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Fusion of fully integrated analog 
machine learning classifier 
with electronic medical records 
for real‑time prediction of sepsis 
onset
Sudarsan Sadasivuni1,5, Monjoy Saha2,5, Neal Bhatia4, Imon Banerjee2,3,6 & 
Arindam Sanyal1,6*

The objective of this work is to develop a fusion artificial intelligence (AI) model that combines patient 
electronic medical record (EMR) and physiological sensor data to accurately predict early risk of sepsis. 
The fusion AI model has two components—an on-chip AI model that continuously analyzes patient 
electrocardiogram (ECG) data and a cloud AI model that combines EMR and prediction scores from 
on-chip AI model to predict fusion sepsis onset score. The on-chip AI model is designed using analog 
circuits for sepsis prediction with high energy efficiency for integration with resource constrained 
wearable device. Combination of EMR and sensor physiological data improves prediction performance 
compared to EMR or physiological data alone, and the late fusion model has an accuracy of 93% in 
predicting sepsis 4 h before onset. The key differentiation of this work over existing sepsis prediction 
literature is the use of single modality patient vital (ECG) and simple demographic information, 
instead of comprehensive laboratory test results and multiple vital signs. Such simple configuration 
and high accuracy makes our solution favorable for real-time, at-home use for self-monitoring.

Background
The USA has one of the highest healthcare costs in the world even though it lags behind peer nations in health 
outcomes. Advances in artificial intelligence (AI) and continuous health surveillance technologies can alleviate 
some of the healthcare burden through early detection of health issues. Our objective is to develop on-chip AI 
circuit that will continuously monitor physiological signals and build a fusion model to predict early risk of 
clinically adverse event to increase the management time and prevent adverse outcome (see Fig. 1). In this study, 
we used sepsis as our use-case since sepsis has high mortality rates around 40% for severe cases after onset1, and 
almost 80% of sepsis patients have onset outside hospital. Real-time, continuous at-home health surveillance 
leveraging AI can significantly improve outcomes for sepsis by providing early alert to patients and allowing 
them to seek timely medical intervention which may significantly reduce the mortality rate.

While recent clinical trials, such as the Apple Heart Study2, have demonstrated the utility of wearable device 
for continuous health monitoring, there are several challenges and limitations associated with the current tech-
nologies - 1. existing wearable devices lack the ability to integrate electronic medical record (EMR) with sensor 
data in real-time, even though EMR is known to have a strong influence on health abnormality detection3–6; 2. 
most wearable devices do not have automated inference capability and depend on telemetry and medical experts 
for actionable inference; 3. the current framework of performing AI analysis in the cloud increases risks of breach 
in patient data during transmission over the network7,8. The proposed work addresses these challenges through 
a two-step fusion AI framework—an AI circuit that can be integrated with wearable device for performing in-
situ analysis of continuous sensor data, and a cloud AI model that performs fusion of demographic data and 
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scores from embedded AI circuit for real-time risk prediction of sepsis onset. Raw patient data collected through 
wearable device is not transmitted to the cloud; rather only prediction scores of the embedded AI circuit is sent 
to the cloud for fusion which improves robustness against eavesdropping attacks on the patient’s sensor data.

The proposed two-step fusion AI solution partitions the data analysis into ECG and EMR data models (Fig. 1). 
The ECG AI model will be integrated with physiological sensor attached to the patient body, and will continu-
ously analyze sensor data and classify it into sepsis and non-sepsis risk for varying onset time. The prediction 
score from the on-chip ECG model will be transmitted to the external EMR AI model that will be implemented 
on cloud processor and use deep-learning techniques to perform fusion of physiological and EMR data for preci-
sion health decisions. The user will enter EMR data through a smart-phone application during initial registration, 
and the AI model will alert the user to abnormal health conditions. Our hypothesis is that integration of sensor 
and EMR data will significantly improve clinical decision accuracy, while selective transmission will extend 
un-interrupted patient monitoring span and improve security against unwanted access. In this work, ECG is 
selected as the physiological modality since studies9–12 have shown that sepsis patients show prolonged duration 
and reduced amplitude for QRS segments which can be picked up by AI models. A recent work13 has also shown 
that deep-learning models can reliably perform sepsis screening using only patient ECG signal.

Results
Experiments in the study were carried out following the World Medical Association (WMA) developed ethi-
cal protocol for conducting ethical medical research. The model was trained and tested on 965 unique patients 
(514 sepsis and 451 non-sepsis) from Emory Healthcare system and the sepsis onset time is defined by Sepsis-3 
definition14. As a baseline, the prediction results using only single modality models (ECG and EMR separately) 
have been shown in Table 1. In this experiment with EMR models, we used only patient demographic data (age, 
gender, race, ethnicity) and co-morbidity information represented in textual format. Out of four different clas-
sifier models, random forest classifier with boosting strategy showed the highest classification accuracy 76% 
with area under the curve (AUC) of 0.79 for identifying sepsis risk with demographics and co-morbidity. The 
average classification accuracy by rest of the classifiers was around 51% which shows the fact that EMR data 
alone, even including previous clinical history, is not a good predictor for sepsis prediction task. For our further 
experiments, we used random forest classifier since it provides the optimal performance on the baseline clas-
sification task. The stand-alone ECG model achieved a 95% accuracy for predicting sepsis within 1 h. While the 
ECG model achieved high accuracy for short-term prediction, the baseline performance of the ECG model was 
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86% and 77.5% accuracy for predicting sepsis 4 h and 6 h before the onset time which is not optimal for taking 
early preventive measures for sepsis at-home.

In order to improve the accuracy for early prediction, we developed a late fusion model where we trained a 
meta-learner on the prediction scores of on-chip ECG model and EMR models to integrate the information from 
two data sources. Table 1 show late fusion results. In order to interpret the importance of different data sources, 
we performed the fusion in two different settings—setting 1: late fusion was performed using demographic, and 
ECG data; setting 2: late fusion was performed using demographic, co-morbidity, and ECG data. Late fusion 
was performed for 1 h to 6 h before the sepsis onset time. Figure 2 shows the area under the receiver operating 
characteristic curves (AUROC) for late fusion model using demographic, co-morbidity, and ECG data at dif-
ferent time steps.

Table 1.   Baseline prediction results using ECG on-chip model, and demographics and co-morbidity data. 
Late fusion model performance—Setting 1: using demographic and ECG data; Setting 2: using demographic, 
co-morbidity and ECG data. Optimal performance for every prediction task is highlighted in bold.

ML classifier

Accuracy (%)

1 h 2 h 3 h 4 h 5 h 6 h

ECG model

On-chip ANN 95 87.5 86.2 86 83.7 77.5

 ML classifier Accuracy (%)

EMR model

Linear SVM 49

Logistic Regression 53

Random Forest 76

Neural Network 51

 Meta classifier

Accuracy (%)

 1 h 2 h 3 h 4 h 5 h 6 h

Late fusion model

Setting 1

Linear SVM 94 90 86 89 82 76

Logistic Regression 94 89 88 89 84 76

Random Forest 88 88 84 81 74 74

Neural Network 94 91 85 90 84 76

Setting 2

Linear SVM 93 96 95 91 90 86

Logistic Regression 93 96 95 93 90 86

Random Forest 88 96 89 88 88 81

Neural Network 92 95 91 92 89 84

Figure 2.   Receiver operating characteristic curve for EMR model and late fusion using demographic, 
co-morbidity, and ECG data at different time steps.
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Fusion models in general improved the baseline EMR model performance from 76 to 93% for 1 h and 86% for 
6 h prediction before the sepsis onset. The baseline EMR model’s AUROC values also improved from 0.79 to 0.99 
for 4 h prediction task (Fig. 2). An interesting observation can be drawn from the fusion models’ performance 
that the prediction of sepsis close to the onset time (e.g. 1 h) achieved better performance (94%) without clinical 
history of the patients while clinical history combined with demographics and sensor data provides a significant 
boost in performance for early sepsis prediction for later onset (2 h to 6 h). As examples, adding clinical history 
to demographics and ECG data improved the prediction accuracy from 84% to 90% for 5 h before onset and 
76% to 86% for 6 h before onset. We present details of the performance analysis in the supplemental material.

We designed a graphical mobile application for easy adaptability from the user view-point (Fig. 3). After initial 
registration by the user, the application collects the sensor prediction from the AI model integrated within the 
sensor patch and collects the demographic and clinical history data from the user. Our prediction fusion algo-
rithm is the core backbone of the application that will compute the risk of sepsis and visualize the risk prediction 
for 6 different onset times in a dial format.

Discussion
In this study, we developed an innovative fusion AI solution for sepsis prediction and demonstrate the perfor-
mance on varying prediction time-points. Core novelty of this work is—(1) the first on-chip ECG model with 
fusion AI achieved state-of-the-art accuracy for sepsis prediction; (2) analog in-memory computing (IMC) for 
high energy efficiency AI model in the ECG wearable. In order to support our novelty claim, we compared our 
solution with the existing literature in both AI and analog domain in the following subsections.

Comparison with prior works‑first on‑chip fusion AI model with state‑of‑the‑art accu‑
racy.  Table 2 compares this work with state-of-the-art sepsis prediction literature in terms of performance, 
model architecture, and required data sources. In contrast to prior works that combines patient vitals from 

Figure 3.   A graphical user interface for sepsis prediction with fusion AI model.

Table 2.   Comparison with state-of-the-art AI models for sepsis prediction.  a Includes laboratory test results 
and culture results. b includes demographics and co-morbidities. c late fusion of demographics and ECG. d late 
fusion of demographics, co-morbidity and ECG.

 Model

 Performance metrics Data source

tonset (h) Accuracy (%) Sensitivity Specificity AUROC Vitals Laba Dem.b

17CinC 2019 LSTM 4 84.5 − 0.66 0.8 8 26 6
18CIBM 2016 Ensemble 3 82.7 0.81 0.9 0.83 9 0 0
19CinC 2019 Random forest 6 74.6 − − 0.63 8 26 6
20CinC 2019 Regression 6 86.4 0.30 0.97 0.87 8 26 6
21CCM 2018 Survival model 4 67 0.85 0.67 0.85 16 30 19
22JAMIA 2020 RNN 4 − 0.84 0.80 0.94 9 39 36
23Nature Comm. 2021 Random forest 4 − 0.87 0.89 0.92 5 6 4
15EMBC 2020 GRU​ 6 99.8 0.94 0.98 0.97 8 26 0
24J.Elect.cardiology 
2017 Regression 4 61 0.55 0.85 0.78 8 0 7

25CIBM 2017 LSTM 3 93 0.94 0.91 0.93 8 0 1
16ICHI 2018 LSTM+CNN 3 91.5 0.97 0.86 0.92 6 37 35

This work Late fusion 4
90c 0.90c 0.90c 0.90c 1 0 4

93d 0.90d 0.95d 0.99d 1 0 5
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multiple modalities, laboratory test results and demographics information, our work uses only patient ECG 
signal and demographics which makes the proposed solution feasible for real-time, at-home patient monitoring 
and is a key differentiation over existing works. Our work has high accuracy, sensitivity, specificity and AUROC 
metrics, and the best prediction performance for time-to-sepsis onset of 4 h or less. The work by15 has higher 
accuracy, but requires 26 different laboratory test results and 8 different patient vital signs. The work by16 uses 
a fusion technique to combine EMR and patient vitals, but requires 11 laboratory test results, 18 culture tests, 6 
vital signs and 30 co-morbidities which is only feasible in a hospital setting. None of the existing AI models are 
implemented within the ECG sensor attached to the patient body for real-time risk inference while preserving 
the data privacy.

Analog in‑memory computation using switched‑capacitor circuits.  Energy efficiency of tradi-
tional AI computing systems are limited by communication costs of bringing together many input activations, 
and neuron weights, and distributing output activations in Von-Neumann architectures with separate memory 
and computing units. Wearable sensors have low energy budget which cannot accommodate conventional AI 
computing systems. IMC can break the Von-Neumann bottleneck by massively parallelizing computations and 
drastically reducing communication costs by performing computations using memory units. In this work, we 
perform analog IMC by using the capacitors that store the ANN weights to perform vector matrix multiplica-
tion. The complete vector matrix multiplications across all the neurons in each layer are performed simultane-
ously, and the results are stored locally in charge-domain on the shared top-plate of the capacitors. Vector matrix 
multiplication using capacitive IMC has high accuracy since arithmetic computation through passive charge 
sharing/redistribution is highly linear, and is less sensitive to random variations introduced during chip fabri-
cation. Thanks to the analog IMC, the complete on-chip AI circuit consumes 7.4nJ/inference which is at least 
one order-of-magnitude lower than state-of-the-art medical ML ICs that consume hundreds of nJ to few µ J for 
inference26–30.

Limitations and future work.  Our study has several limitations. First, the proposed architecture is only 
validated retrospectively on the dataset from a single institution - Emory University Hospital with high number 
of elderly patients (ICU records 2014-2018). Model trained on a single institution data may contain heavy bias 
towards the training population. We performed a race, gender, ethnicity and age based disparity analysis to 
understand the effect of bias using disparity measure of false positive rate (FPR) which is the fraction of false 
positives within labeled negatives of the group, and is critical for clinical event prediction (see Fig. 4). Any dis-
parity measure between 0.8 and 1.25 will be deemed fair which is inline with the 80 percent rule for determin-
ing disparity impact31. From the high-level overview, we found that many groups, specially for predictions 1 h 
before sepsis onset, did not have equal or statistical parity, e.g. white population has low FPR disparity compared 
to black population, and patients aged over 61 have high FPR disparity compared to patients in the 41-60 age 
group. The disparity trend is similar but moderate for prediction 4 h before sepsis onset. This disparity is primar-
ily caused due to proportional disparity in the Emory ICU population.

In our future work, we will design a clinical trial study to perform the validation on distinct patient popula-
tions. Second, requiring complete records for EMR and ECG would diminish the available patient pool to sta-
tistically irrelevant levels. However, within the bounds of limitation, we only used 6 most common data sources 
and our on-chip ECG model alone also achieved state-of-the-art performance for 4 h tonset . Third, while the 
capacitive analog IMC used in this work has the advantage of higher linearity and greater accuracy than other 

Figure 4.   Disparity analysis results in terms of False Negative Rate (FNR) for late fusion using demographic, 
co-morbidity, and ECG data for different sepsis on-set prediction tasks; (First row) 1 h; (Second row) 4 h; (a) 
Race, (b) Gender, (c) Ethnic Group, (d) Age Category. Ref denotes reference value.
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analog IMC techniques, such as using static random access memory (SRAM) arrays, a limitation of capacitive 
IMC in our work is that the AI model weights are hard-coded as capacitor values, and cannot be updated after 
chip fabrication. In our future work, we will use a novel analog IMC technique that combines high accuracy 
and linearity advantages of capacitive IMC with re-programmability of SRAM IMC by adding a capacitor to the 
SRAM cell which will allow vector matrix multiplication through passive charge sharing/redistribution while also 
allowing dynamic update of AI model weights. This will enable personalization of the AI models for each patient.

Methods
Dataset.  With the approval of Emory Institutional Review Board (IRB), the de-identified sepsis dataset is 
obtained from Emory University Hospital (EUH). Since we used only de-identified data and no patient com-
munication has been made during the study, the need of informed consent is waived by Emory IRB. All methods 
were carried out in accordance with relevant guidelines and regulations (Declaration of Helsinki). The cohort 
consisted of 965 patients admitted to the ICUs at two hospitals within the Emory Healthcare system in Atlanta, 
Georgia from 2014 to 2018. For each patient, there is at least 8 h of ECG signal recordings from the time of 
admission in the ICU, with the ECG signals sampled at 300Hz. Table 3 presents the overall patients demograph-
ics for both sepsis positive and negative patients. Our cohort mostly consist of patients older than 56 years.

The Third International Consensus Definition of Sepsis (Sepsis-3)14, criterion was used to assign sepsis onset 
time (tsepsis-3) when two conditions were simultaneously satisfied: (1) there was a clinical suspicion of infection 
(tsuspicion) and; (2) there was a two point increase in SOFA score (tSOFA). According to Sepsis-3 definition, 
the cohort consisted of a total of 965 patients, 514 of whom met the Sepsis-3 criterion.

On‑chip ECG AI model.  The ECG AI model is completely integrated within the analog sensor device. We 
designed a feature generation block that pre-processes the sensed signal by removing baseline wander, and then 
extract the pre-defined features. In the second stage, the extracted features are analyzed by the on-chip Artificial 
Neural Network (ANN) for the sepsis risk prediction.

Pre‑processing and feature extraction.  ECG signal pre-processing and feature extraction are all performed on-
chip, and hence, needs to be low-power without sacrificing accuracy. The ECG signal is normalized between 
[0,1] before digital pre-processing and feature extraction. To remove baseline wander, we calculate median value 
of the ECG signal window and subtract it from all the samples in that window. For feature extraction, we con-
sider only time-domain features based on first-order statistics of R-R peaks. While feature extraction in the 
literature is performed in both time-domain and frequency-domain, we choose only time-domain features since 
they are easy to compute on-chip at low power, compared to frequency-domain features which requires compu-
tation of frequency transform of the ECG signal. Frequency transform using fast fourier transform (FFT) is com-
putationally expensive and consumes orders-of-magnitude higher power than time-domain features. We extract 
14 time-domain features on 9000 samples ECG segments (30 s window). The extracted features are summarized 
in Fig. 5 and are measures of central tendency, dispersion, shape of distribution of a window, R-R peaks, R–R 

Table 3.   Patient characteristics table.

Characteristics

Summary

Sepsis Non-sepsis

Data 514(53.26%) 451 (46.73%)

Gender

Male 281 (29.12%) 214 (22.17%)

Female 233 (24.14%) 237(24.56%)

Race

African American or Black 191 (19.79%) 190 (19.69%)

Caucasian or White 278 (28.8%) 215 (22.28%)

Asian 8 (0.8%) 7 (0.7%)

Hispanic 1 (0.1%) 0 (0%)

Multiple 1 (0.1%) 2 (0.2%)

American Indian or Alaskan Native 0 (0%) 2 (0.2%)

Unknown 35 (3%) 35 (3%)

Ethnic group

Hispanic or Latino 9 (0.9%) 7 (0.7%)

Non-Hispanic or Latino 413 (42.78%) 357 (36.99%)

Unknown 92 (9.53%) 87 (9.01%)

Age

16–35 years 52 (5.39%) 42 (4.35%)

36–55 years 162 (16.79%) 149 (15.44%)

56 and above years 300 (31.08%) 260 (26.94%)
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intervals, variance between R peaks and average heart rate. The R peaks are identified in time-domain through 
thresholding. Figure 6a shows the training accuracy as a function of threshold used for identifying R peaks. The 
training accuracy drops if threshold is set too low or too high due to missing R peaks. The threshold for peak 
detection is set to 30% of the difference between maximum and minimum value for each segment.

Model training and hardware‑software co‑design.  Figure  6b shows the training accuracy for different ANN 
architectures with the number of neurons in hidden layers annotated on the plot. The highest training accuracy 
is achieved for a 3-layer ANN with 20 neurons in the first hidden layer, and 6 neurons in the second hidden layer. 
The hidden layers use hyperbolic tangent (tanh) activation, while the output layer uses sigmoid activation. The 
dataset is partitioned randomly into 80% training data and 20% test data. Figure 6c shows the training accuracy 
as a function of time before sepsis onset. As is expected, the prediction accuracy drops monotonically with time 
before sepsis onset. In this plot, we present the prediction of sepsis 4 h before onset. Figure 6d plots training 

Figure 5.   Summary of time-domain features extracted from ECG signal.

Figure 6.   Training accuracy vs (a) threshold for detecting R peaks (b) ANN architecture (c) time before sepsis 
onset (d) ECG segment size.
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accuracy versus size of ECG window in terms of sample size. The highest training accuracy is obtained for a seg-
ment size of 9000 samples corresponding to 30 s window.

Analog circuits are used to realize the ANN model in hardware. The digital features from the feature extractor 
are converted to analog form through 4-bit switched-capacitor digital-to-analog converters (DACs) before feed-
ing to the analog ANN. The ANN performs multiply-and-accumulate (MAC) using switched-capacitors, and uses 
common-source differential amplifiers to realize tanh and sigmoid activations by leveraging intrinsic nonlinearity 
of transistors. The switched-capacitor MAC circuit intrinsically ensures that the input to the activation functions 
is bounded between [−1,1]. Figure 7a, b shows the proposed custom tanh and sigmoid activations respectively, 
designed using 5 transistor, differential common-source amplifiers. Figure 7c shows the schematic of a neuron 
performing MAC using switched-capacitor circuits followed by analog activation. While a single-ended circuit 
is shown for simplicity, a fully differential architecture is used for each neuron. Compared to existing analog 
implementations which need 11–15 transistors for piece-wise approximation of ideal activation functions32–35, 
the proposed approach reduces transistor count, and hence, area. The proposed activation circuits use transistors 
biased in saturation region to minimize mismatch and noise. This is in contrast to existing analog techniques 
which bias transistors in sub-threshold to exploit exponential relation between drain current and gate voltage of 
transistors to implement tanh/sigmoid activation functions. Biasing transistors in sub-threshold region increases 
mismatch and reduces signal-to-noise ratio (SNR) compared to biasing in saturation region. Figure 7d shows 
layout of the complete ANN and feature extractor in 65nm CMOS process. The complete on-chip AI circuit 
consumes 7.4nJ/inference, out of which the feature extractor consumes 5.2nJ/inference, the 4-bit DACs consume 
0.2nJ/inference, and the analog ANN consumes 2nJ/inference. Energy consumption of our on-chip AI circuit 
is at least one order-of-magnitude lower than state-of-the-art medical ML ICs that consume hundreds of nJ to 
few µ J for inference26–30.

While the proposed activation functions reduce area and improve SNR, they approximate ideal mathemati-
cal functions, and, thus there are deviations between output of analog activation functions and mathematical 
counterparts. Instead of doing error correction at circuit level, which increases area and power cost, we use an 
error-aware ANN design methodology that takes into account the difference between ideal activation functions 
and the actual activation functions implemented using analog circuits to produce high accuracy AI predictions. 
In our prior study that focused on an image classification task36,37 we developed an error-aware hardware-software 
co-design interface in which SPICE simulations are used to characterize a unit activation function, and the 
characterization data is imported into Matlab for training the ANN (see Fig. 7e). The co-simulation interface 
starts training with random weights for the ANN, creates SPICE netlist with the initial random weights and 
performs SPICE simulation of the ANN on the training dataset. The SPICE simulation outputs are parsed using 
Matlab and compared against validation and test output labels. Since the training is done with SPICE models of 
activation functions, rather than ideal mathematical functions, the discrepancies between software training and 
hardware implementation is minimized which allows use of analog circuits to approximate activation functions 
at low area and power cost.
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EMR model.  In addition to ECG signal data, we also incorporated the patient demographics and basic co-
morbidities which are comparatively trivial to obtain at the patient side. In demographics, we considered four 
data elements-age, race, gender and ethnicity. Prior co-morbidities of the patients are coded as International 
Statistical Classification of Diseases and Related Health Problems (ICD) 10th revision. In order to maintain 
standardization and easy at-home use, we obtained mapping between disease names and ICD10 codes, and 
integrated the capability in the end-system to automatically map the disease name to the nearest ICD10 code. 
EMR data obtained underwent a series of pre-processing steps prior to formal analysis and model development.

Given the wide range of ICD10 codes (70,000 codes), we leverage the ICD10 disease description as string to 
obtained the embeddings of multiple comorbidities. The EMR data elements were both categorical (gender, age 
bins) and textual (ICD10 code descriptions) datatype. As the first data pre-processing step, we applied standard 
data cleaning steps, including removing empty cells, special characters. For the conversion of categorical features 
to numerical quantities, we use the label encoding technique. As per this technique, each value in a column is 
converted to a specific number.

The vectorization of ICD10 code descriptions was performed using Term Frequency- Inverse Document 
Frequency (TF-IDF) algorithm38. A word t in the j-th ICD10 code is represented in the following vector format

where TF(t,j) is the normalized term frequency and is given by

and IDF(t) is the inverse document frequency that is given by

where DF(t) is the number of documents containing t. We trained the TF-IDF tokenizer using our training 
dataset and obtained 965× 20 dimensional vector representation of the co-morbidities.

Finally the numeric representation of the categorical features and TF-IDF representation of the co-morbidities 
are combined using linear concatenation. We standardized features by removing the mean and scaling to unit 
variance. Centering and scaling happen independently on each feature by computing the relevant statistics on 
the samples in the training set. The mean (SD) is then used on later data (i.e, holdout test), using the same trans-
formation function. The details of the patient characteristics have been shown in Table 3.

In order to perform a comprehensive analysis, we experimented with multiple parametric (logistic regres-
sion, Artificial Neural Network) and non-parametric (Linear Support Vector Machine—SVM, Random Forest) 
machine learning models. Given the static nature of this data, temporal sepsis onset prediction was not relevant 
and we only design a single prediction model for distinguishing sepsis vs non-sepsis data points using only EMR 
data. The optimal value of the hyperparameters is derived by analyzing the coefficient of the features computed 
by the 10-fold cross validation on the training data.

Fusion model.  We hypothesize that an efficient combination of demographics along with co-morbidities, 
and multi-modal physiological signal data measured by our sensors will provide a more comprehensive view of 
a patient’s clinical status compared to an individual modality. We designed a prediction model that considers the 
feature vectors derived from continuous ECG data and integrate with patient demographics, commodities and 
baseline vitals. However the challenge was to integrate the static EMR features with the temporal physiological 
signal data in the same model.

We designed a Late fusion model which performed a decision level fusion by leveraging predictions from 
multiple models (ECG model and EMR model) to make a final decision (Fig. 8). In order to aggregate the 

(1)V(t,j) = TF(t,j)× IDF(t)

(2)TF(t,j) =
Number of times term t appears in j

Total number of terms in j

(3)IDF(t) = log

(

N

DF(t)

)

Figure 8.   Late Fusion architecture with meta-learner—ECG and EMR model.
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prediction from multiple models, we trained a meta-learner to learn the importance of each model and design 
the aggregation function. For obtaining optimal performance, we experimented with four different classifier 
models as meta-learner—Linear SVM, Logistic Regression, Random Forest, and Neural Network with 2 hidden 
layers. We compared the late fusion model with the individual modalities in the Results section.
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