Skip to main content
. 2022 Feb 28;33(3):325–333. doi: 10.1097/EDE.0000000000001470

TABLE 2.

Simulation Study Results

Truth Mean Est MC SE % Cov cRR % CovmRR
Scenario 1: Basic setting
Estimands
  1 − ψcRR 0.96
  1 − ψmRR 0.96
  1 − mRR for SARS-CoV-2 0.84
Estimators
  Logistic regression 0.97 0.01 89 -
  IPTW
   πcontrols 0.96 0.02 - 92
   πall 0.44 0.06 - 0
Scenario 2: Effect modification by C for SARS-CoV-2 infection
Estimands
  1 − ψcRR 0.77
  1 − ψmRR 0.75
  1 − mRR for SARS-CoV-2 0.44
Estimators
  Logistic regression 0.91 0.06 39 -
  IPTW
   πcontrols 0.74 0.15 - 93
   πall 0.18 0.05 - 0
Scenario 3: Partial interference by block vaccination prevalence, f
Estimands
  1 − ψcRR 0.86
  1 − ψmRR 0.85
  1 − mRR for SARS-CoV-2 0.48
  1 − ψcRR,75 0.86
  1 − ψcRR,50 0.80
  1 − ψcRR,25 0.76
Estimators
  Logistic regression 0.88 0.04 89 -
  IPTW
   πcontrols 0.85 0.06 - 92
   πall 0.14 0.04 - 0

Aggregate results of the application of each method to 1,000 simulated datasets of n hospitalized patients where n = 500 for Scenarios 1 and 2 and n =1000 for Scenario 3. The results are given with respect to one minus the risk ratios, often referred to as “vaccine effectiveness.” ψcRR: the conditional risk ratio for hospitalization with COVID-19 in Equation (3); ψmRR: the marginal risk ratio for hospitalization with COVID-19 in Equation (5).

% Cov indicates % of 95% confidence intervals that contain the true vaccine effectiveness (optimal is 95%); Mean est, mean estimate; MC SE, Monte-Carlo standard error of the estimate; mRR marginal risk ratio.