect of NO2 on increases in depressive 

symptoms explaining approximately 13% of the total effect. The anterior cingulate cortex, 

the amygdala, and medial temporal lobe or basal ganglia did not play a significant mediating 

role of the observed associations with exposures, because their volumetric measures were 

not associated with annual changes in depressive symptoms.

In sensitivity analyses excluding women who experienced a stroke, the observed total effects 

on increased depressive symptoms associated with exposures, as well as the indirect effects 
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mediated by smaller prefrontal cortex and insula, were similar (Tables S6 and S7). After 

excluding women who developed dementia by 2018, the estimate of the total effects of 

NO2 (Total effectNO2 on slope = .021; p=.052) and PM2.5 (Total effectPM2.5 on slope = .016; 

p=.094) were modestly attenuated and marginally significant. However, the hypothesized 

mediation path estimates (βNO2 on sMRI; βsMRI on slope) as well as the resulting indirect 

effects on annual changes in depressive symptoms were unchanged (Tables S8 and S9). 

Our findings were unchanged after excluding women who both had prevalent stroke and 

developed dementia by 2018 (Tables S10 and S11). After further adjusting for depressive 

symptoms at the WHIMS baseline, the total effects of NO2 and PM2.5 on annual changes 

in depressive symptoms was also unchanged, as were the individual components of the 

indirect effect estimates (Tables S12 and S13). Lastly, findings are unchanged if the clinical 

characteristics are not included as potential confounders (Table S14).

4. Discussion

In this longitudinal study of a geographically-diverse cohort of older women, we found 

that women residing in locations with higher concentrations of ambient NO2 or PM2.5 

experienced significantly larger annual increases in depressive symptoms. We further 

demonstrated that the adverse effects of NO2 and PM2.5 on annual increases in depressive 

symptoms were partly mediated by smaller volumes of prefrontal cortex (~9–13%) and 

insula (~13%). These observed associations do not appear to be explained by between-

participant differences in socio-demographic factors (age, geographic region, race/ethnicity, 

education, income, employment status, neighborhood socioeconomic characteristics), 

lifestyle factors (smoking, alcohol, physical activity), and clinical characteristics including 

prior depressive symptoms. Results of sensitivity analyses suggest that the total effects 

of NO2 and PM2.5 on increased depressive symptoms were partially explained by the 

neurodegenerative processes underlying clinical dementia. To our knowledge, this is the 

first study to suggest that the losses of brain volumes in areas implicated with emotional 

regulation, such as the prefrontal cortex and insula potentially resulting from neurotoxic 

effects of air pollution exposure in late life, may contribute to the subsequent increases in 

depressive symptoms in older women.

Our study adds novel epidemiologic data to support the adverse effects of air pollution 

on late-life depressive symptoms. It is among the few longitudinal studies to examine 

associations between NO2 and increases in depressive symptoms over time in older women 

(Petkus et al., 2020a; Petkus et al., 2020b) and first to provide insight into the underlying 

brain structures mediating this association. Previous studies examining PM2.5 and late-life 

depressive symptoms have produced mixed results regarding the associations with levels 

vs change in symptoms. Studies of younger older adults (mean age at study baseline 

ranging from 66 to 73 years old) reported that PM2.5 was associated with elevated levels 

of depressive symptoms at study baseline but not change over time (Petkus et al., 2019; 

Pun et al., 2017; Wang et al., 2020). Our study findings, based on older women with an 

average age of 81 at baseline, suggest that PM2.5 and NO2 are not associated with the level 

of symptoms-rather increases in symptoms over time. The lack of an association with level 

of depressive symptoms is similar to one prior study with older adults from Boston who 

were age 78 years at baseline (Wang et al., 2014). The possible age-related heterogeneity 
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in the effect of air pollution exposure on levels versus change in depressive symptoms is 

intriguing and warrants further study. One hypothesis is that the neurotoxic effects of air 

pollutants on brain structures, including the prefrontal cortex, may increase the physiological 

vulnerability to depressive symptoms. Pollution-related vulnerability, in combination with 

incident psychosocial stressors that become more common in later older adulthood (e.g., 

becoming a caregiver, bereavement, functional impairment), and decreased affective reserve 

(Fiske et al., 2009) may explain the heterogeneity in the air pollution exposure effect across 

older adulthood.

The current study strengthens the potential causal association between air pollution with 

increased depressive symptoms by demonstrating the direct link between exposure and 

altered brain structures implicated in emotion regulation in later life and the subsequent 

increases in depressive symptoms. To our knowledge, this is the first study to utilize SEM 

to combine longitudinal exposure data, structural brain MRI imaging, and repeated measures 

of depressive symptoms to test questions of causal mediation. Our study identified smaller 

volumes of the prefrontal cortex and insula as important mediators partially explaining the 

association between air pollution and increases in depressive symptoms in later-life. Our 

findings suggest that exposure to air pollution may exert a neurotoxic effect on these brain 

areas contributing to a smaller volume observed on sMRI. The prefrontal cortex and insula 

play important roles in the reward processing, cognitive control, and salience networks 

(Alexopoulos et al., 2012; Victoria et al., 2018; Yuen et al., 2014). Late-life depressive 

symptoms may be the manifestation of disruption to these three processes (Alexopoulos, 

2019). Breakdown in the reward processing network may contribute to symptoms of 

behavioral avoidance, and cognitive symptoms of negativity biases and rumination (Victoria 

et al., 2018). Alterations to the salience network are associated with symptoms of anhedonia 

and apathy that may be more common in late-life depression (Gallo and Rabins, 1999; Yuen 

et al., 2014). Other work has shown negative associations between PM2.5 and brain volume 

in brain areas that make up the salience network (Casanova et al., 2016). Lastly, disruptions 

to cognitive control network likely contribute to executive dysfunction and cognitive decline 

common to late-life depression (Koenig et al., 2014). We speculate that the neurotoxic 

effects of NO2 and PM2.5 on the prefrontal cortex may disrupt these networks contributing 

to the manifestation of increased depressive symptoms over time.

Our study findings raise important questions about the neuropathological processes 

underlying the increase in depressive symptoms associated with air pollution exposure. 

First, regarding the NO2 and PM2.5 effects, smaller volumes of the prefrontal cortex and 

insula only partially (~13%) mediated the observed association, and little is known about 

the neuropathologies driving this indirect effect or accounting for the remaining total effect 

on annual increases in depressive symptoms. Important neuropathological processes and 

neurotoxic mechanisms that may explain the associations between air pollution exposure 

and increases in depressive symptoms include neurodegenerative processes underlying 

dementia, cerebrovascular disease, and neuroinflammation. In our study, neurodegenerative 

processes underlying clinical dementia could not fully explain the observed adverse 

exposure effect on increasing depressive symptoms. This attenuation of the effect after 

excluding women who developed dementia suggests that air pollution may contribute to the 

neuropathological processes that are in common with dementia and increases in depressive 
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symptoms. Moreover, after excluding women who developed dementia, the magnitude 

of indirect effect was unchanged, suggesting that the mediation of the prefrontal cortex 

and insula might be independent of dementia risk. Although the associations between 

air pollution and increases in depressive symptoms of older women may be partially 

explained by their underlying dementia risk, the observed no changes to indirect effects 

suggest these neuropathological processes may be independent of the volume losses in 

prefrontal cortex and insula resulting from air pollution exposures. Residing in locations 

with higher concentrations of NO2 or PM2.5 was associated with smaller volumes of other 

brain areas implicated in late life depression, including the anterior cingulate, limbic medial 

temporal lobe, amygdala and basal ganglia. However, these brain areas did not mediate 

the observed associations between air pollution and increases in depressive symptoms, 

as these brain volumes were not significantly associated with subsequent changes in 

depressive symptoms in older women. The role of cerebrovascular neuropathologies in the 

observed adverse effect of exposure on increasing depressive symptoms remains unclear. 

The exposure effects and resulting indirect effects were not attenuated after we excluded 

women with prevalent or incident stroke (Tables S6 or S7), which suggests that stroke 

risk was not driving our observed associations. Lastly, exposure to air pollution may 

promote neuroinflammatory responses(Block and Calderon-Garciduenas, 2009) which are 

also implicated in late-life depression (Alexopoulos, 2019). Future studies should examine 

the potential role of AD neuropathologies, other measures of cerebral small-vessel disease 

(e.g., microbleeds and cerebral amyloid angiopathy) and the role of neuroinflammation as 

potential neurotoxic mechanisms explaining associations between exposure and increases in 

depressive symptoms in later-life.

We recognize several limitations of our study. First, we only studied the long-term 

associations with ambient levels of air pollutants in late-life without estimating exposures 

before late-life or measuring personal exposures directly. The resulting exposure estimates 

are subject to measurement errors. Second, although our study is the first to examine the 

potential mediating role of various sMRI factors, we did not explore the SEMs for multiple 

mediation pathways. Third, the use of ROI data in our analyses does not allow us to 

detect smaller areas of brain structures that may contribute to the association of increased 

depressive symptoms with air pollution exposures. For instance, voxel-based morphology 

and other high-dimensional neuroimaging variables may be more apt to detect subtle effects 

of exposure on brain structure (Casanova et al., 2016). Lastly, women included in these 

analyses were mostly Caucasian, well-educated, and generally in good health limiting 

the generalizability of our study findings to men and more racially/ethnically diverse 

populations of older adults. Additionally, compared to the entire WHIMS-MRI cohort those 

who were included in these analyses were also younger, more likely to be a past smoker, 

and be in better physical health (less likely to have hypertension and diabetes) which further 

limits the generalizability of findings.

5. Conclusions

In summary, findings from the present study of older women strengthen the causal 

association linking long-term air pollution exposure with increased depressive symptoms 

in late life. Our data demonstrate that smaller prefrontal cortical volumes associated with 
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ambient NO2 and PM2.5 levels partially mediated the subsequent increase in depressive 

symptoms over time. We also demonstrate that smaller insula volumes associated with 

NO2 also partially mediated the subsequent annual increases in depressive symptoms. 

Future studies with molecular neuroimaging data and fluid-based biomarkers are needed 

to better understand the neuropathological processes contributing to the increased depressive 

symptoms associated with exposure to ambient air pollutants in older adults.
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Refer to Web version on PubMed Central for supplementary material.
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EPA Environmental Protection Agency
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ROI regions of interest

SEM structural equation model

GDS-15 15-item Geriatric Depression Scale
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Highlights

• We examined exposure to air pollution with depressive symptoms in older 

women.

• Higher PM2.5 and NO2 exposure were associated with increases in depressive 

symptoms.

• Women with higher PM2.5 and NO2 exposure had smaller insula and 

prefrontal cortex.

• Prefrontal cortex and insula mediated pollutant effects on increases in 

depression.
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Figure 1. Flowchart of study participation
MUSE= Multi-atlas region Segmentation using Ensembles of registration algorithms and 

parameters

WHIMS=Women’s Health Initiative Memory Study

WHIMS-MRI=Women’s Health Initiative Memory Study Magnetic Resonance Imaging 

Study

WHIMS-ECHO=Women’s Health Initiative Memory Study of the Epidemiology of 

Cognitive Health Outcomes
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Figure 2. 
A simplified illustration of the between-subject portion of the multilevel mediation structural 

equation models examining the associations between 3-year average PM2.5 or NO2 exposure 

prior to the Women’s Health Initiative Memory Study magnetic resonance imaging (MRI) 

and annual linear changes in depressive symptoms during the course of the Women’s Health 

Initiative Memory Study of the Epidemiology of Cognitive Health Outcomes (WHIMS-

ECHO). The model also estimates the extent to which structural magnetic resonance 

imaging derived estimates mediated the association between exposure and annual changes in 

depressive symptoms.

Note: The effect of exposure on baseline depressive symptoms was also estimated in this 

model but not included in the diagram.

MRI = Magnetic Resonance Imaging

-Baseline Depressive sx = individual-specific estimate of depressive symptoms at the 

WHIMS-ECHO baseline derived from the within-subject component of the multilevel 

structural equation model.

-Linear change depressive sx = individual-specific estimate of annual linear change in 

depressive symptoms across the first five WHIMS-ECHO follow-up assessments derived 

from the within-subject component of the multilevel structural equation model.

-Exposure = estimate of annual exposure to either NO2 (per 7.80 ppb) or PM2.5 (per 3.14 

μg/m3) for the three-years prior to the WHIMS-MRI

-βexposure on slope = parameter representing the effect of exposure on annual linear change in 

depressive symptoms during the WHIMS-ECHO follow-up period

-βexposure on sMRI = parameter representing the effect of exposure on structural magnetic 

resonance imaging variable

-Dashed lines represent effects from covariates to main study variables

-Covariates = vector of covariates that outcomes were regressed on.

-Baseline depressive symptoms and structural magnetic resonance imaging derived volumes 

were regressed on the following covariates: age at MRI, intracranial volume, race/

ethnicity, geographic region of residence, education, household income, employment status, 

smoking, alcohol use, physical activities, clinical characteristics (use of hormone treatment, 

hypercholesteremia, hypertension, and diabetes mellitus), and neighborhood socioeconomic 

characteristics.
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-Linear change of depressive symptoms was regressed on the following covariates: 

education, region of residence, race/ethnicity, intracranial volume and cardiovascular 

disease.
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Table 1.

Comparison of the Distribution of Estimated PM2.5 and NO2 Exposures by Population Characteristics at 

Women’s Health Initiative Memory Study of the Epidemiology of Cognitive Health Outcomes Baseline (N = 

764).

Population Characteristics 
Overall N

Distribution of 3-year average
a
 PM2.5 

exposure prior to WHIMS-MRI (μg/m3)
Distribution of 3-year average

a
 NO2 

exposure prior to WHIMS-MRI (ppb)

Mean ± SD
(25th, Median, 

75th) p
b

Mean ± SD
(25th, Median, 

75th) p
b

Overall 764 11.33 ± 2.46 (9.6, 11.3, 12.9) 12.47 ± 6.25 (8.1, 11.1, 15.3)

Region of Residence <.01 <.01

 Northeast 188 11.74 ± 2.44 (9.4, 11.7, 13.9) 14.13 ± 7.99 (8.7, 11.2, 16.8)

 South 113 10.91 ± 1.58 (9.5, 10.8, 12.3) 7.41 ± 2.47 (5.5, 7.4, 9.6)

 Midwest 253 11.43 ± 2.02 (9.8, 11.3, 12.9) 11.53 ± 3.67 (8.5, 11.1, 14.2)

 West 210 11.06 ± 3.20 (9.7, 11.3, 12.5) 14.84 ± 6.55 (10.9, 14.9, 17.5)

Race/Ethnicity <.01 <.01

 African-American 28 13.51 ± 2.22 (12.1, 13.3, 14.5) 19.20 ± 9.94 (9.9, 16.0, 28.3)

 Hispanic White 11 12.22 ± 1.64 (11.8, 12.1, 13.0) 17.80 ± 6.64 (15.9, 17.2, 18.2)

 Non-Hispanic White 699 11.20 ± 2.42 (9.5, 11.0, 12.8) 11.95 ± 5.70 (8.0, 11.0, 14.9)

 Other or Missing 26 12.11 ± 2.90 (10.3, 12.2, 13.6) 17.06 ± 8.27 (10.5, 15.4, 24.7)

Education .698 .017

 Less than high school 28 11.11 ± 3.48 (9.1, 10.8, 13.7) 14.44 ± 9.55 (7.8, 10.6, 17.3)

 High school 186 11.45 ± 2.24 (9.7, 11.2, 12.9) 11.49 ± 4.69 (8.1, 10.9, 14.1)

 More than high school 550 11.30 ± 2.48 (9.6, 11.3, 12.8) 12.70 ± 6.47 (8.1, 11.2, 15.6)

Employment .268 .524

 Currently working 96 11.26 ± 2.54 (9.5, 11.4, 12.9) 13.14 ± 7.17 (8.4, 11.5, 15.9)

 Not working 63 11.81 ± 2.17 (10.2, 12.2, 13.3) 12.51 ± 4.88 (8.9, 11.9, 15.6)

 Retired 605 11.29 ± 2.48 (9.6, 11.1, 12.8) 12.36 ± 6.22 (8.0, 11.0, 15.3)

Income (in USD) .863 .871

 < 9,999 30 11.27 ± 2.29 (10.0, 10.8, 13.2) 11.98 ± 6.47 (7.9, 10.9, 14.5)

 10,000–34,999 128 11.34 ± 2.58 (9.6, 11.5, 13.0) 11.95 ± 5.72 (8.0, 10.6, 14.8)

 35,000–49,999 224 11.37 ± 2.51 (9.5, 11.6, 12.9) 12.43 ± 6.42 (7.6, 11.4, 15.4)

 50,000–74,999 166 11.12 ± 2.31 (9.5, 10.8, 12.7) 12.25 ± 5.90 (8.4, 11.2, 15.1)

 75,000 or more 185 11.32 ± 2.59 (9.8, 11.5, 12.7) 12.98 ± 6.47 (8.3, 11.1, 15.5)

 Donť know 31 11.73 ± 2.23 (10.3, 11.9, 13.2) 12.76 ± 6.51 (8.8, 11.3, 15.8)

Lifestyle Smoking status .785 .056

 Never smoked 433 11.37 ± 2.42 (9.6, 11.3, 12.9) 12.00 ± 5.56 (8.0, 10.9, 15.2)

 Past smoker 301 11.29 ± 2.52 (9.6, 11.1, 12.9) 13.06 ± 6.89 (8.4, 11.4, 15.5)

 Current Smoker 30 11.15 ± 2.56 (9.6, 11.2, 13.1) 13.33 ± 8.27 (8.2, 10.9, 14.7)

Alcohol use .785 .054

 Non-drinker 97 11.53 ± 2.36 (9.5, 11.7, 13.2) 11.22 ± 5.90 (7.1,9.4, 13.6)

 Past drinker 124 11.29 ± 2.53 (9.6, 10.9, 13.0) 11.80 ± 5.76 (8.0, 10.6, 14.9)

 Less than 1 drink/ day 463 11.32 ± 2.43 (9.6, 11.3, 12.9) 12.91 ± 6.36 (8.5, 11.4, 15.7)
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Population Characteristics 
Overall N

Distribution of 3-year average
a
 PM2.5 

exposure prior to WHIMS-MRI (μg/m3)
Distribution of 3-year average

a
 NO2 

exposure prior to WHIMS-MRI (ppb)

Mean ± SD
(25th, Median, 

75th) p
b

Mean ± SD
(25th, Median, 

75th) p
b

 More than 1 drink/ day 80 11.16 ± 2.67 (9.8, 11.0, 12.4) 12.46 ± 6.57 (8.0, 11.3, 14.4)

Moderate or strenuous activities 
≥ 20 minutes .097 .381

 No activity 424 11.45 ± 2.52 (9.6, 11.5, 13.2) 12.72 ± 6.44 (8.3, 11.2, 15.6)

 Some activity 39 11.44 ± 2.23 (10.0, 11.3, 13.2) 12.08 ± 6.62 (7.4, 10.8, 14.4)

 2–4 episodes/week 153 11.41 ± 2.39 (9.8, 11.3, 12.9) 12.60 ± 5.77 (8.5, 11.4, 15.3)

 ≥4 episodes/week 148 10.87 ± 2.40 (9.3, 10.7, 12.4) 11.71 ± 6.05 (7.4, 10.8, 14.8)

Physical Health Hypertension .619 .438

 No 505 11.30 ± 2.48 (9.6, 11.2, 12.9) 12.35 ± 6.27 (8.0, 11.0, 15.2)

 Yes 259 11.39 ± 2.44 (9.7, 11.3, 12.9) 12.72 ± 6.21 (8.4, 11.6, 15.7)

Treated hypercholesterolemia .100 .225

 No 638 11.26 ± 2.44 (9.5, 11.3, 12.8) 12.35 ± 6.15 (7.9, 11.1, 15.3)

 Yes 126 11.66 ± 2.58 (10.0, 11.2, 13.3) 13.09 ± 6.73 (9.0 11.1, 15.2)

Diabetes Mellitus .982 .220

 No 743 11.33 ± 2.47 (9.6, 11.3, 12.9) 12.42 ± 6.15 (8.1, 11.0, 15.3)

 Yes 21 11.34 ± 1.56 (10.1, 11.2, 12.8) 13.09 ± 6.73 (9.1, 13.2, 16.7)

Cardiovascular disease .519 .184

 No 662 11.31 ± 2.47 (9.6, 11.2, 12.9) 12.35 ± 6.11 (8.0, 11.0, 15.2)

 Yes 102 11.47 ± 2.45 (9.6, 11.5, 13.2) 13.24 ± 7.05 (8.4, 12.1, 16.0)

Prior hormone therapy .186 .976

 No 422 11.43 ± 2.33 (9.6, 11.3, 13.0) 12.48 ± 6.06 (8.2, 11.2, 15.3)

 Yes 342 11.20 ± 2.61 (9.6, 11.1, 12.7) 12.46 ± 6.49 (8.1, 11.1, 15.3)

Hormone therapy assignment .918 .594

 E-alone intervention 164 11.34 ± 2.40 (9.8, 11.4, 13.2) 12.43 ± 6.09 (8.1, 11.3, 15.2)

 E-alone control 147 11.19 ± 2.61 (9.7, 11.2, 12.8) 11.99 ± 5.53 (8.1, 11.3, 15.5)

 E+P intervention 247 11.34 ± 2.52 (9.5, 11.1, 13.0) 12.89 ± 6.87 (7.9, 11.1, 15.8)

 E+P control 271 11.38 ± 2.38 (9.5, 11.2, 12.9) 12.36 ± 6.11 (8.4, 11.0, 14.9)

Abbreviations

WHIMS-MRI = Women’s Health Initiative Memory Study magnetic resonance imaging assessment

a
3-year average of the annual exposure estimated before the WHIMS-MRI at each participant’s location

b
p values estimated from ANOVA F-tests or t-tests comparing the mean exposures.
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Table 2.

Associations Between Exposures to Ambient Air Pollutants and Trajectories of Depressive Symptoms 

(N=764).

WHIMS-ECHO depressive symptom outcome
a

Effect Estimates for 3-year average exposures before WHIMS-MRI

NO2 (per 7.80 ppb) PM2.5 (per 3.14 μg/m3)

βb
(95% CI) βb

(95% CI)

Baseline symptoms
c

−.073 (−.164; .017) −.081 (−.171; .009)

Annual linear change symptoms
d

.023 (.004; .043) .019 (.001; .037)

Abbreviations

GDS-15 = 15-item Geriatric Depression Scale; NO2 = Nitrogen dioxide; PM2.5 = particulate matter with aerodynamic diameter <2.5 μm; MRI = 

Magnetic resonance imaging; 95% CI = 95% confidence interval of parameter estimate; WHIMS-MRI = Women’s Health Initiative Memory Study 
magnetic resonance imaging assessment; WHIMS-ECHO=Women’s Health Initiative Memory Study of the Epidemiology of Cognitive Health 
Outcomes

a
Depressive symptoms were measured with z-score standardized (based on initial WHIMS-ECHO mean and standard deviation) 3-quantile-spline 

transformed GDS-15 scores.

b
β represents the standardized parameter estimate of one interquartile range increase in exposure on z-score standardized transformed GDS-15

c
The exposure effects on baseline depressive symptoms were adjusted for age at MRI, race/ethnicity, geographic region of residence, 

education, household income, employment status, smoking, alcohol use, physical activities, clinical characteristics (use of hormone treatment, 
hypercholesteremia, hypertension, and diabetes mellitus), and neighborhood socioeconomic characteristics.

d
The exposure effects on annual change in depressive symptoms were adjusted for education, region of residence, race/ethnicity, and cardiovascular 

disease.
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Table 3.

Results of Mediation Models Examining Whether Structural Magnetic Resonance Imaging Variables Mediate 

Associations Between Nitrogen Dioxide (NO2) on Increasing Depressive Symptoms
a
 during the Women’s 

Health Initiative Study-Epidemiology of Cognitive Health Outcomes Follow-up (N = 764).

Structural MRI mediator 

variable
b

Direct effect Estimate Indirect effect components Indirect effect

βNO2 on slope
c,d

 (95% CI) βNO2 on sMRI
e,† (95% CI) βsMRI on slope

g,h
 (95% CI) Estimate

i
 (95% CI)

j

Prefrontal cortex
k

.020 (.001; .039) −.125 (−.188; −.062) −.018 (−.037; .001) .002 (.001; .005)

Insula .020 (.001; .039) −.141 (−.217; −.065) −.018 (−.032; −.004) .003 (.001; .005)

Anterior cingulate .023 (.003; .043) −.135 (−.209; −.062) .002 (−.013; .016) < .001 (−.002; .002)

Amygdala .021 (.002; .041) −.092 (−.162; −.021) −.012 (−.028; .004) .002 (−.001; .003)

Limbic medial temporal lobe
l

.021 (.001, .040) −.128 (−.196; −.060) −.013 (−.031; .005) .002 (−.001; .005)

Basal ganglia
m .024 (.004; .043)

−.106 (−.187; −.024)
.007 (.010; .023)

−.001 (−.003; .001)

Abbreviations

NO2 = nitrogen dioxide; MRI = Magnetic resonance imaging; CI = Confidence interval, slope = individual-specific estimates of annual linear 

change in depressive symptoms derived from the within-participant portion of the multilevel structural equation model; WHIMS-ECHO = 
Women’s Health Initiative Study-Epidemiology of Cognitive Health Outcomes

Estimates bolded if statistically significant at p<0.05

a
Depressive symptoms were measured with z-score standardized (based on initial WHIMS-ECHO mean and standard deviation) 3-quantile-spline 

transformed GDS-15 scores.

b
All structural MRI derived variables were bilateral and z-score standardized based on the mean and standard deviation at the WHIMS-MRI.

c
The direct effect of NO2 on linear change in depressive symptoms after the MRI were adjusted for the respective structural MRI mediator, 

education, region of residence, race/ethnicity, intracranial volume and cardiovascular disease.

d
Estimate corresponds to the βexposure on slope parameter in Figure 2.

e
The effect of NO2 on structural MRI mediator were adjusted for age at MRI, intracranial volume, race/ethnicity, geographic region of residence, 

education, household income, employment status, smoking, alcohol use, physical activities, clinical characteristics (use of hormone treatment, 
hypercholesteremia, hypertension, and diabetes mellitus), and neighborhood socioeconomic characteristics.

g
The effect of structural MRI mediators on linear change in depressive symptoms after the MRI were adjusted for NO2, education, region of 

residence, race/ethnicity, intracranial volume, and cardiovascular disease.

h
Estimate corresponds to the βsMRI on slope parameter depicted in Figure 2.

i
The indirect effect is the product of the two parameters (βexposure on sMRI * βsMRI on slope).

j
95% confidence interval for the indirect effect is asymmetric and estimated via Monte Carlo Simulation

k
The prefrontal cortex consists of a summation of the following bilateral grey-matter volumetric estimates: anterior orbital gyrus, lateral orbital 

gyrus, medial orbital gyrus, posterior orbital gyrus, frontal pole, middle frontal gyrus, opercular part of the inferior frontal gyrus, orbital part of the 
inferior frontal gyrus, superior frontal gyrus, triangular part of the inferior frontal gyrus, gyrus rectus, medial frontal cortex, superior frontal gyrus 
medial segment, subcallosal area, central operculum, frontal operculum, and parietal operculum.

l
The limbic medial temporal lobe consists of a summation of the bilateral grey-matter volumes of the entorhinal area and parahippocampal gyrus.

m
The basal ganglia consists of a summation of the bilateral grey-matter volumes of the accumbens, caudate, pallidum, and putamen.
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Table 4.

Results of Mediation Models to Examine Whether Structural Magnetic Resonance Imaging Variables Mediate 

Associations Between Particulate Matter of Aerodynamic Diameter less than 2.5 μm on Increasing Depressive 

Symptoms
a
 during the Women’s Health Initiative Study-Epidemiology of Cognitive Health Outcomes Follow-

up (N = 764).

Structural MRI mediator 

variable
b

Direct effect Estimate Indirect effect components Indirect effect

βPM2.5 on slope
c,d

 (95% CI) βPM2.5 on sMRI
e,† (95% CI) βsMRI on slope

g,h
 (95% CI) Estimate

i
 (95% CI)

j

Prefrontal cortex
k

.016 (−.002; .034) −.091 (−.152; −.029) −.020 (−.038; −.001) .002 (<.001; .005)

Anterior cingulate .018 (−.001; .036) −.114 (−.190; −.037) .001 (−.014; .015) .002 (−.001; .002)

Abbreviations

PM2.5 = particulate matter with aerodynamic diameter <2.5 μm; MRI = Magnetic resonance imaging; CI = Confidence interval, slope = 

individual-specific estimates of annual linear change in depressive symptoms derived from the within-participant portion of the multilevel structural 
equation model; WHIMS-ECHO = Women’s Health Initiative Study-Epidemiology of Cognitive Health Outcomes

Estimates bolded if statistically significant at p<0.05

a
Depressive symptoms were measured with z-score standardized (based on initial WHIMS-ECHO mean and standard deviation) 3-quantile-spline 

transformed GDS-15 scores.

b
All structural MRI derived variables were bilateral and z-score standardized based on the mean and standard deviation at the WHIMS-MRI.

c
The direct effect of PM25 on linear change in depressive symptoms after the MRI were adjusted for the respective structural MRI mediator, 

education, region of residence, race/ethnicity, intracranial volume and cardiovascular disease.

d
Estimate corresponds to the βexposure on slope parameter in Figure 2.

e
The effect of PM25 on structural MRI mediator were adjusted for age at MRI, intracranial volume, race/ethnicity, geographic region of residence, 

education, household income, employment status, smoking, alcohol use, physical activities, clinical characteristics (use of hormone treatment, 
hypercholesteremia, hypertension, and diabetes mellitus), and neighborhood socioeconomic characteristics.

g
The effect of structural MRI variables on linear change in depressive symptoms after the MRI were adjusted for NO2, education, region of 

residence, race/ethnicity, intracranial volume, and cardiovascular disease.

h
Estimate corresponds to the βsMRI on slope parameter depicted in Figure 2.

1
The indirect effect is the product of the two parameters (βexposure on sMRI * βsMRI on slope).

j
95% confidence interval for the indirect effect is asymmetric and estimated via Monte Carlo Simulation

k
The prefrontal cortex consists of a summation of the following bilateral grey-matter volumetric estimates: anterior orbital gyrus, lateral orbital 

gyrus, medial orbital gyrus, posterior orbital gyrus, frontal pole, middle frontal gyrus, opercular part of the inferior frontal gyrus, orbital part of the 
inferior frontal gyrus, superior frontal gyrus, triangular part of the inferior frontal gyrus, gyrus rectus, medial frontal cortex, superior frontal gyrus 
medial segment, subcallosal area, central operculum, frontal operculum, and parietal operculum.
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