Skip to main content
. 2022 Apr 5;12:5711. doi: 10.1038/s41598-022-09712-w

Table 2.

Comparison with state-of-the-art AI models for sepsis prediction.

Model Performance metrics Data source
tonset (h) Accuracy (%) Sensitivity Specificity AUROC Vitals Laba Dem.b
17CinC 2019 LSTM 4 84.5 0.66 0.8 8 26 6
18CIBM 2016 Ensemble 3 82.7 0.81 0.9 0.83 9 0 0
19CinC 2019 Random forest 6 74.6 0.63 8 26 6
20CinC 2019 Regression 6 86.4 0.30 0.97 0.87 8 26 6
21CCM 2018 Survival model 4 67 0.85 0.67 0.85 16 30 19
22JAMIA 2020 RNN 4 0.84 0.80 0.94 9 39 36
23Nature Comm. 2021 Random forest 4 0.87 0.89 0.92 5 6 4
15EMBC 2020 GRU 6 99.8 0.94 0.98 0.97 8 26 0
24J.Elect.cardiology 2017 Regression 4 61 0.55 0.85 0.78 8 0 7
25CIBM 2017 LSTM 3 93 0.94 0.91 0.93 8 0 1
16ICHI 2018 LSTM+CNN 3 91.5 0.97 0.86 0.92 6 37 35
This work Late fusion 4 90c 0.90c 0.90c 0.90c 1 0 4
93d 0.90d 0.95d 0.99d 1 0 5

a Includes laboratory test results and culture results.

b includes demographics and co-morbidities.

c late fusion of demographics and ECG.

d late fusion of demographics, co-morbidity and ECG.