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ABSTRACT NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many trans-
form hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered 

region from NUP98 that is prone to liquid–liquid phase separation (LLPS) in vitro. A predominant class 
of NUP98 FOs, including NUP98–HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others 
harbor other types of DNA- or chromatin-binding domains. NUP98 FOs have long been known to form 
puncta, but long-standing questions are how nuclear puncta form and how they drive leukemogenesis. 
Here we studied NHA9 condensates and show that homotypic interactions and different types of het-
erotypic interactions are required to form nuclear puncta, which are associated with aberrant transcrip-
tional activity and transformation of hematopoietic stem and progenitor cells. We also show that three 
additional leukemia-associated NUP98 FOs (NUP98–PRRX1, NUP98–KDM5A, and NUP98–LNP1) form 
nuclear puncta and transform hematopoietic cells. These findings indicate that LLPS is critical for 
leukemogenesis by NUP98 FOs.

SIGNIFICANCE: We show that homotypic and heterotypic mechanisms of LLPS control NUP98–HOXA9 
puncta formation, modulating transcriptional activity and transforming hematopoietic cells. Importantly, 
these mechanisms are generalizable to other NUP98 FOs that share similar domain structures. These 
findings address long-standing questions on how nuclear puncta form and their link to leukemogenesis.
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INTRODUCTION
Chromosomal translocations involving the nucleoporin 98 

(NUP98) gene are observed in various hematologic malignan-
cies and are a hallmark of high-risk childhood leukemias. 
NUP98 fusion oncoproteins (FO) occur in approximately 5% 
of all pediatric patients with acute myeloid leukemia (AML; 
refs. 1–5). NUP98 rearrangement shows increased prevalence 
within specific AML subtypes, including those with mono-
cytic, megakaryoblastic, and erythroid differentiation (3, 
6–9). Moreover, 50% of children with chemotherapy-resistant 
AML bear NUP98 FOs (10), and there are currently no 
effective targeted therapeutic strategies for these patients. 
Thus, understanding the molecular mechanism by which 
NUP98 FOs drive cancer is needed to offer pediatric patients 
with AML opportunities for improved clinical outcomes in 
the future.

In normal cells, NUP98 primarily functions within the 
nuclear pore complex (NPC), with additional roles in tran-
scription and mitosis (11–15). The N-terminal portion of the 

NUP98 protein is an intrinsically disordered region (IDR) 
enriched in phenylalanine-glycine (FG) motifs (16) inter-
rupted by a Gle2-binding-sequence (GLEBS) domain (17). 
NUP98 FOs universally include the N-terminal region of 
NUP98 linked to C-terminal regions from one of >30 partner 
genes, almost all of which exhibit one or more DNA- or chro-
matin-binding domains (ref.  18; Supplementary Table  S1). 
The most prevalent type of fusion partners exhibit a DNA-
binding homeodomain (18), with NUP98–HOXA9 the first 
identified and most well studied (19, 20). Also prevalent 
are NUP98 fusion partners that are epigenetic regulators, 
many of which exhibit chromatin-binding PHD and/or SET 
domains, including NUP98–KDM5A (18). A distinguishing 
but often overlooked feature of NUP98 FOs is that they form 
nuclear foci or puncta (Supplementary Table S1). Although 
puncta formed by NUP98 FOs have been associated with 
leukemogenic phenotypes in hematopoietic cells (21), how 
puncta form and how they are linked with altered cellular 
behavior are poorly understood.
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Importantly, data from multiple sources indicate influences 
of the NUP98 FOs on chromatin state, including accessibility 
for gene expression. For example, NUP98–HOXA9 (NHA9), 
NUP98–NSD1, NUP98–KDM5A, and NUP98–PHF23 bind at 
the HoxA gene cluster, a locus that is otherwise highly com-
pacted and repressed during differentiation (21–24). Results 
from model systems and patient samples bearing NUP98 FOs, 
including NHA9 and others (6, 7, 25, 26), show that chromatin  
remodeling drives aberrant transcription and upregulation 
of HOX genes. In addition, transcriptional cofactors (27), 
including CREBBP (28), EP300 (28), XPO1 (CRM1; ref.  29), 
and KMT2A (23, 30) or WDR–SET1–COMPASS complexes 
(23, 30), interact with NUP98’s IDR and mediate the transcrip-
tional signature unique to NUP98-rearranged hematologic 
malignancies (22). However, how chromatin remodeling and 
aberrant transcriptional regulation are orchestrated within 
the nuclear puncta formed by NUP98 FOs is only beginning 
to be understood (31).

The transcriptional machinery is organized within submi-
cron-size puncta termed transcriptional condensates (32) that 
form through liquid–liquid phase separation (LLPS; refs. 33–
37). Many transcriptional regulators, including transcription 
factors, coregulators, and RNA polymerase II, contain IDRs 
that promote multivalent interactions that drive LLPS in vitro 
and in cells (38). Biomolecules within transcriptional conden-
sates are highly dynamic, promoting biochemical processes 
within them (36). Transcription factors often display a disor-
dered, LLPS-prone activation domain linked to a sequence-
specific DNA-binding domain and promote the formation of 
transcriptional condensates at regulatory DNA sites within 
genes (34). The LLPS-prone IDRs of transcriptional coregula-
tors and RNA polymerase II enable their copartitioning with 
transcription factors within condensates (34).

We and others (27, 31) observed similarities between the 
domain structure of transcription factors and NUP98 FOs, 
specifically, the presence of a phase separation–prone IDR 
and DNA- or chromatin-binding domains. The N-terminal 
FG-rich IDR of NUP98 (NUP98-N), common to all leukemia-
associated NUP98 FOs (18), undergoes LLPS to form gel-like 
condensates in vitro (31, 39). Further, as noted above, the 
NHA9 (40) and other NUP98 FOs (Supplementary Table S1) 
were previously shown to localize within nuclear puncta, 
which we and others (27, 31) propose are aberrant transcrip-
tional condensates. We propose that these NUP98 FO–driven 
nuclear puncta form through LLPS via a combination of 

homotypic and heterotypic mechanisms (Fig.  1A). Herein, 
we present in vitro and cellular data showing that both 
homotypic and heterotypic mechanisms of LLPS are directly 
linked to the formation of nuclear puncta by NHA9 in cells, 
which in turn are associated with aberrant transcription and 
transformation of lineage-negative hematopoietic stem and 
progenitor cells (lin− HSPC). Further, we show that three 
additional leukemia-associated NUP98 FOs form nuclear 
puncta and transform lin− HSPCs, and that nuclear puncta 
are present in human NUP98-rearranged AML cells.

RESULTS
NHA9 Forms Puncta in Cells and In Vitro via LLPS

To understand the mechanism driving nuclear puncta for-
mation by NHA9, we expressed monomeric-enhanced GFP 
(mEGFP)–tagged NHA9 (G-NHA9) in HEK293T cells and 
quantified the features of the resulting nuclear puncta in 
many cells. G-NHA9 formed hundreds of puncta in cell nuclei 
(Fig.  1B) with puncta number increasing with the G-NHA9 
nuclear concentration ([G-NHA9]; Fig.  1C; Supplementary 
Fig.  S1A and S1B). Importantly, the mEGFP tag negligibly 
affected puncta formation (Supplementary Fig.  S1C). Fluo-
rescence recovery after photobleaching (FRAP) experiments 
showed that G-NHA9 molecules are mobile within puncta 
(Fig. 1D), and puncta showed extensive movement within cell 
nuclei, but fusion events were not observed (Supplementary 
Video S1). Average volumes of G-NHA9 puncta (Vp) increased 
slightly with increasing [G-NHA9] (Fig. 1E). We propose that 
G-NHA9 puncta form through LLPS driven by interactions 
mediated by the multivalent FG motifs and interactions of 
the HOXA9 homeodomain with DNA (Fig. 1A).

We also probed LLPS by NHA9 using in vitro assays and 
observed formation of submicron-size condensates at con-
centrations  ≥10 nmol/L (Fig.  1F). At 20  μmol/L, NHA9 
condensates exhibited features characteristic of formation 
through LLPS (e.g., many exhibited circular morphology 
apparently driven by surface tension; ref.  41). Turbidity 
assays also indicated condensate formation (Supplementary 
Fig.  S1D). Notably, FRAP results showed that the NHA9 
condensates prepared in vitro rapidly transitioned to a gel-like 
phase, as shown by reduced values of the mobile fraction (Mf) 
and T1/2 for NHA9 shortly after induction of condensation 
(Fig. 1G) and the inability to fuse in time-lapse fluorescence 
microscopy images (Supplementary Video S1). Together, our 

Figure 1.  LLPS by the N-terminal FG motif–rich IDR governs the puncta-forming behavior of G-NHA9 in cells and in vitro. A, Scheme depicting 
the hypothesized role of both homotypic and heterotypic interactions in the formation of aberrant transcriptional condensates by NHA9 via LLPS. 
B, Representative confocal microscopy images of live HEK293T cells expressing EGFP empty vector (top, green) or G-NHA9 (bottom, green). DNA is 
stained with Hoechst dye (blue). C, The number of puncta per 103 μm3 nuclear volume (puncta #, /103 μm3) versus the total nuclear concentration of the 
G-NHA9 construct [G-NHA9]. The dotted lines represent linear fitting for visualization purposes, and the gray area indicates 95% confidence interval. 
Number of cells (n) = 935, including the cells with zero punctum. D, Confocal micrographs of fluorescence recovery (inside yellow box) of a single G-NHA9 
punctum in HEK293T cells at different times after photobleaching (FRAP, left). FRAP recovery curve for a photobleached punctum (green, right) and an 
unbleached punctum (black, right). Individual puncta were manually tracked at different times, and recovery was plotted as the mean ± SD (n = 20). 
E, The average puncta volume (Vp, μm3) versus the total nuclear concentration of the G-NHA9 construct [G-NHA9]. The dotted lines represent linear 
fitting for visualization purposes, and the gray area indicates 95% confidence interval. Number of cells (n) = 378, excluding the cells with zero punctum. 
F, Confocal fluorescence micrographs of Alexa 488–labeled NHA9 condensates prepared in vitro with increasing protein concentration. The micrographs 
are presented as maximum intensity projections of 13 confocal planes offset by 0.5 μm per plane. Saturation concentration (Csat) is less than 10 nmol/L. 
G, Confocal micrographs of fluorescence recovery of 20 μmol/L NHA9 (mixed with 200 nmol/L Alexa 488–labeled NHA9) within condensates at multiple 
time points acquired within 2 minutes of initiation of phase separation (left). FRAP recovery curves for NHA9 condensates within 2 (green), 4 (brown), and 
8 (cyan) minutes of formation (right). Data are plotted as mean ± SD (n = 15). T1/2 represents the half-life of the fluorescence recovery, and Mf represents 
the mobile fraction.
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findings show that NHA9 forms condensates in vitro through 
the process of homotypic LLPS and suggest that homo-
typic FG motif interactions contribute to puncta formation 
in cells.

DNA Binding by NHA9 Modulates LLPS Behavior
We next asked whether DNA binding influences condensa-

tion behavior of G-NHA9 in HEK293T cells by expressing a 
construct with the homeodomain mutated to weaken DNA 
binding (G-NHA9–ΔDNA; Supplementary Fig.  S2A). Three 
amino acids were mutated based on analysis of the HOXA9 
homeodomain/DNA structure (42) using FoldX (43). In con-
trast to G-NHA9, G-NHA9–ΔDNA formed a smaller number 
of large, round condensates localized in both the nucleus 
and cytoplasm (Fig.  2A and B). The average volumes of 
nuclear G-NHA9–ΔDNA puncta were 3-fold larger than those 
for G-NHA9 (Fig.  2C; Supplementary Table  S2), and they 
exhibited fusion events (Fig.  2D; Supplementary Fig.  S2B; 
Supplementary Videos S2 and S3). Similar to G-NHA9, 
G-NHA9–ΔDNA molecules within condensates were mobile, 
although the Mf was reduced relative to that for G-NHA9 
(Fig. 2E). Additional features differed between the G-NHA9–
ΔDNA and G-NHA9 condensates. For example, although 
values of the average concentration in the nucleoplasm (light 
phase, LP; [LP]) for G-NHA9 and G-NHA9–ΔDNA were simi-
lar (Fig.  2F; Supplementary Table  S2), the corresponding 
values of the average concentration within puncta (dense 
phase, DP; [DP]) differed (Fig.  2G), with G-NHA9–ΔDNA 
partitioning (Kp) over 2-fold more than G-NHA9 into puncta 
(Fig.  2H; Supplementary Table  S2). Further, analysis of the 
Pearson correlation coefficient (PCC) for images of the two 
constructs showed that the condensates formed by G-NHA9 
overlap with DNA to a significantly larger extent than those 
of G-NHA9–ΔDNA (Fig. 2I). Collectively, these results dem-
onstrate that the puncta-forming behavior of G-NHA9 in 
HEK293T cells is strongly influenced by binding to DNA.

To evaluate the influence of the C-terminal HOXA9 region 
on LLPS by NHA9 and NHA9–ΔDNA, we deleted this region, 
resulting in NUP98-N. NUP98-N formed condensates at 
concentrations as low as 10 nmol/L in vitro (Supplemen-
tary Fig.  S2C). In HEK293T cells, mEGFP-tagged NUP98-N 
(G-NUP98-N) formed a smaller number of slightly larger 
puncta than G-NHA9–ΔDNA and displayed slightly greater 
partitioning into puncta (1.13-fold; Supplementary Fig. S2D–
S2G; Supplementary Table S2). These results indicate that the 
FG-rich region is the main driver of LLPS by G-NHA9–ΔDNA 
and that the mutated HOXA9 region in this construct reduces 
the propensity for LLPS, probably by increasing protein solu-
bility (e.g., due to many charged and polar residues; Sup-
plementary Fig.  S2H). This idea is supported by the failure 
of the HOXA9 region of NHA9 to form condensates in vitro 
(Supplementary Fig. S2I).

Time-lapse imaging of G-NUP98-N puncta in cells revealed 
that they readily fuse (Supplementary Fig.  S2J; Supplemen-
tary Video S4), and FRAP analysis showed that G-NUP98-N 
molecules within them were mobile, as observed for G-NHA9–
ΔDNA (Supplementary Fig.  S2K). Together, our observa-
tions show that the two NHA9–derived constructs that lack 
DNA-binding activity, G-NHA9–ΔDNA and G-NUP98-N, 
form condensates in HEK293T cells through LLPS. The 

observation that G-NHA9 partitions significantly less exten-
sively into small puncta than G-NHA9–ΔDNA and G-NUP98-
N do into large puncta (Fig.  2H; Supplementary Fig.  S2G) 
shows that DNA binding by G-NHA9 (a type of heterotypic 
interaction) competes with its FG motif–dependent interac-
tions, modulating partitioning within puncta. Based upon 
the circular appearance and diffusivity of mEGFP-tagged 
molecules within G-NHA9 puncta, and the concordance of 
the concentration dependence of Kp values for this construct 
and its DNA binding–deficient counterparts, indicative of 
multicomponent interactions (44), we conclude that they 
are liquid-like, chromatin-associated condensates that form 
through the process of LLPS.

FG Motif–Dependent Interactions Drive NHA9 
LLPS in Cells and In Vitro

Homotypic LLPS of NUP98-N in vitro is driven by inter-
molecular interactions between multivalent FG motifs 
(ref. 39; Fig. 3A). Our data with G-NUP98-N (Supplementary 
Fig.  S2E–S2G) support that FG motif–dependent interac-
tions contribute to LLPS by G-NHA9 in cells. To further 
test this, we modified the number of FG motifs within 
G-NHA9 using mutagenesis and monitored LLPS behavior 
in HEK293T cells. We generated two mutant constructs with 
reduced FG motif valence (corresponding to the number of 
FG motifs; Fig.  3A), one with eight phenylalanine residues 
mutated to alanine (8FA) and another with 21 phenylalanine– 
glycine residue pairs mutated to alanine (21FGAA), within 
the C-terminal region of NUP98-N within NHA9 (Fig.  3A). 
G-NHA9–8FA formed puncta in cells that were very similar 
in number and size to those formed by unmutated G-NHA9, 
whereas G-NHA9–21FGAA formed puncta that were less 
numerous and larger in size (Fig.  3B–D; Supplementary 
Table  S2). Further, the mutant G-NHA9 constructs parti-
tioned less extensively into puncta (Fig.  3E; Supplementary 
Table S2). We expressed the differences in Kp values for these 
constructs in thermodynamic terms by converting them into 
Gibbs free energy of transfer (ΔGTr) values (ref.  44; Fig.  3F; 
Supplementary Table S2), a measure of the energetic favora-
bility of partitioning into a condensate (ref.  44; negative 
values are favorable and positive values are unfavorable). 
The  ΔGTr value became less negative (less favorable) as the 
number of FG motifs was reduced (Fig.  3F; Supplementary 
Table S2), indicating that the valence of these motifs (38 vs. 
30 or 17; Fig. 3A) governs partitioning of the G-NHA9 con-
structs into puncta. We also noted that apparent saturation 
concentration (Csat) values (the [G-NHA9 construct] value at 
which puncta begin to form in cells) increased with decreased 
FG motif valence (Fig.  3C–F; most apparent in Fig. 3C for 
G-NHA9 vs. G-NHA9–21FGAA).

We next applied the 21FGAA mutations to a truncated 
construct spanning the C-terminal portion of NUP98-N 
within G-NHA9 (termed G-NHA9Midi; Fig.  3A), previously 
reported to transform mouse hematopoietic progenitor cells 
(23, 45). However, in contrast to constructs studied by oth-
ers (23, 45), we omitted the GLEBS domain, which mediates 
protein–protein interactions (17), from NHA9Midi to probe 
the specific role of its 21 FG motifs in puncta formation. 
The G-NHA9Midi construct formed a relatively small num-
ber of large condensates, while the corresponding 21FGAA 
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Figure 2.  DNA binding by the HOXA9 homeodomain of NHA9 influences puncta morphology and behavior. A, Representative confocal microscopy 
image of live HEK293T cells expressing G-NHA9–ΔDNA (green). DNA is stained with Hoechst dye (blue). An overlay of the G-NHA9–expressing cell from 
Fig. 1B is included for comparison (right). B and C, Plots of puncta # (/103 μm3; B) and Vp (μm3; C) versus [G-NHA9 construct] for G-NHA9 (green) and 
G-NHA9–ΔDNA (red) from data represented in A. Data are plotted on a semi-log (y-axis: log10) scale. D, Still images of multiple time points taken from 
a time-lapse confocal fluorescence microscopy video (Supplementary Video S2) of a fusion event in an HEK293T cell expressing G-NHA9–ΔDNA. 
E, Confocal micrographs of FRAP of a G-NHA9–ΔDNA punctum in HEK293T cells at different time points after photobleaching (left). Fluorescence 
recovery curves are shown for bleached (red, right) and unbleached puncta (black, right). The recovery curve for G-NHA9 is also provided for comparison 
(green). Individual puncta were manually tracked at different times, and the G-NHA9–ΔDNA fluorescence intensity versus recovery time was plotted as 
the mean ± SD (n = 20). The pairwise P value for the recovery curves between G-NHA9 and G-NHA9–ΔDNA is 2.2 × 10−16 using the t test. F–H, Plots of the 
concentration of the NHA9 construct in the nuclear light phase ([LP], μmol/L; F) and within puncta (termed the dense phase; [DP], μmol/L; G), and the 
Kp (Kp = [ ]

[ ]

DP
LP ) (H) versus [G-NHA9 construct] for G-NHA9 (green) and G-NHA9–ΔDNA (red). Data are plotted on a semi-log (y-axis: log10) scale. I, 1D-density 

distribution of PCC per cell for G-NHA9 and G-NHA9–ΔDNA to analyze the linear relationship of the signal between mEGFP and Hoechst. Refer to Sup-
plementary Table S2 for mean values ± standard error. The pairwise P values between G-NHA9 and G-NHA9–ΔDNA are shown in each plot (B, C, F–I; see 
Methods; n = 935 and 780 in B, F, and I including the cells with zero punctum, and n = 378 and 254 in C, G, and H excluding the cells with zero punctum, 
respectively, for G-NHA9 and G-NHA9–ΔDNA).
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mutant displayed primarily diffuse localization (Supplemen-
tary Fig. S3A). Cell image analysis showed that G-NHA9Midi 
formed puncta at lower expression levels that were much 
smaller (Supplementary Fig.  S3B–S3E) than those formed 
by G-NHA9–21FGAA (Fig.  3C–F; Supplementary Table  S2), 
indicating the importance of FG motif valence in governing 
LLPS behavior (21 for G-NHA9Midi and 17 for G-NHA9–
21FGAA; Fig.  3A). These results demonstrate that the 21 

FG motifs within the C-terminal region of NUP98-N, in 
the context of G-NHA9Midi, are necessary and sufficient for 
nuclear puncta formation and that the GLEBS domain is 
not required.

We noted that a fraction of puncta for the various G-NHA9 
constructs formed at the nuclear periphery (see Figs. 1B and 
3B; Supplementary Fig.  S3A). The parent protein, NUP98, 
localizes within the NPC, but the NPC-anchoring domain is 

Figure 3.  Mutation of multiple F and FG residues in the FG-rich IDR of NHA9 alters puncta formation in cells. A, Schematic of NHA9 and mutant 
constructs used in this study. FG motif valence is shown on the left. B, Representative image of live HEK293T cells expressing G-NHA9–8FA (top, green) 
and G-NHA9–21FGAA (bottom, green). DNA is stained with Hoechst dye (blue). C–F, Plots of puncta # (/103 μm3; C), Vp (μm3; D), Kp (Kp = [ ]

[ ]

DP
LP ) (E), and ΔGTr 

(kcal/mol; F) versus [G-NHA9 construct] for G-NHA9 (green), G-NHA9–8FA (purple), and G-NHA9–21FGAA (blue) from data represented in B. Data are 
plotted on a semi-log (y-axis: log10) scale in C–E. Refer to Supplementary Table S2 for mean values ± standard error. The pairwise P value between 
G-NHA9 versus G-NHA9–8FA and G-NHA9 versus G-NHA9–21FGAA is shown in each plot (C–F; n = 935, 683, and 865 in C including the cells with zero 
punctum and n = 378, 273, and 159 in D–F excluding the cells with zero punctum, respectively, for G-NHA9, G-NHA9–8FA, and G-NHA9–21FGAA).
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absent in NHA9 (12). Immunofluorescence (IF) analysis of 
an NPC protein (NUP107) in fixed HEK293T cells express-
ing G-NHA9 showed localization immediately outside the 
nuclear periphery (defined by the DAPI DNA stain; Supple-
mentary Fig. S3F), a region lacking G-NHA9 puncta. Further, 
only a small fraction of G-NHA9 puncta were localized near 
the nuclear periphery (Supplementary Fig.  S3G). Therefore, 

we conclude that the small fraction of puncta we observed at 
the nuclear periphery are not colocalized with NPCs.

We next asked whether mutations to FG motifs within 
G-NHA9 and G-NHA9Midi would affect homotypic LLPS 
in vitro. NHA9–8FA formed condensates at a Csat value similar 
to that for NHA9 (Csat <10 nmol/L), whereas NHA9–21FGAA 
did so only above 160 nmol/L (Fig. 4A and B; Supplementary 

Figure 4.  Mutation of F and FG residues in the FG-rich 
IDR of NHA9 alters LLPS behavior in vitro. A–C, Confocal 
fluorescence micrographs of Alexa 488–labeled NHA9–8FA 
(A), NHA9–21FGAA (B), and NHA9Midi (C) condensates in vitro 
with increasing protein concentration. Micrographs are 
presented as maximum intensity projections of 13 Z-stack 
images acquired over 6 μm with 0.5 μm resolution. D, Confocal 
micrograph of Alexa 488–labeled NHA9Midi–21FGAA at a 
concentration of 20 μmol/L. Saturation concentration (Csat) is 
less than 10 nmol/L (A), between 160 nmol/L and 315 nmol/L 
(B), and between 40 nmol/L and 80 nmol/L (C).
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Figure 5.  The NHA9 constructs form puncta in lin− HSPCs. A–G, Rep-
resentative images of live lin− HSPCs expressing EGFP empty vector as a 
control (A), G-NHA9 (B), G-NHA9–ΔDNA (C), G-NHA9–8FA (D), G-NHA9–
21FGAA (E), G-NHA9Midi (F), and G-NHA9Midi–21FGAA (G).
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Fig.  S4A–S4C). NHA9Midi formed condensates between 40 
and 80 nmol/L, whereas NHA9Midi–21FGAA did not form 
condensates up to 20 μmol/L (Fig. 4C and D; Supplementary 
Fig. S4D). Turbidity assays yielded similar differences in the 
condensation behavior of these constructs (Supplementary 
Fig.  S4E). Importantly, our in vitro results with these con-
structs closely parallel those obtained with the corresponding 
mEGFP-tagged constructs in HEK293T cells. These observa-
tions demonstrate that interactions mediated by multiva-
lent FG motifs contribute to the LLPS behavior of NHA9 
and NHA9Midi in HEK293T cells. In our in vitro assays, only 
homotypic interactions involving the FG motifs are possible. 
However, in cells, both homotypic and heterotypic protein–
protein interactions involving these residues are possible. 
In addition to FG motif–mediated interactions, however, 
additional heterotypic interactions with DNA mediated by 
the HOXA9 homeodomain influence LLPS (Fig. 1A), driving 
the formation of many small, chromatin-associated nuclear 
puncta by G-NHA9 in HEK293T cells.

Condensation Behavior of NHA9  
Variants in Lin− HSPCs

To address the relevance of our LLPS findings in HEK293T 
cells to leukemia, we performed studies using primary mouse 
lin− HSPCs, a model system known to faithfully recapitulate 
the leukemogenic effects of NUP98 FOs seen in human 
hematopoietic cells. For example, previous studies have 
shown that transplantation of lin− HSPCs expressing NHA9 
and other NUP98 FOs into recipient mice results in the 
development of myeloid leukemia (8, 21, 22, 46). Lin− HSPCs 
infected with lentiviral expression vectors were isolated by 
FACS 2 days after viral infection and imaged after 24 to 48 
hours. The G-NHA9 construct displayed dynamic nuclear 
puncta (Fig. 5A and B; Supplementary Video S5) qualitatively 
similar in number and size to those observed in HEK293T 
cells (Fig.  1B). The puncta observed for G-NHA9–ΔDNA 
were sparser, larger, and denser than those observed for 
G-NHA9, as observed in HEK293T cells (Fig. 5B and C; Sup-
plementary Fig. S5A). Further, the puncta-forming behavior 
of the other full-length NHA9 constructs examined paral-
leled that observed in HEK293T cells (Fig. 5D–G; Supplemen-
tary Fig. S5B and S5C), although the expression levels for the 
full range of G-NHA9 constructs were lower in HSPCs than 
in HEK293T cells [compare the range of G-NHA9 construct 
concentration values observed in HEK293T cells (Figs. 1C 
and E; 2B, C, and F–H; 3C–F) with those seen in lin− HSPCs 
(Supplementary Fig. S5A–S5C)]. As in HEK293T cells, only a 
small percentage of puncta formed by G-NHA9 and variant 
constructs were localized at the nuclear periphery in lin− 
HSPCs (Supplementary Fig. S5D). Importantly, these results 
demonstrate that puncta-forming behavior is an intrinsic 
property of the NHA9 constructs studied, and that forma-
tion of many small nuclear puncta by G-NHA9 is driven by 
interactions mediated by both multivalent FG motifs and the 
HOXA9 homeodomain.

NHA9 Transforms Lin− HSPCs and Alters 
Gene Expression

We next examined whether the FG motif valence or 
DNA-binding activity of the NHA9 constructs and their 

puncta-forming behavior were correlated with transforma-
tion as measured in colony-forming unit assays of NUP98 
FO-transduced lin− HSPCs (Supplementary Fig.  S6A). 
Expression of either the G-NHA9, G-NHA9–8FA, G-NHA9–
21FGAA, or G-NHA9Midi constructs induced serial replating 
of lin− HSPCs (Fig.  6A; Supplementary Fig.  S6B), whereas 
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G-NHA9Midi–21FGAA and G-NHA9–ΔDNA did not sus-
tain self-renewal (Fig. 6A). However, although expression of 
G-NHA9, G-NHA9–8FA, and G-NHA9Midi induced myeloid 
lineage differentiation, including expression of CD11b and 
Gr1, G-NHA9–21FGAA did not (Supplementary Fig.  S6C). 
These results suggest that only NHA9 constructs with the 
highest FG motif valence values (Fig.  3A) drive transforma-
tion, as evidenced by a myeloid serial replating phenotype. 
Our results with G-NHA9Midi show that the 21 FG motifs 
within the C-terminal region of NUP98-N are important 
contributors to induction of the myeloid phenotype in trans-
formed HSPCs, although the loss of eight of these motifs 
was compensated by the 17 N-terminal FG motifs within 
the G-NHA9–8FA construct. Further, both high-valence FG 
motifs and direct DNA binding by the HOXA9 homeodo-
main are required for HSPC transformation, as shown by 

the loss of this ability with G-NHA9–ΔDNA. Collectively, 
our results strongly suggest that LLPS by NHA9 contributes 
to the transformation of lin− HSPCs and to leukemogenesis 
in AML.

NUP98 FOs, including NHA9, bind to HOX family and 
other genes in hematopoietic stem cells (23), driving aber-
rant expression of these genes (6, 7, 25) and cell transforma-
tion (23). To determine whether the LLPS propensity of the 
G-NHA9 constructs, as quantified by FG motif valence, was 
correlated with patterns of gene expression, we performed 
RNA sequencing (RNA-seq) of lin− HSPCs transduced with 
empty vector, G-NHA9, G-NHA9–8FA, G-NHA9–21FGAA, 
G-NHA9Midi, G-NHA9Midi–21FGAA, and G-NHA9–ΔDNA. 
Cells for RNA-seq analysis were harvested from the first 
round of plating. The results showed that G-NHA9 induced 
expression of Hox and other genes (Fig. 6B; Supplementary 

Figure 6.  Expression of high FG motif valence NHA9 constructs in lin− HSPCs leads to hematopoietic cell transformation and aberrant expression of 
Hox family and other genes. A, Average number of colonies per 2,000 cells for lin− HSPCs expressing negative control empty vector and mEGFP-tagged 
NHA9 and mutant constructs. The values of colony numbers shown are mean ± SD from triplicate technical replicates of a representative experiment. 
B–D, RNA-seq was performed for lin− HSPCs expressing empty vector, G-NHA9, or mutants after 1 week of growth in methylcellulose containing myeloid 
and erythroid growth factors (n = 5 for each condition). B, Heat map for differentially expressed genes of interest. C, PCA of the 500 most variable genes. 
D, Gene set enrichment analysis for cells expressing G-NHA9, G-NHA9–8FA, or G-NHA9Midi—each versus empty vector. Pathways of interest are shown, 
with a complete list of significantly upregulated or downregulated gene sets in Supplementary Table S3. The most significantly dysregulated genes from 
each pathway are marked in B.
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Fig.  S6D) whose overexpression was previously shown 
to be associated with cell transformation and leukemo-
genesis in mice and humans (23, 25, 26). G-NHA9–8FA 
and G-NHA9Midi, but not the other constructs tested, also 
induced expression of Hox genes (Fig.  6B; Supplemen-
tary Fig. S6D). Principal component analysis (PCA; Fig. 6C) 
showed that the three myeloid phenotype–inducing NHA9 
constructs induced gene expression profiles in lin− HSPCs 
that were different from those induced by G-NHA9–21FGAA, 
G-NHA9Midi–21FGAA, G-NHA9–ΔDNA, and the empty vector 
control (Fig. 6B).

The results above show that transformation of lin− HSPCs 
by G-NHA9, G-NHA9–8FA, and G-NHA9Midi is associated with 
upregulation of a common set of developmental regulatory 
genes. Several genes, including Hoxa9 and Flt3, were upregu-
lated by the three myeloid lineage–inducing NUP98 FOs but 
not by the others with a homeodomain, suggesting that they 
are significant contributors to induction of the myeloid phe-
notype in lin− HSPCs (Fig. 6B; Supplementary Fig. S6D). Other 
developmental genes, including Meis1 and Pbx3, however, were 
strongly upregulated in G-NHA9 cells but not in the G-NHA9–
8FA, G-NHA9Midi, or other nontransforming conditions (Sup-
plementary Fig.  S6D). These genes then may be dispensable 
for myeloid cell transformation in NHA9 construct–expressing 
cells. Gene set enrichment analysis (Fig.  6D; Supplementary 
Table S3) showed that although G-NHA9 shared many target 
genes with G-NHA9–8FA and G-NHA9Midi, the latter FOs led 
to increased expression of unique gene sets. Many such genes, 
including Rps12 and Rpl12, encode proteins with functions 
related to the ribosome and translation (Fig. 6B and D). Nev-
ertheless, all three of these G-NHA9 constructs robustly form 
nuclear puncta in HSPCs (Fig.  5B, D, and F; Supplementary 
Fig.  S5A–S5C; Supplementary Video S5) and HEK293T cells 
(Figs. 1 and 3; Supplementary Fig.  S3), linking this type of 
LLPS behavior with increased self-renewal activity and myeloid 
differentiation in lin− HSPCs.

Additional NUP98 FOs Undergo LLPS and 
Transform Hematopoietic Cells

We next tested whether additional NUP98 FOs associ-
ated with acute leukemia formed liquid-like condensates in 
HEK293T cells and lin− HSPCs (Fig. 7A), including one dis-
playing an alternative DNA-binding homeodomain (NUP98–
PRRX1; ref.  47), another with an epigenetic mark–binding 
PHD domain (NUP98–KDM5A; ref. 21), and a third display-
ing a histidine and arginine (H/R)–rich region of unknown 
structure and function (NUP98–LNP1; ref. 48). We expressed 
mEGFP-tagged forms of these NUP98 FOs in HEK293T 

cells and found that all three formed nuclear puncta (Sup-
plementary Fig.  S7A–S7E), although they displayed a range 
of features (Supplementary Fig.  S7F). The puncta formed 
by G-NUP98–PRRX1, including their number, volume, and 
Kp values, were very similar to those for G-NHA9 (Supple-
mentary Fig.  S7B, S7C, and S7F; Supplementary Table  S2), 
likely because the two homeodomains bind DNA with similar 
affinity. G-NUP98–KDM5A, which binds histone H3 display-
ing dimethyl and trimethyl lysine 4 (H3K4-me2/3) epigenetic 
marks within chromatin (21), formed larger, less numerous 
puncta at generally higher expression levels than G-NHA9 
(Supplementary Fig. S7D and S7F; Supplementary Table S2). 
Finally, G-NUP98–LNP1 formed slightly larger puncta than 
G-NHA9 (Supplementary Fig. S7E and S7F; Supplementary 
Table S2) and showed greater partitioning into puncta than 
the other three NUP98 FOs (Supplementary Fig.  S7F; Sup-
plementary Table  S2). As for G-NHA9, the mEGFP-tagged 
molecules within the puncta discussed above were dynamic 
(Supplementary Fig.  S7G–S7I). Additionally, for G-NUP98–
LNP1, we observed puncta fusion (Supplementary Fig.  S7J; 
Supplementary Video S6). Together, these results support 
that the puncta formed by these three additional NUP98 FOs 
in HEK293T cells reflect the liquid-like features characterized 
in detail for G-NHA9 and suggest that this is a universal fea-
ture of NUP98 FOs.

To determine if the additional NUP98 FOs behave simi-
larly in hematopoietic cells, we expressed them in lin− HSPCs 
using lentivirus and performed imaging after 24 hours. All 
three FOs formed puncta that were very similar to those seen 
in HEK293T cells (Fig. 7B), although the cellular expression 
levels were at least 10-fold lower in HSPCs than in HEK293T 
cells (Supplementary Fig.  S7K). The low expression levels 
precluded accurate quantitation of puncta features. However, 
these results show that, despite lower expression levels, all 
four NUP98 FOs tested formed apparently liquid-like puncta 
in both HEK293T cells and lin− HSPCs.

Next, we determined whether the additional NUP98 FOs 
transform cells as measured by the colony-forming unit assay 
in lin− HSPCs. Expression of each FO resulted in sustained 
colony formation through four rounds of replating (Fig. 7C). 
Analysis of differentiation markers showed that the HSPCs 
transformed by the three additional NUP98 FOs exhibited 
the myeloid phenotype (Supplementary Fig. S7L). These find-
ings support that the relationship between puncta formation 
driven by LLPS and hematopoietic cell transformation seen 
with G-NHA9 is common to these three additional FOs, 
and possibly all NUP98 FOs due to their conservation of 
the LLPS-prone N-terminal FG motif–rich region of NUP98 

Figure 7.  Additional leukemia-associated NUP98 FOs form nuclear puncta and transform lin− HSPCs. A, Schematic of NHA9 and three additional 
NUP98 FOs (NUP98–PRRX1, NUP98–KDM5A, and NUP98–LNP1). Numbers indicate the amino acid residue. Numbers above the schematic reflect NUP98 
residues, whereas numbers beneath reflect the fusion partner’s residues. B, Representative images of live lin− HSPCs expressing G-NUP98–PRRX1, 
G-NUP98–KDM5A, and G-NUP98–LNP1. EGFP empty vector and G-NHA9 are included for comparison. C, Average number of colonies per 2,000 cells for 
lin− HSPCs expressing negative control empty vector and NUP98 FOs. Data shown are mean ± SD from triplicate technical replicates of a representative 
experiment. D, Representative images of a fixed, nontransduced human CD34+ (hCD34+) cell (top) and a NUP98–KDM5A PDX cell (bottom) stained with an 
antibody against NUP98. NUP98 is magenta, and DNA is blue. The heat map is a normalized representation of NUP98 fluorescence intensity across the 
PDX cell. E, Conceptual scheme illustrating how LLPS by NHA9 mediates the formation of aberrant transcriptional condensates in hematopoietic cells. 
NHA9 (top, left cell image) undergoes LLPS to form many small, chromatin-associated puncta that drive aberrant expression of Hox and other genes 
and transform hematopoietic cells. LLPS is driven by both homotypic and heterotypic interactions. Mutation of FG motifs (NHA9–21FGAA, bottom left) 
weakens both homotypic and heterotypic protein–protein interactions, yielding less numerous, larger, and less dense puncta that do not activate Hox 
gene expression or transform HSPCs. Mutation of residues in the HOXA9 homeodomain (HD; NHA9–ΔDNA, bottom right) weakens heterotypic interac-
tions with DNA, yielding less numerous, larger, and more dense puncta that also do not induce the leukemogenic phenotype in HSPCs.
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and C-terminal regions that often display identifiable DNA- 
and/or chromatin-binding domains (ref. 18; Supplementary 
Table S1).

To address clinical relevance, we obtained hematopoi-
etic cells from an AML patient-derived xenograft (PDX; 
Supplementary Fig.  S7M) harboring the NUP98–KDM5A 
fusion oncogene (49). IF analysis of the PDX cells using 
a monoclonal antibody against NUP98 revealed nuclear 
puncta (Fig.  7D) qualitatively similar in size and number 
to those observed in mouse lin− HSPCs (Fig.  7B). Nuclear 
puncta were not observed in identically stained nontrans-
duced human CD34-positive HSPCs (hCD34+ cells; Fig. 7D). 
Due to the scarcity of cells and high background staining in 
the IF images, we were unable to quantify puncta features 
for the human PDX cells harboring the NUP98–KDM5A 
fusion oncogene. However, we were able to detect puncta 
in 10 cells (Supplementary Fig. S7N). To minimize artifacts 
due to antibody reactivity with endogenous NUP98 within 
NPCs, we excluded IF intensity within 0.5 μm of the nuclear 
periphery. This analysis revealed nuclear puncta in several 
of the PDX cells (Supplementary Fig.  S7N and S7O). A 
similar analysis of control hCD34+ HSPCs registered very 
few puncta (Supplementary Fig.  S7N and S7O). Together, 
these results demonstrate that the NUP98–KDM5A FO 
forms nuclear puncta in patient-derived AML cells similar 
to those observed after viral transduction of mouse lin− 
HSPCs. Broadly, these results support our proposal that 
formation of nuclear puncta by NUP98 FOs drives aberrant 
gene expression, hematopoietic cell transformation, and the 
development of human AML.

DISCUSSION
Our results show that NHA9 forms hundreds of nuclear 

puncta through both homotypic and heterotypic mecha-
nisms of LLPS, which we demonstrate is causally linked 
with aberrant gene expression and transformation of mouse 
hematopoietic cells to the myeloid lineage. Three addi-
tional NUP98 FOs, NUP98–PRRX1, NUP98–KDM5A, and 
NUP98–LNP1, also form nuclear puncta with apparent 
liquid-like features and transform and induce myeloid dif-
ferentiation in mouse lin− HSPCs. Further, the NUP98–
KDM5A FO expressed in AML PDX hematopoietic cells 
formed puncta similar to those observed in mouse lin− 
HSPCs. Together, our results for multiple NUP98 FOs and 
those of others for NHA9 (31) demonstrate that LLPS drives 
the formation of nuclear puncta by these FOs that medi-
ate aberrant gene expression, transform both mouse and 
human hematopoietic cells, and promote leukemogenesis. 
The observation of nuclear puncta for many additional 
AML-associated NUP98 FOs that display conserved domain 
features (Supplementary Table  S1) strongly suggests that 
homotypic and heterotypic LLPS drives leukemogenesis by 
most NUP98 FOs.

The ability to undergo both homotypic and heterotypic 
interactions is encoded in the domain features of NUP98 
FOs. Homotypic and heterotypic protein–protein interac-
tions are mediated by the 38 FG motifs within the N-terminal 
disordered region of NUP98, whereas, in the case of NHA9, 
additional heterotypic interactions with DNA are mediated 

by the C-terminal HOXA9 homeodomain (Fig.  7E, top). 
Together, these interactions drive formation of DNA-associ-
ated NHA9 puncta through LLPS. This is supported by the 
observation of liquid-like features for G-NHA9 (Fig.  1D), 
as well as for G-NHA9 constructs defective in DNA bind-
ing [Figs. 2D and E and 7E (bottom, right); Supplementary 
Fig.  S2B, S2J, and S2K; Supplementary Videos S2 and S3]. 
The observation of large, round condensates for NHA9 at 
high concentrations in vitro (Fig. 1F) further supports forma-
tion through LLPS. Although in vitro NHA9 condensates are 
gel-like (Fig. 1G), the puncta observed for G-NHA9 in cells 
are liquid-like, which we propose is due to dynamic hetero-
typic interactions with many protein partners (27, 31). The 
strong concentration dependence of Kp values for G-NHA9 
and G-NHA9–ΔDNA in HEK293T cells (Fig.  2H) provides 
strong evidence for puncta formation through multicom-
ponent, heterotypic LLPS (44). Further, the responses of the 
puncta-forming behavior of the NHA9 constructs to muta-
tions that reduce their FG motif valence are in accord with 
expectations with LLPS as the driving mechanism. In sum-
mary, multiple lines of evidence demonstrate that LLPS is 
the driving mechanism of NHA9 puncta formation in cells, 
as discussed by others (31).

Our results demonstrate that the C-terminal FG motif 
region within NHA9 is an important determinant of puncta-
forming behavior, aberrant gene expression, and hematopoi-
etic cell transformation. Supporting this, puncta-forming 
behavior was severely attenuated and aberrant gene expres-
sion and hematopoietic cell transformation were abrogated 
when only the N-terminal FG motif repeat region is present 
within NHA9 (as in G-NHA9–21FGAA; Fig.  7E, bottom 
left). The C-terminal FG motif repeat region not only is 
longer than the N-terminal region, but also displays higher 
FG motif valence (21 vs. 17, with six vs. three GLFG motifs) 
and displays an approximately 80-residue-long prion-like 
domain (Supplementary Fig.  S8). Finally, in addition to 
enrichment in FGs, the C-terminal region is moderately 
enriched in asparagine, glutamine, serine, and threonine 
residues (Supplementary Fig. S8; compare bottom left with 
bottom right), which can contribute to LLPS (50). The 
strong contribution of the C-terminal FG motif region to 
LLPS-driven transformation of lin− HSPCs may explain why 
virtually all reported NUP98 FOs retain all of the NUP98-
N FG motifs (18). It follows logically that gene transloca-
tions with breakpoints closer to the 5′ end of the NUP98 
gene, leading to FOs with incomplete C-terminal FG motif 
regions, would experience blunted LLPS and fail to induce 
aberrant gene expression and transform hematopoietic cells. 
In summary, our data support that the C-terminal FG motif 
region within the NHA9 FO drives LLPS in cell nuclei and 
contributes to aberrant Hox gene expression and transfor-
mation of lin− HSPCs.

Finally, we propose that, based on our mechanistic under-
standing of the LLPS behavior of the four NUP98 FOs we 
studied, virtually all additional NUP98 FOs, which retain 
the LLPS-prone FG-rich IDR of NUP98 and DNA- or chro-
matin-binding domains from the C-terminal fusion partners 
(18), similarly undergo LLPS, forming nuclear puncta that 
drive aberrant gene expression and often transform hemat-
opoietic cells. For example, in addition to DNA-binding 
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homeodomains, HMG and other DNA-binding domains are 
represented within NUP98 FOs, as well as other chromatin-
binding domains, including PHD domains, bromodomains, 
and SET and IQ domains (18). Further, other types of FOs 
associated with a wide range of cancers contain fused regions 
of transcription factors (51) that are understood to con-
tain disordered regions prone to LLPS (32). In fact, several  
reports have indicated that LLPS might play a role in aber-
rant gene expression linked to leukemogenesis in the case 
of EWS–FLI1, a driver in Ewing sarcoma, and other FUS/
EWS/TAF15 protein family FOs (35, 52, 53). We propose that 
many FOs, which display the LLPS-prone IDR/chromatin- 
binding domain organization discussed above, acquire 
oncogenic function through deleterious functional synergy 
between their LLPS-prone IDRs and folded chromatin-binding  
domains (54). This synergy may be responsible for the pro-
tein interaction network rewiring associated with FOs (55). 
Our findings with the four NUP98 FOs reported herein sug-
gest that their leukemogenic effects in hematopoietic cells 
are rooted in synergy between homotypic and heterotypic 
interactions that drive LLPS. Critical for the future will be to 
leverage this understanding to develop targeted approaches 
to therapeutically modulate aberrant LLPS by FOs (56) and 
possibly counteract their oncogenic phenotypes.

METHODS
Cell Culture and Transient Transfections

HEK293T cells (ATCC; RRID:CVCL_0063) were cultured in 
DMEM with high glucose (Gibco) and supplemented with 1× peni-
cillin/streptomycin (Gibco), 10% FBS (HyClone), and 6 mmol/L 
l-glutamine (Gibco) and maintained at 37°C in 5% CO2. Cells were 
tested for Mycoplasma every 2 months using PCR (e-Myco plus, LiLiF). 
Cells were authenticated by short tandem repeat profiling (PowerPlex 
Fusion at the St. Jude Hartwell Center). Cells were transfected in a 
96-well plate with 100 ng of plasmid DNA in the CL20 vector back-
bone using FuGENE HD (Promega) per the manufacturer’s instruc-
tions. All fusion proteins were N-terminally tagged with monomeric 
EGFP (A207K mutation in EGFP), and EGFP was used for the empty 
vector control plasmids (see plasmid list in Supplementary Table S4 
for sequences). Cells were used for a maximum of 25 passages 
after thawing.

Immunofluorescence
For NPC staining in HEK293T, cells were fixed with 4% para-

formaldehyde (Electron Microscopy Sciences) and then incubated 
for 5 minutes in 0.5% Triton-X-PBS for cell permeabilization. For 
fixation of hematopoietic cells and NUP98–KDM5A PDX cells, 
a cytocentrifuge was used to adhere cells to a glass slide by spin-
ning at 400 rpm for 4 minutes. The cells were then rapidly rinsed 
in 1×  PBS–5 mmol/L EGTA, followed by incubation at  −20°C in 
95% methanol–5 mmol/L EGTA for 30 minutes. The primary 
antibodies used were mouse anti-NUP107 (Abcam, Mab414, 
RRID:AB_448181, 1:300) and rat anti-NUP98 (GeneTex, 2H10, 
RRID: AB_2894964, 1:200). The secondary antibodies used were 
raised in donkey and conjugated to Alexa Fluor Rhodamine Red-X 
or Alexa Fluor 647 (Jackson ImmunoResearch; RRID:AB_2340614) 
at 1:300 diluted in 5% normal donkey serum. Cells were counter-
stained with DAPI (Invitrogen) diluted in PBS (300 nmol/L) for 2 
minutes and then mounted onto glass slides with antifade solution 
(90% glycerol, 0.5% N-propyl gallate). See Supplementary Methods 
for additional details.

Recombinant Protein Expression, Purification, 
and Labeling

Recombinant proteins were expressed in Escherichia coli BL21(DE3) 
cells (Novagen) using constructs in the pET28-12xHis backbone 
(see plasmid list in Supplementary Table S4). Proteins were purified 
using Ni-NTA affinity chromatography, followed by proteolytic 
removal of the polyhistidine tag. The 12xHis-TEV was removed 
using Ni-NTA beads, and the flow-through fractions contain-
ing cleaved proteins were loaded on an HPLC column (PLRP-S 
1000A 8  μmol/L, Agilent Technologies) for the final purification 
step. Proteins were fluorescently labeled using either maleimide or 
succini midyl ester derivatives of Alexa Fluor dyes (Thermo Fisher 
Scientific) according to the manufacturer’s protocol. The labeled 
protein concentration and efficiency of labeling were determined 
according to the manufacturer’s protocol. See Supplementary 
Information for additional details.

In Vitro Confocal Microscopy
For constructing phase diagrams, images were acquired using a 

3i Marianas spinning disk confocal microscope with SlideBook 6.0 
software (3i) and a 63× oil immersion objective, numerical aperture 
1.4. The unlabeled NHA9 dissolved in water with 5 mmol/L DTT was 
mixed with Alexa Fluor–labeled NHA9 dissolved in the same solvent 
and diluted with 2× PBS (1× PBS; 136.9 mmol/L NaCl, 2.68 mmol/L 
KCl, 10 mmol/L Na2HPO4, 1.7 mmol/L KCl, pH 7.4) at 1:1 to induce 
LLPS. The samples were incubated at room temperature overnight 
before imaging in a 384-well SensoPlate (Greiner Bio-One) coated 
with Sigmacote (Sigma-Aldrich), followed by 1% weight/volume plu-
ronic F-127 (Sigma-Aldrich). As the condensates settled to the bot-
tom surface of the coverslip due to gravity, all images were acquired 
from the bottom of the coverslip to a 6  μm height with a 0.5-μm 
interval. Images were processed as maximum intensity projections 
over the different z-slices.

Fluorescence Recovery after Photobleaching
FRAP experiments were performed on a Marianas spinning disk 

confocal microscope with SlideBook 6.0 software (3i), using 100× oil 
immersion objective, numerical aperture 1.45. A circular region of 
interest (ROI) of diameter 0.5 μm was located at the center of droplets 
and photobleached to 50% intensity by illuminating the ROI with an 
appropriate laser. Laser power was set as needed for 100 ms exposure. 
Background signal was subtracted from the measured fluorescence 
recovery values and normalized against an unbleached condensate. 
As NHA9 condensates underwent rapid gelation under in vitro condi-
tions, the FRAP experiments were performed within 2, 4, and 8 min-
utes of the formation of the condensates. For in-cell FRAP, a single 
punctum was bleached with 50 ms exposure, and the recovery of the 
fluorescence was tracked manually by shifting a 0.6-μm diameter 
ROI. The data were normalized against the overall photobleaching 
for the mEGFP fluorescence. The FRAP data curves were fitted using 
the simple exponential equation fit given below.
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Where It is the measured fluorescence intensity at time point t, T1/2 is 
the half-time of recovery, and Mf is the mobile fraction.

Turbidity Assays
For all turbidity measurements, different concentrations of the 

untagged-NHA9 constructs were diluted with 2× PBS, such that the 
final buffer was 1× PBS. Absorption at 340 nm was measured after 
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30 minutes of incubation of the samples using a NanoDrop 2000c 
spectrophotometer (Thermo Fisher Scientific). The 0 μmol/L protein 
concentration, which is the buffer-only sample, was used as a back-
ground, and that buffer-only A340 value was subtracted from all the 
protein A340 values. The mean and SD values were obtained from at 
least three independent sets of experiments.

Preparation of HSPCs
All mice were maintained in the Animal Resource Center at  

St Jude  Children’s Research Hospital and were treated ethically 
under Animal Care and Use Committee–approved protocol num-
ber 584-100669-10/20. Whole bone marrow was harvested from 
the forelimbs and hindlimbs of male and female 6- to 12-week-
old C57Bl/6 mice (RRID: IMSR_JAX:000664) in PBS + 5% FBS 
(HyClone). Lin− HSPCs were selected using the EasySep Mouse 
Hematopoietic Progenitor Cell Isolation Kit (STEMCELL Tech-
nologies) according to the manufacturer’s instructions. Cells were 
resuspended in IMDM (Gibco) containing 20% FBS (HyClone), 
1×  penicillin–streptomycin–glutamine (Gibco), 50 ng/mL SCF 
(PeproTech), 40 ng/mL Flt3 (PeproTech), 30 ng/mL IL6 (Pepro-
Tech), 20 ng/mL IL3 (PeproTech), and 10 ng/mL IL7 (PeproTech). 
Cells were then seeded onto retronectin-treated plates preloaded 
with virus. Lentiboost B (Sirion Biotech) was added at 1:100 into 
the cell suspension, and the plates were spun at 800  ×  g and 4°C 
for 90 minutes. Following this spin, cells were moved to a 37°C 
incubator and cultured for 2 days. Cells were then collected using 
cell dissociation buffer (Gibco). FACS was used to isolate mCherry- 
and/or mEGFP-expressing cells.

Virus Preparation
Virus was prepared by cotransfection of approximately 40% con-

fluent HEK293T cells grown in DMEM (Lonza) containing 10% FBS 
(HyClone) and 1× penicillin–streptomycin–glutamine (Gibco). Five-
hundred microliters OptiMEM-reduced serum medium (Gibco) was 
mixed with 40  μL FuGENE HD (Promega) for each 10-cm dish of 
HEK293T cells. After a 5-minute incubation at room temperature, 
plasmids were added. The St. Jude vector core prepared all lentivi-
ral virus with constructs in the CCLMPC vector backbone using 
VSV-G pseudotyping, followed by purification and concentration 
by ion exchange. For retrovirus, 10 μg plasmid of interest in MSCV 
backbone + 1 μg of CAG-ECO and 3 μg of gag-pol were added. See 
plasmid list in Supplementary Table  S4. After a 20- to 30-minute 
incubation at room temperature, OptiMEM mixture was added 
drop-wise to cells. The media were changed 18 to 24 hours after 
transfection, and viral supernatants were collected 48 to 72 hours 
after transfection. Lentivirus was used in the colony-forming unit 
assay, RNA-seq experiments, and HSPC imaging for all NHA9 
constructs. Lentivirus was also used for HSPC imaging of NUP98–
KDM5A, NUP98–PRRX1, and NUP98–LNP1. Retrovirus was used 
for the colony-forming unit assay with NUP98–KDM5A, NUP98–
PRRX1, and NUP98–LNP1.

Colony-Forming Unit Assays
HSPCs isolated and prepared as above were plated in Meth-

ocult containing myeloid and erythroid growth factors (M3434, 
STEMCELL Technologies). Eight thousand cells in 400 μL IMDM 
(Gibco) containing 2% FBS (HyClone) and 1×  penicillin–strepto-
mycin–glutamine (Gibco) were added to 3.2 mL Methocult along 
with 800  μL of the same media containing 50 ng/mL GM-CSF 
(PeproTech); 1.1 mL of the Methocult mixture was plated in a 
6-cm dish (2,000 cells/dish) in technical triplicates. After 1 week 
of growth, colonies were counted, and cells were washed well with 
PBS before being replated as described above. This process was 
repeated until no colonies were counted across the three plates for 

each condition or for at least four rounds of colony growth. Images 
of colonies were acquired using the Nikon Eclipse TS100 micro-
scope. For all NHA9 constructs, colony formation was assessed 
using mEGFP-tagged constructs. Untagged constructs were used 
for colony formation assessment of NUP98–KDM5A, NUP98–
PRRX1, and NUP98–LNP1.

PDX Cells
A PDX was established by tail-vein injection of CD3-depleted cells 

from a female patient with AML FAB M5, karyotype 46XX, and an 
NUP98–KDM5A fusion into sublethally irradiated (250 rad) NSG-
SGM3 mice. Leukemic cells harvested from the abdominal mass were 
fixed and stained as described above. The patient from whom the 
PDX cells were obtained was enrolled on a protocol with provision 
of banking of leukemia samples for research that required written 
informed consent from the patient or the patient’s guardians.

RNA Isolation
HSPCs were isolated in parallel from 6- to 12-week-old male and 

female C57Bl/6 mice and transduced with each virus in triplicate. 
Samples were cultured for 2 days, and mCherry-positive empty vec-
tor and mCherry- and mEGFP-positive NHA9 or mutant cells were 
isolated using FACS. Cells were grown in Methocult for 1 week as 
described above, and then washed in PBS and resuspended in 600 μL 
cold TRIzol. Lysis and homogenization were performed immediately 
using pipetting and vortexing, respectively. RNA was isolated using 
the Direct-Zol RNA MiniPrep Kit (Zymo Research). RNA was quanti-
fied using NanoDrop 2000 (Thermo Fisher Scientific).

RNA Sequencing and Analysis
RNA-seq was performed by the Hartwell Center at St. Jude Children’s 

Research Hospital. Libraries were prepared using the TruSeq Stranded 
Total RNA kit (Ilumina). One hundred fifty base-pair, paired reads 
were generated by sequencing on NovaSeq 6000 (Ilumina). All data 
have been deposited in the Gene Expression Omnibus (GEO) and are 
accessible using accession number GSE185621. See Supplementary 
Information for additional details.

Confocal Microscopy Imaging
All microscopy images were acquired on a 3i Marianas system 

configured with a Yokogawa CSU-W spinning disk confocal micro-
scope utilizing a 100× Zeiss objective, 405 nm (Hoechst) and 488 nm 
(mEGFP) laser lines, and SlideBook 6.0 (3i). 3-D images of cells were 
captured as z stacks with 0.2 μm spacing between planes, spanning 
12.2  μm in total. Live HEK293T cells were imaged at 37°C in phe-
nol red–free DMEM with high glucose (Gibco) supplemented with 
1× penicillin/streptomycin, 10% FBS, 6 mmol/L l-glutamine, and 25 
mmol/L HEPES. Live mouse HSPCs were imaged in phenol red–free 
IMDM (Gibco) supplemented with 20% FBS (HyClone), 1×  penicil-
lin–streptomycin–glutamine (Gibco), 50 ng/mL SCF (PeproTech), 40 
ng/mL Flt3 (PeproTech), 30 ng/mL IL6 (PeproTech), 20 ng/mL IL3 
(PeproTech), and 10 ng/mL IL7 (PeproTech). All fixed cell imaging 
was performed at room temperature.

Image Analysis of NHA9 Constructs and  
Additional NUP98 FOs

Analyses of puncta were performed using a customized Python 
script, in which nuclei were segmented in individual z-layers and 
then combined into 3-D stacks. Puncta were segmented by filtering 
the mEGFP channel with a scale-adapted Laplacian of Gaussian 
(LoG) filter, thresholding the result, and applying watershed seg-
mentation, using the maxima of the LoG-filtered image as seeds. 
Individual puncta were quantified by computing their volume, 
mean mEGFP intensity, and integrated mEGFP intensity (the sum 
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of intensities of all puncta pixels). Individual cell nuclei were quan-
tified by computing total and average puncta volume (Vp), mean and 
integrated mEGFP fluorescence intensity, and mean and integrated 
puncta localized mEGFP fluorescence intensity. We reported puncta 
number per unit volume of the cell nuclei because a small propor-
tion of cells were not fully imaged. We quantified the relationship 
between mEGFP and Hoechst intensities using Pearson correlation. 
The details of the image analysis pipeline and the extracted puncta 
features, including partition coefficient (44), are provided in Sup-
plementary Information. Heat maps shown in Fig. 7D were gener-
ated using Imaris Imaging Software (Oxford Instruments).

Data Availability Statement
The RNA-seq data generated in this study have been deposited in 

GEO and are accessible using the accession number GSE185621. The 
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67c1ppi0m8cud49/AADz4yRIwULNEu85cpSfyvETa?dl=0.
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