TABLE 2.
Simulation Study Results
Truth | Mean Est | MC SE | % Cov cRR | % CovmRR | |
---|---|---|---|---|---|
Scenario 1: Basic setting | |||||
Estimands | |||||
1 − ψcRR | 0.96 | ||||
1 − ψmRR | 0.96 | ||||
1 − mRR for SARS-CoV-2 | 0.84 | ||||
Estimators | |||||
Logistic regression | 0.97 | 0.01 | 89 | - | |
IPTW | |||||
πcontrols | 0.96 | 0.02 | - | 92 | |
πall | 0.44 | 0.06 | - | 0 | |
Scenario 2: Effect modification by C for SARS-CoV-2 infection | |||||
Estimands | |||||
1 − ψcRR | 0.77 | ||||
1 − ψmRR | 0.75 | ||||
1 − mRR for SARS-CoV-2 | 0.44 | ||||
Estimators | |||||
Logistic regression | 0.91 | 0.06 | 39 | - | |
IPTW | |||||
πcontrols | 0.74 | 0.15 | - | 93 | |
πall | 0.18 | 0.05 | - | 0 | |
Scenario 3: Partial interference by block vaccination prevalence, f | |||||
Estimands | |||||
1 − ψcRR | 0.86 | ||||
1 − ψmRR | 0.85 | ||||
1 − mRR for SARS-CoV-2 | 0.48 | ||||
1 − ψcRR,75 | 0.86 | ||||
1 − ψcRR,50 | 0.80 | ||||
1 − ψcRR,25 | 0.76 | ||||
Estimators | |||||
Logistic regression | 0.88 | 0.04 | 89 | - | |
IPTW | |||||
πcontrols | 0.85 | 0.06 | - | 92 | |
πall | 0.14 | 0.04 | - | 0 |
Aggregate results of the application of each method to 1,000 simulated datasets of n hospitalized patients where n = 500 for Scenarios 1 and 2 and n =1000 for Scenario 3. The results are given with respect to one minus the risk ratios, often referred to as “vaccine effectiveness.” : the conditional risk ratio for hospitalization with COVID-19 in Equation (3); : the marginal risk ratio for hospitalization with COVID-19 in Equation (5).
% Cov indicates % of 95% confidence intervals that contain the true vaccine effectiveness (optimal is 95%); Mean est, mean estimate; MC SE, Monte-Carlo standard error of the estimate; mRR marginal risk ratio.