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High‑throughput translational 
profiling with riboPLATE‑seq
Jordan B. Metz1,2,6, Nicholas J. Hornstein1,2,3,6, Sohani Das Sharma4, Jeremy Worley1, 
Christian Gonzalez1 & Peter A. Sims1,5*

Protein synthesis is dysregulated in many diseases, but we lack a systems-level picture of how 
signaling molecules and RNA binding proteins interact with the translational machinery, largely 
due to technological limitations. Here we present riboPLATE-seq, a scalable method for generating 
paired libraries of ribosome-associated and total mRNA. As an extension of the PLATE-seq protocol, 
riboPLATE-seq utilizes barcoded primers for pooled library preparation, but additionally leverages 
anti-rRNA ribosome immunoprecipitation on whole polysomes to measure ribosome association (RA). 
We compare RA to its analogue in ribosome profiling and RNA sequencing, translation efficiency, 
and demonstrate both the performance of riboPLATE-seq and its utility in detecting translational 
alterations induced by specific inhibitors of protein kinases.

The cellular responses to many physiologic stimuli require new programs of protein production. Transcriptional 
regulation allows direct control of gene expression over a broad dynamic range, but cells can often more rap-
idly adjust protein levels through translational control. Consequently, alongside transcription factors and their 
associated regulatory networks, there are post-transcriptional mechanisms modulating the expression of specific 
proteins, including at the level of translation. mTOR is an important example of a translational regulator that 
integrates extracellular signals to regulate cellular metabolism and protein synthesis. Activated through PI3K 
signaling, mTORC1 phosphorylates eIF4E inhibitors (4E-binding proteins, or 4E-BPs), which releases eIF4E and 
promotes formation of the eIF4F complex in the initial steps of translational initiation1. Separately, mTORC1 
phosphorylates the RNA-binding protein LARP1. Unphosphorylated LARP1 binds the 5’-cap and immediate 
downstream C/T-rich sequences, known as terminal oligopyrimidine (TOP) motifs, which prevents translation 
of transcripts containing this motif. Phosphorylation by mTORC1 relieves this repression, allowing eIF4F forma-
tion and binding of the 5’ cap and rendering translation of TOP motif-containing transcripts exquisitely sensitive 
to mTORC1 activity2,3. The mTOR protein, the 4E-BP/eIF4E axis and RNA-binding protein LARP1, and the 5’ 
TOP motif-containing genes (TOP genes) constitute a basic translational regulatory network.

Both the PI3K/mTOR and MAPK/ERK signaling pathways converge on the ribosome at eIF4E and influence 
the formation of the eIF4F complex, composed of the cap-binding eIF4E, the helicase eIF4A, and the scaffold 
eIF4G. This complex is required in cap-dependent translation initiation, widely regarded as the rate-limiting 
step in protein synthesis4–6. PI3K phosphorylates AKT, which phosphorylates mTOR, which then phosphoryl-
ates 4E-BPs and releases eIF4E, facilitating eIF4F formation1,2. Separately, the MAPK signaling cascade activates 
MNK1 which phosphorylates eIF4E directly. This has been shown to increase7 or decrease8–10 its affinity for the 
5’ m7G cap, though MNK1 activity is largely thought to activate cap-dependent translation, especially in the 
context of translation-dependent gene regulation in cancer11. MNK1 may enhance initiation by interacting with 
the inhibitory complex FMRP-CYFIP1, which binds eIF4E at baseline but may be released by MNK1 activity to 
allow eIF4F formation12. Potential interactions between MNK1 and mTOR are of particular interest in decipher-
ing translational regulation due to their convergence at eIF4E. Multiple human cancer cell lines demonstrate a 
paradoxical increase in eIF4E phosphorylation under mTOR inhibition with rapamycin, attributable to MNK 
activity13,14. Furthermore, while rapamycin rapidly reduces phospho-eIF4E, MNK1-dependent eIF4E phospho-
rylation occurs under prolonged treatment15. MNK1 blockade has additionally been demonstrated to sensitize 
rapalog-resistant glioma to inhibition of mTORC116,17.

Many previous studies of the effect of MNK1/2 on translation utilize CGP5738013,16,18,19, an inhibitor with 
notable off-target effects20–24. CGP57380 has been found to impact initiation and polysome assembly outside 
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the known effects of MNK1 on eIF4F formation, sharing targets with both the known multi-kinase inhibitor 
imatinib and the specific RSK inhibitor BI-D1870, including inhibition of S6K and 4E-BP1 phosphorylation 
independent of MNK signaling21. CGP57380 was also noted to inhibit several kinases with similar potency to 
MNK1, including MKK1, BRSK2, and CK123. Remarkably, increased eIF4E:4EBP1 binding, presumed to be 
a result of MNK1 inhibition and subsequent loss of eIF4E phosphorylation, was demonstrated at CGP57380 
concentrations below those inhibiting MNK112. Therefore, the specific function of MNK1 in regulating protein 
synthesis remains unclear.

In general, progress in understanding systems-level translational control has been complicated in part by a 
lack of scalable methods for coupling measurements of protein synthesis with a large number of perturbations. 
Early studies of translational regulation combined polysome profiling and microarrays to quantify ribosome 
association genome-wide25. The combination of nuclease footprinting of ribosomes26 and deep sequencing led to 
ribosome profiling, which refines translational profiling by resolving the positions of bound ribosomes through-
out the transcriptome4. Though amenable to detailed mechanistic analyses in a small number of samples, these 
approaches are prohibitively expensive and labor-intensive to scale for concurrent analyses across a large sample 
set. The cost in time and resources for these processes and intervening purifications renders ribosome profiling 
a suboptimal readout for a broad screen of translational regulation due to lack of scalability. For ideal systems-
level analysis of protein synthesis, genome-wide perturbations coupled to a genome-wide readout of translation 
would allow direct observation of changes in response to a systematic screen of potential perturbations across a 
large number of conditions and replicates.

Here we present riboPLATE-seq, a scalable method for generating paired libraries of ribosome-associated and 
total RNA, based on our Pooled Library Amplification for Transcriptome Expression (PLATE-seq) technology27. 
PLATE-seq utilizes sample-specific barcodes, added during reverse transcription, to pool cDNA from multi-
ple individual samples early in library preparation, enabling highly-multiplexed RNA-seq and reducing both 
reagent and labor costs. Furthermore, as PLATE-seq generates cDNA fragments strictly from the 3’ ends of 
polyadenylated RNA via oligo(dT)-primed reverse transcription, the resulting libraries are less complex than 
those with full gene body coverage, and therefore require fewer reads per sample. PLATE-seq consequently has 
greater throughput than conventional RNA-seq in both library preparation and sequencing.

Combining PLATE-seq library preparation with anti-rRNA ribosome immunoprecipitation enables scalable 
sequencing of the ribosome-associated fraction of the transcriptome. The immunoprecipitation of ribosome-
bound RNA with antibody Y10b, as implemented in riboPLATE-seq, is well-established in the literature. Since 
the first report in 198128, the antibody has found extensive use in studies of neuronal translation. Briefly, it has 
been used in Northern blots and co-immunoprecipitation of ribosome-associated RNA29, in Western blots of 
ribosome-associated proteins30, and in immunofluorescent staining of ribosomes and rRNA31 particularly in the 
context of local neuronal translation32–34.

We utilize riboPLATE-seq for parallel, genome-wide translational profiling in 96-well plates. With PLATE-seq 
as a genome-wide readout for ribosome immunoprecipitation, riboPLATE-seq quantifies the ribosome-associ-
ated fraction of each polyadenylated transcript relative to total polyadenylated RNA. These paired measurements 
allow detection of gene-specific changes in ribosome association. While riboPLATE-seq measures the abundance 
of ribosome-bound mRNA rather than nucleotide-resolution ribosome density as in ribosome profiling, it is 
highly scalable, inexpensive, and seamlessly compatible with automated liquid handling.

We demonstrate the riboPLATE-seq technique in a screen of translational regulators downstream of ampli-
fied PDGFRA signaling in TS-543 cells35, including kinases mTOR, PI3K, and MNK1. MNK-i1, recently identi-
fied as a highly specific and potent MNK inhibitor with IC50 of 0.023 μM and 0.016 μM for MNK1 and MNK2 
respectively (compared with 0.87 and 1.6 μM for CGP57380), blocks eIF4E phosphorylation without impacting 
other pathways converging on eIF4E12. Thus, we sought to clarify the effect of MNK1 with this novel inhibitor. 
We additionally generated signatures of mTOR inhibition with ribosome profiling and RNA sequencing for com-
parison to established methods of interrogating translation. Importantly, ribosome profiling provides a measure 
of ribosome-mRNA association that is quantitatively distinct from riboPLATE-seq. The ratio of normalized 
aligned reads in ribosome profiling over RNA-seq libraries obtained from the same biological sample, referred 
to as translation efficiency (TE), corresponds to the average number of ribosomes bound per transcript. In con-
trast, the ratio of normalized aligned reads in riboPLATE-seq over normal PLATE-seq relates to the fraction of 
the available pool of transcripts bound by ribosomes, which we term ribosome association (RA). Despite their 
differences, we expect significant overlap in the effects revealed by these measurements, especially in response 
to inhibition of kinases involved in translational regulation.

Results
Overview of riboPLATE‑seq technology.  riboPLATE-seq enables transcriptome-wide measurements 
of ribosome association in a multi-well plate by combining pan-ribosomal immunoprecipitation (IP) with a low-
cost technique for RNA sequencing, PLATE-seq (Fig. 1a). In PLATE-seq, we isolate polyadenylated transcripts 
with an oligo-(dT) capture plate, followed by incorporation of well-specific barcodes in poly(T)-primed reverse 
transcription. After pooling barcoded cDNA libraries across each plate, we conduct all subsequent library prepa-
ration steps on the pool and sequence the resulting libraries to a modest depth (few million reads per well). 
Previous studies isolate ribosome-bound mRNA from specific cell types in vivo with the translating ribosome 
affinity purification (TRAP)36 and RiboTag37 systems, relying on transgenic or recombination-driven epitope 
labeling of ribosomal proteins for immunoprecipitation. We instead use a native epitope in 5.8S rRNA for anti-
rRNA ribosomal IP. By comparing transcript abundance measured by PLATE-seq with and without ribosomal 
IP for all genes, we measure gene-specific ribosome association for all genes detected, extending the scalability 
of PLATE-seq from transcriptional to translational profiling.
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To implement riboPLATE-seq, we divide polysome lysates from a multi-well plate into two plates. We subject 
one plate to indirect, pan-ribosomal IP with robotic liquid handling, using biotinylated anti-rRNA antibody 
Y10b and streptavidin-coated magnetic beads. Finally, we generate PLATE-seq libraries from the immunopre-
cipitated polysomes in one plate and total lysate from the other, as described previously27. This design minimizes 
sample-to-sample noise by processing up to 96 samples in one batch with automated liquid handling, which 
further reduces the time and effort required to process large numbers of samples. Per-sample reagent costs are 
also substantially lower, as PLATE-seq generates 3’-end RNA libraries for approximately $4 per sample, while 
riboPLATE-seq requires additional expenses for automated ribosome IP totaling less than $9 per sample in rea-
gents, all in 96-well plates (Supplementary Table S1). A full riboPLATE-seq study performed on plate costs ~ $16 
in reagents per sample to generate paired libraries of ribosome-associated and total RNA from cellular lysates, 
compared with $151 for ligation-free ribosome profiling and RNA sequencing.

riboPLATE‑seq translational profiling experimental overview.  To demonstrate the utility of ribo-
PLATE-seq, we measured the translational impact of inhibiting regulatory signaling proteins that converge on 
the ribosome in TS-543 neurospheres (Fig. 1b). We sought to identify target mRNAs that are specific to each 
regulator and compare translational signatures by screening several regulators in these pathways. The drug treat-
ments consisted of two competitive mTOR inhibitors, PP242 and AZD8055; an inhibitor of PI3K, BKM120; a 
specific inhibitor of MNK1/2 activity, MNK-i1; and 4EGi-1, a 4E-BP mimic designed to inhibit the associa-
tion of eIF4E and eIF4G. We determined concentrations of these drugs from an examination of the literature, 
ensuring values near the half-maximum inhibitory concentrations (IC50) for the main substrates of the drugs in 
question: 625 nM PP24238, 50 nM AZD805539, 1 μM BKM12040, and 100 nM MNK-i141 (Supplementary Fig. 1). 
However, the classical assay of 4EGi-1 activity via Western blot with m7GTP-cap-mimic beads42 is known to 
be problematic43 because the eIF4F complex reforms in vitro in the absence of 4EGi-1. 4EGi-1 may addition-
ally exhibit broad activity outside its inhibition of eIF4F complex formation43–45. We therefore chose a nontoxic 
concentration of 50 μM 4EGi-143,45 to explore its effects on ribosome association, but caution that we cannot 
rigorously attribute them to the specific inhibition of eIF4F formation. In order to analyze interactions between 
kinases, we also treated samples with pairwise combinations of PP242, BKM120, and MNK-i1 at concentrations 
equal to their singular treatments. For comparison, we treated TS-543 with PP242 at the same concentration as 
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Figure 1.   Overviews of the protocol and experimental design of the study performed. (a) Schematic diagram of 
the riboPLATE-seq protocol, from lysis in a multi-well plate to pooled library preparation. The right-hand side 
mirrors the original PLATE-seq protocol. In this workflow, an oligo(dT)-grafted plate captures polyadenylated 
RNA that can be reverse-transcribed with barcoded adapters, generating a plate of cDNA that may be pooled 
for library construction. The left side incorporates a pan-ribosome IP before PLATE-seq pooling and library 
preparation, generating instead a pooled library of ribosome-associated RNA. (b) Simplified structure of the 
signaling pathways under study and the specific protein targets considered. The PI3K/AKT/mTOR signaling 
axis at left converges with the MAPK/ERK pathway at right on eIF4E, early in the process of ribosome assembly 
(green box). The figure also outlines the inhibitors used in this study and their specific targets within these 
pathways. NVP-BKM120 is a PI3K inhibitor (orange), both AZD8055 and PP242 are mTOR inhibitors (blue 
and purple, respectively), MNK-i1 is a MNK1 inhibitor (green), and 4EGi-1 is a direct eIF4E inhibitor (black).
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in the riboPLATE-seq experiment at multiple time points to assess the similarity of translational perturbations 
detected across experiment types. We expected these two methods to give quantitatively distinct results while 
identifying similar target sets. An overview of all sequencing data generated for this study is provided in Sup-
plementary Table S2.

Specificity of ribosome‑bound mRNA capture.  To assess the depletion of free RNA in the riboPLATE 
sequencing libraries following pan-ribosome immunoprecipitation, we added ERCC spike-in to half of the 
lysates in a riboPLATE-seq experiment in Wi-38 cells without automated liquid handling prior to ribosome IP. 
Figure 2a shows the distributions of total spike-in RA and total transcript RA across wells. Spike-ins exhibited 
almost uniformly lower RA than transcripts, with total RA across wells of 0.25 and 1.04, respectively (one-
tailed paired-sample Wilcoxon signed-rank p = 1 × 10–9). The relative depletion of spike-ins to genes for each well 
shows depletion across the set spike-ins relative to the transcriptome in all but two wells (2/48), which demon-
strated modest (< 0.5 log2-fold) enrichment (Fig. 2b).

As ribosome profiling has revealed low but significant levels of ribosome occupancy among ncRNA46, we 
sought to contrast ribosome association between ncRNA and mRNA with riboPLATE-seq, expecting noncoding 
transcripts to be depleted from riboPLATE-seq relative to PLATE-seq. Examination of the relationship between 
RA and underlying transcript abundance revealed lower RA for ncRNA than mRNA at all expression levels in 
Wi-38 (Fig. 2c) and TS-543 cells (Fig. 2e), with similar distribution for ERCC spike-ins in the Wi-38 riboPLATE-
seq samples containing them (Fig. 2d). We also observed depletion for ncRNA in ribosome profiling and RNA 
sequencing in TS-543, with lower TE than mRNA on average over all RNA-seq expression levels (Fig. 2f), con-
sistent with previous reports46. Combined with the observed spike-in depletion, our results are consistent with 
depletion of free RNA by the pan-ribosomal immunoprecipitation implemented in riboPLATE-seq.

Assessment of riboPLATE‑seq library quality.  We sought to establish the quality of the pooled ribo-
some-associated and normal PLATE-seq libraries with regard to read depth, library complexity, and saturation. 
Figures 3a-b show gene detection saturation curves for riboPLATE-seq and PLATE-seq in TS-543 cells, demon-
strating the dependence of these libraries’ sensitivities on read depth, while Fig. 3c demonstrates their range in 
complexity at full depth. Read depth and sensitivity were similarly distributed in riboPLATE- and PLATE-seq 
libraries in our kinase screen with automated liquid handling. We detected ~ 9-11 K unique genes at full depth 
in either library type.

Figure 3c highlights the differences between riboPLATE-seq and PLATE-seq in terms of library complexity 
and sequencing depth in TS-543, additionally contrasting with full-length ribosome profiling and RNA-seq. 
On average, automated riboPLATE-seq detected approximately 9,940 unique genes in 1.56 million uniquely 
mapped reads per sample, while PLATE-seq detected an average of 10,710 genes in 0.67 million (677 K) reads per 
sample in this study. These measurements are comparable to the initial report of PLATE-seq, in which ~ 10,200 
genes were detected from 0.67 million uniquely mapped reads27. In contrast, ribosome profiling and total RNA 
sequencing libraries detected an average of 15,000 and 15,900 genes respectively at full sequencing depth. Down-
sampling ribosome profiling to the median read depth of riboPLATE-seq and RNA-seq to the median read depth 
of PLATE-seq resulting in 12,900 and 12,300 genes detected, respectively. Thus, the sensitivity of riboPLATE-seq 
is comparable to PLATE-seq and somewhat less than that of ribosome profiling.

We can estimate the efficiency of anti-rRNA ribosomal IP from the relative complexities of our riboPLATE-
seq and PLATE-seq libraries. Library complexity in terms of the number of uniquely-aligned fragments is an 
estimate of the number of unique mRNA molecules detected at a given read depth. We computed the ratio of 
the riboPLATE-seq and PLATE-seq library complexities for each sample to obtain the distribution of their ratio 
across samples, corrected for differences in input RNA amounts (Supplementary Fig. 2). After applying this cor-
rection, the average library complexity ratio for riboPLATE-seq:PLATE-seq was 0.17. To estimate IP efficiency, we 
considered a range of estimated values for the fraction of polysomal to total mRNA from the literature. Thomas 
and Johannes47 find highly-translated genes HIF-1a, GAPDH, and actin to be 80–90% polysome-associated in 
PC-3 cells under baseline conditions. Earlier, comprehensive measurement of mRNA distributions was per-
formed in HeLa cells48, utilizing oligo-dT cellulose fractionation and subsequent sucrose gradient fractiona-
tion of polysomes. This analysis revealed 80% of polyadenylated RNA to sediment in fractions heavier than 

Figure 2.   Assessment of riboPLATE-seq IP specificity. (a) Depletion calculated per-sample as the log2-ratio of 
the sum of all spike-in or gene-aligned counts in the riboPLATE-seq library over the same sum in the sample’s 
paired PLATE-seq library, using DESeq2-normalized counts (median of ratios normalization, R v4.0.5), in 
Wi-38 cells. Spike-ins show more significant depletion than genes in almost all wells (mean spike-in RA 0.25; 
mean genomic RA 1.04; Wilcoxon signed-rank test p = 1 × 10–9) (b) The same information in (a), presented as 
the per-well difference in depletion ratios for ERCC and the background genome, demonstrating significant 
depletion of spike-in RNA with IP in most libraries (mean log2 depletion ratio − 2.1). (c) Relationship between 
transcript abundance (in PLATE-seq) and RA (riboPLATE/PLATE-seq) for coding genes and non-coding 
RNA (ncRNA) in Wi-38 cells. ncRNA are heavily depleted (RA < 0) at all expression levels, to a greater extent 
than almost all genes. (d) Relationship between transcript abundance and RA for ERCC spike-ins vs coding 
genes in Wi-38, demonstrating a pronounced pattern of depletion in RA for spike-ins relative to mRNA across 
all expression levels. (e) Relationship between PLATE-seq transcript abundance and RA for coding genes vs 
ncRNA in TS-543 cells. (f) The corresponding plot to e derived from ribosome profiling and RNA sequencing 
data of TE and RNA-seq transcript abundance in TS-543 cells. Though the shape of the distribution is different, 
ncRNA still demonstrate lower TE than mRNA at higher expression levels.
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Figure 3.   Analysis of riboPLATE-seq library saturation, size, and complexity in TS-543 cells. (a), (b) Library saturation strip 
plots for ribosome-associated (riboPLATE-seq) and total RNA (PLATE-seq) libraries in this study. In each, the Y axis shows the 
number of unique genes detected in each sample at each subsampled read depth on the X axis, excluding libraries smaller than the 
subsampling depth. With ~ 10–11,000 unique genes detected, riboPLATE-seq and PLATE-seq are comparably saturated. (c) Scatter 
plots emphasizing the relationship between library size and complexity across library types. The Y axis represents the number of 
unique genes detected within a library; the X axis represents its size in summed gene counts. PLATE-seq and riboPLATE-seq are 
very similarly distributed, with PLATE-seq generating slightly more complex, smaller libraries than riboPLATE-seq. Ribosome 
profiling and RNA-seq generate larger, more complex libraries than either riboPLATE- or PLATE-seq, which retain their complexity 
with ~ 11,000 genes detected when downsampled to the average read depths of riboPLATE- and PLATE-seq, respectively.
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ribosomal monomers. This suggests that our IP, which yields approximately 17% polysome-associated vs total 
polyadenylated RNA, is ~ 21% efficient.

Pharmacological Kinase Screen with riboPLATE‑seq.  After establishing the performance of ribo-
PLATE-seq, we sought to characterize its ability to detect changes in RA in a screen of signaling pathways 
converging on the ribosome in TS-543. We first calculated RA for each gene in each sample and the change 
in RA for each drug-treated sample relative to the mean across vehicle-treated controls, generating individual 
signatures of absolute RA and log-fold change in RA (lfcRA) for every sample relative to control. Principal 
component analyses (PCA) of RA and lfcRA both revealed separation of samples according to their RA change 
relative to control in the first component (PC1), clustering samples into condition-specific groups in Fig. 4a-b. In 
Fig. 4b, the mean PC1 value for a given condition was inversely correlated with the number of genes exhibiting 
significant differences in RA for that condition relative to vehicle-treated controls (Fig. 4c, Spearman r = -0.90, 
p = 0.02). PC1 values for each individual sample were also inversely correlated with mean effect size, calculated 
as the average of absolute log-fold changes in RA across significant genes (Spearman r = -0.74, p = 6.9 × 10–8). PC2 
further separates most samples treated with drug combinations or 4EGi-1 from those treated with individual 
kinase inhibitors, such that combination-treated clusters aggregate more closely with each other than with any 
of their individually-treated counterparts.

In both plots, clusters of samples treated with individual kinase inhibitors are organized consistently with 
their expected effects. Samples corresponding to mTOR axis inhibitors (PP242, BKM120, and AZD8055) clus-
ter near each other, while MNK-i1-treated samples cluster more closely with DMSO-treated controls in Fig. 4a 
and 4EGi-1-treated samples in Fig. 4b. Together with the relatively few significant RA changes due to MNK-i1 
treatment in Fig. 4c, this suggests that MNK-i1 has a weaker impact on ribosome association than any drug or 
combination tested.

Differential ribosome association and translation efficiency: comparison of riboPLATE‑seq 
and ribosome profiling.  In order to more rigorously analyze differential RA as a function of drug treat-
ment, we used DESeq2 to compare each drug to control with riboPLATE-seq. We separately calculated differ-
ential translation efficiency from ribosome profiling and RNA sequencing data from PP242-treated and control 
TS-543 samples, for comparison with established translational measurements. Figure 5a-e display the volcano 
plots of log-fold change in RA (lfcRA) vs significance (− log10(FDR), which is inversely proportional to Benja-
mini–Hochberg adjusted false-discovery rate) for all genes in each individual drug treatment tested in TS-543 
cells. The reproducibility of these significant alterations in RA across individual drug-treated samples, for all 
drug treatments tested, is demonstrated in Supplementary Fig. 3. Figure 5f, g display the analogous plots for dif-
ferential TE from ribosome profiling under 30-min and 6-h PP242 treatment in TS-543, overlaid with the genes 
significantly changed under PP242 treatment in riboPLATE-seq (FDR < 0.05, red/blue circles) to emphasize the 
correlation of effects across methods. PP242 targets determined by significant lfcRA exhibited similar changes in 
TE, with upregulated targets demonstrating significantly higher TE than downregulated targets at both 30 min 
and 6  h of PP242 treatment (one-tailed, two-sample Mann Whitney U test p = 3.0 × 10–64 and p = 1.7 × 10–92, 
respectively). In particular, we observed significant downregulation of TOP motif-containing genes in both 
riboPLATE-seq and ribosome profiling, marked green in all plots. This set of canonical mTORC1 targets exhib-
ited significantly reduced TE after both 30 min and 6 h of treatment with PP242 (one-tailed, two-sample Mann–
Whitney U test p = 1.2 × 10–38 and p = 2.9 × 10–46, respectively), with likewise significant reductions in RA asso-
ciated with mTOR axis inhibitors (PP242, AZD8055, and BKM120, p = 4.0 × 10–26, 8.9 × 10–19, and 1.6 × 10–14, 
respectively). Although RAs of the TOP motif-containing genes were similarly reduced by MNK-i1 and 4EGi-1 
treatment, these reductions were smaller and less significant (p = 0.00002 and p = 0.86, respectively). MNK-i1 
and 4EGi-1 also induced fewer statistically significant changes in RA than the other drugs tested (Fig. 4c). While 
for MNK-i1 this might be attributed to a weaker overall effect for the drug, 4EGi-1 elicits many high-magnitude 
changes in RA that do not achieve statistical significance.

We further compared riboPLATE-seq and ribosome profiling in TS-543 cells using Gene Set Enrichment 
Analysis (GSEA)49, focused on non-overlapping sets of genes with significant RA changes for each condition 
(FDR < 0.05). Figure 5h shows that, as expected, genes corresponding to riboPLATE-seq PP242 targets demon-
strated concordant changes in lfcTE from ribosome profiling, with upregulated targets enriched for increased 
TE and downregulated targets depleted. The targets for BKM120 and AZD8055 from riboPLATE-seq were 
similarly distributed at 6 h of PP242 treatment, to lesser degrees of significance, while they were uniformly 
weakly downregulated at 30 min. The targets of 4EGi-1 and MNK-i1 were also downregulated in TE at both 
time points, regardless of their direction of RA change in riboPLATE-seq. Our results demonstrate the capabil-
ity for riboPLATE-seq to detect specific translational changes that are reflected in ribosome profiling, despite 
quantitative differences in the measurements of RA and TE.

Attenuation of perturbations to ribosome association in drug combinations.  We expected some 
degree of synergy or at least additivity in the effects of individual drugs in combination treatments targeting 
pairs of signaling proteins in the PI3K/mTOR and MAPK/ERK pathways. Surprisingly, we instead found that 
the strongest effects of individual drugs were attenuated when combined. Figure 6a-c are volcano plots of dif-
ferential RA for each drug combination in TS-543 neurospheres, color-coded to indicate up- and downregulated 
targets of the combination’s respective constituent drugs (FDR < 0.05). Targets of individual drugs demonstrated 
reduced significance and magnitude of change in all combination treatments, despite each combination eliciting 
many significant alterations in RA. We directly compared the magnitude of effect sizes observed for significant 
effects of the individual drugs in individual and combination drug treatments in Fig.  6d-f and found these 
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Figure 4.   Principal Component Analyses (PCA) of riboPLATE-seq data in TS-543 cells. (a) riboPLATE-seq ribosome association 
(RA, riboPLATE-seq-PLATE-seq), (b) difference in RA between each sample and the average across DMSO-treated samples (lfcRA), 
normalized by variance-stabilizing transform (VST) in DESeq2 (R v4.0.5). For both plots, the domain of the PCA was restricted to 
genes with significant changes in RA reported by DESeq2 for any drug treatment relative to DMSO, (FDR < 0.05, 1813 genes total; 
detailed in Fig. 4c). Drug treatments elicit changes consistent enough to yield clustering behavior among samples treated with the 
same drug in both analyses, as well as co-clustering of related drug treatments (e.g. BKM120, PP242, and AZD8055). Separation is 
also apparent between combination treatments and their constituent, individual drugs in each plot. (c) Significant effects of each 
drug determined in riboPLATE-seq by DESeq2 (Benjamini–Hochberg adjusted false discovery rate (FDR) < 0.05). Genes determined 
significantly up- or downregulated in ribosome association (RA) are tallied for each drug and combination treatment.
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effects to be largely attenuated in combination treatments (below the dashed y = x line indicating equal effect in 
both conditions). We find 78–89% and 86–95% of significant downregulated and upregulated targets, respec-
tively, for both individual drugs to be attenuated in their effect in combination treatments, with the combination 
PP242 + BKM120 diminishing the fewest of its individual drugs’ effects. Uniformly across combinations, we 
found more attenuation in upregulated than downregulated targets of individual drugs, with greater variation 
in the range of their observed effects in combination treatments. This suggests that the upregulated targets of 
individual drugs may be further attenuated or otherwise poorly-conserved relative to the drugs’ downregulated 
targets under combination treatments. The surprising interactions between drugs in combination treatments 
raise the possibility of accelerated compensatory responses to combinations of individual inhibitors. These find-
ings underscore the value of riboPLATE-seq in screening a broad set of potential translational perturbations, 
allowing direct comparison of individual and combination effects from simultaneously-generated data.

Mapping the network controlling TOP gene translation.  To better visualize the interactions 
between translation-regulating kinases and their targets, we constructed a translational control network from 
our results in TS-543 neurospheres with focus on the TOP motif-containing genes. Following the observation 
of TOP gene regulation in several experimental conditions, we sought to compare the structure of our network 
with the known organization of kinases impacting TOP gene translation. In addition to the set of 97 canoni-
cal genes, we obtained a set of 182 candidate TOP motif-containing genes that have homologues in the mouse 
genome with TOP motifs, identified in a genome-wide screen of transcription start sites50. These TOP candidates 
behaved similarly to the canonical set (Fig. 7a). TOP genes and candidates are uniformly downregulated by 
PP242, BKM120, and AZD8055, though a lesser fraction of candidates exhibit significant effects than canoni-
cal targets. No candidates exhibited significant changes in RA under MNK-i1 treatment, while only four were 
downregulated under 4EGi-1, consistent with their relatively small number of canonical TOP gene targets and 
significant targets overall.

A simple translational regulatory network constructed from our TS-543 riboPLATE-seq data and overlaid 
with canonical and candidate TOP genes is presented in Fig. 7b. We considered the genes demonstrating sig-
nificant RA reduction under PP242, MNK-i1, and BKM120 to be translationally activated by mTOR, MNK1, 
and PI3K, respectively (FDR < 0.05). All but one canonical TOP gene and two candidates present in the network 
are mTOR targets. We observed significant enrichment of canonical TOP genes and marginally-significant 
enrichment of candidates among the targets common to mTOR and PI3K (FDR-adjusted Fisher’s exact test 
padj = 3.0 × 10–14 and p = 0.02, respectively), but enrichment only of canonical genes in the intersection of all 
three kinases (padj = 7.9 × 10–15 and padj = 1.0 for canonical and candidate TOP genes, respectively). TOP genes 
and candidates in the network outside these intersections are mainly exclusive targets of mTOR, though without 
significant enrichment.

The network is consistent with the known architecture of TOP gene regulation. The strong effects of mTOR 
and PI3K on TOP gene RA, the relatively minor effect of MNK1, and the observation that most PI3K targets are 
shared with mTOR is consistent with the known activation of TOP gene translation by mTOR, the activation 
of mTOR by PI3K, and the minimal demonstrated effect of MNK1 outside this axis51 by studies with the more 
specific MNK-i1 inhibitor52.

Discussion
Ribosome association is frequently used to infer translational activity, whether measured by sucrose gradi-
ent fractionation of intact RNA in polysome profiling, or isolation ribosome-protected footprints in ribosome 
profiling. In polysome profiling, the ratio of transcripts sedimenting in “heavy” vs “light” fractions is similar 
to RA as defined for riboPLATE-seq. Ribosome profiling refines this measurement with its focus on ribosome 
footprints, calculating a per-transcript ribosome occupancy with additional information about positions and 
ribosome arrest53. In riboPLATE-seq, we trade this information for increased throughput in library preparation 
and sequencing to measure ribosome association across the pool of expressed transcripts.

With pooled library construction, greater throughput is possible with riboPLATE-seq than with either ribo-
some profiling or polysome profiling, though not without limitations. Transcripts with similarity to the Y10b 
epitope may non-specifically bind to the antibody or be adsorbed to the streptavidin-coated magnetic beads, 
yielding inflated riboPLATE-seq counts, which might be addressed by pre-incubation of antibody-bound beads 
with exogenous RNA to saturate non-specific binding sites, but care must be taken to avoid ribosomal RNA which 
could drastically reduce sensitivity. Potential re-initiation in lysate might be minimized with the non-hydrolyzable 
GTP analogue, 5’-guanylyl imidodiphosphate (GDP-NP). As GTP hydrolysis is required in both start site selec-
tion and subunit joining steps of 80S initiation complex formation, GDPNP could prevent re-initiation of free 
ribosomes54. Additionally, the method cannot resolve location-specific effects, such as the effect of ribosome 
association in 5’ leader sequences on translation in downstream coding sequences55, and is generally insensitive to 
translational regulation at the level of elongation as it cannot distinguish active from stalled ribosomes. However, 
this limitation is common to many measurements of translational activity, including ribosome profiling56, and 
frequently requires more specific analyses of ribosome density53,57. In this study, we demonstrate the sensitivity of 
riboPLATE-seq to perturbations in translation initiation with confirmation of the observed effects in ribosome 
profiling and RNA sequencing. With a focus on initiation as the rate-limiting step of translation, we expect that 
the protocol can reveal important regulatory relationships at this level.

We used riboPLATE-seq in this study to interrogate translational regulation in mitogenic signaling pathways 
in cancer cells, observing the expected effects of mTOR inhibition on translation, including decreased ribosome 
association in TOP motif-containing genes, and correlated this effect with that seen in differential translation 
efficiency generated from ribosome profiling and RNA sequencing. We additionally clarified translational targets 
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for PI3K and MNK1, observing that PI3K targets a subset of the TOP genes impacted by mTOR, with no strong 
independent impact on known TOP genes or candidates. This suggests the effect of PI3K on the TOP genes may 
be wholly mediated by mTOR, consistent with the known organization of the mTOR signaling axis. In contrast, 
treatment with the highly-specific MNK inhibitor MNK-i1 did not significantly impact the TOP genes, despite 
its prevention of eIF4E phosphorylation (Supplementary Fig. 1). The currently accepted mechanism of mTOR 
control of TOP gene translation, via de-repression of initiation through phosphorylation of TOP-motif-binding 
protein LARP13,58, provides an additional layer of regulation between eIF4E and TOP gene translation down-
stream of mTOR, which may help to explain the observed lack of overlap in translational targets of mTOR and 
MNK1. It is possible that mTOR is singular in its control of TOP gene translation, with minimal effect from 
convergent pathways. Off-target effects of commonly-used MNK inhibitors in past studies12 may overemphasize 
previous observations to this effect, with off-target effects of 4EGi-144 similarly complicating interpretation of 
eIF4E targets. 4EGi-1 binds to eIF4E with relatively low affinity, and has been shown to induce ER stress and 
apoptosis independent of inhibition of cap-dependent translation44,45. The substantial concentration of 4EGi-1 
required to inhibit eIF4E:G association, combined with off-target and cytotoxic effects manifested through six 
hours of treatment, potentially incurred TOP gene-preserving compensatory regulation.

Pairwise drug combinations triggered what we interpreted as compensatory attenuation of the strongest 
effects of individual drugs. We found a lesser degree of attenuation in the combination of PP242 and BKM120, 
despite the redundancy of these drugs targeting the same pathway, with a greater portion of their individual tar-
gets enhanced by combination treatment, suggesting that inhibition of PI3K with BKM120 does not completely 
inhibit mTOR downstream. These findings highlight the utility of explicitly testing combined perturbations and 
the need for scalable measurement strategies like riboPLATE-seq.

This study serves as a proof-of-concept for larger-scale perturbation screens of potential translational regula-
tors, demonstrating the sensitivity of riboPLATE-seq to translational regulation at the level of initiation. Here, 
riboPLATE-seq revealed specific translational targets for kinases consistent with the known structure of their 
signaling pathways, including the established mechanism by which mTOR controls translation of the TOP 
motif-containing genes. The method serves as a screening protocol, low in cost, complexity, and specificity, but 
nonetheless sensitive to changes in gene-specific differences in ribosome association between experimental 
conditions. Ideally, riboPLATE-seq provides a set of candidates for a given perturbation, which can be examined 
in more detailed analyses and orthogonally validated in subsequent experiments. The technology described here 
could enable a more comprehensive screen of RNA-binding proteins or kinases, the majority of which remain 
unstudied at the level of translation. Translational networks inferred from such a dataset could be validated with 
high-resolution techniques like ribosome profiling and CLIP-seq, and used in further study. We anticipate that 
the ability to dissect these networks at scale will advance our understanding of translational regulation and the 
design of specific therapies for diseases involving aberrant translation.

Methods
Tissue culture and compound administration (TS‑543).  We seeded TS-543 neurospheres (passage 
#11) on a 96-well plate (Corning, #3799) at a density of 7500 cells per well (50,000 cells/mL) in 150µL NS-A 
complete medium (containing 10% v/v NeuroCult NS-A Proliferation Supplement, 20 ng/mL EGF, 10 ng/mL 
bFGF, and 2ug/mL heparin) (STEMCELL Technologies #05,751). We incubated the plate of cells for 36 h prior to 
the start of the experiment at 37 °C and 5% CO2 in a tissue culture incubator. We separately prepared stock solu-
tions of PP242 (Tocris, #4257), MNK-i1 (Sigma, #534,352), NVP-BKM120 (Selleck, S2247), AZD8055 (Selleck, 
S1555), and 4EGi-1 (Tocris, #4800) in DMSO vehicle (Sigma, #472,301). After dilution with NS-A basal culture 
medium (without supplement, cytokines, or heparin), we administered the drugs or pure DMSO to the experi-
mental and control wells, respectively, in 1µL doses. Final concentrations were 50 nM AZD8055, 625 nM PP242, 

Figure 5.   Characterization of Alterations in Ribosome Association (RA) and Comparison with Translation 
Efficiency (TE) from Ribosome Profiling and RNA Sequencing in TS-543 cells. (a)–(e) Volcano plots of 
log-fold change in RA per-gene associated with each drug treatment. In each plot, the X axis marks the size 
and direction of the observed change for each gene, while the Y axis scales inversely with p-value (− log10(p)) 
to provide a positive metric of significance; TOP motif-containing genes, the canonical targets of mTOR 
signaling, are colored red. Additionally, dashed lines at y =  − log10(0.05) and x =  + / − 1.0 provide an estimate 
of the number and magnitude of significantly up- and down-regulated genes for each condition. Significant 
TOP gene inhibition is seen in treatment with PP242, AZD8055, and BKM120, but less so with MNK-i1 
and not at all with 4EGi-1. (f), (g) Volcano plots of log-fold change in TE per-gene associated with PP242 
treatment for 30 min or 6 h, generated from ribosome profiling and RNA sequencing data. Guide lines at 
y =  − log10(0.05) and x =  + / − 1 provide gauges of the significance and magnitude of the effects on gene-wise 
TE at either time point. TOP motif-containing genes, in red, are highly and significantly downregulated in 
both (Mann–Whitney U test p = 2.9 × 10–46 and p = 1.2 × 10–38 for 6-h and 30-min treatment, respectively). In all 
volcano plots, genes with p-values less than p = 1 × 10–10 (y = 10) are given a maximum y-value of 10 to prevent 
skewing of the axes. (h) Enrichment heatmap using GSEA to compare signatures of differential TE (X axis) 
with sets of genes significantly up- or downregulated (DESeq2 FDR < 0.05) at the level of RA by different 6-h 
drug treatments determined with riboPLATE-seq. Gene sets found significantly enriched or depleted in lfcTE 
(GSEA Bonferroni-adjusted FWER < 0.05) are marked with asterisks (*). Genes affected by PP242, BKM120, 
and AZD8055 are concordantly altered in TE after 6 h of PP242 treatment, while only the genes impacted by 
PP242 at the level of RA are similarly affected in TE after 30 min of PP242 treatment, with all other gene sets 
demonstrating varying degrees of downregulation (GSEA Normalized Enrichment Score < 0).

▸
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1 μM BKM120, 100 nM MNK-i1, and 50 μM 4EGi-1, including in pairwise combination-treated samples. Drug 
treatment proceeded for 6 h in the tissue culture incubator prior to lysis.

For the dose response analysis shown in Supplementary Fig. 1 (also see Supplementary Data S1 and Sup-
plementary Data S2 for raw scans), we treated TS-543 neurospheres with the indicated concentrations of MNK-
i1 as described above. Western blot analysis was performed using p-EIF4E anti-rabbit monoclonal antibody 
(Abcam ab76256, 1:5000 dilution) with AlexaFluor 488-labeled goat anti-rabbit secondary antibody (A-11034, 
ThermoFisher) and EIF4E anti-mouse monoclonal antibody (BD Biosciences 610,270, 1:2000 dilution) with 
AlexaFluor 647-labeled goat anti-mouse (A-21236, ThermoFisher).

Cell lysis (TS‑543).  Following treatment, we centrifuged the plate of TS-543 for 7 min at 1800RPM on a 
Sorvall Legend XTR at room temperature and removed supernatants by aspiration. Placing the plate on ice, we 
resuspended the pelleted cells in each well in 30µL of polysome lysis buffer (20 mM Tris–HCl, pH = 7.4, 250 mM 
NaCl, 15 mM MgCl2),0.1 mg/mL cycloheximide, 0.5% Triton X-100, 1 mM DTT, 0.5U/µL SUPERase-In (Ther-
moFisher, AM2696), 0.024U/µL TURBO DNase (Life Technologies, AM2222), 1 × Protease Inhibitor (Sigma, 
P8340)), mixed 5 times by pipetting, and rested the plate on ice for 5 min. We then centrifuged the plate for 
5 min at 1400RPM at 4 °C to remove bubbles before performing a quick freeze–thaw, placing the plate first in a 
-80 °C freezer and then resting at room temperature for 5 min each. Following an additional 10 min rest on ice, 
we viewed the plate under a microscope to check the extent of cell lysis. We then prepared a new 96-well plate 
containing 3.5µL 2 × TCL buffer (Qiagen, #1,070,498) per well, to which we transferred 3.5µL of lysate (approxi-
mately 10% total volume).

Figure 6.   Attenuation of Single-Drug Effects Under Combination Treatments in TS-543 cells. (a)–(c) Volcano 
plots of changes in RA observed under drug combinations, color-coded with the upregulated (red, magenta) and 
downregulated (blue, cyan) significant targets (DESeq2 FDR < 0.05, R v4.0.5) of each combination’s constituent 
drugs. In each plot, the X axis marks each gene’s observed difference in RA under drug combination treatment 
relative to DMSO controls, and the Y axis scales inversely with p value (-log10(FDR)) to correlate positively 
with the effect’s significance. Significant targets of both constituent drugs are attenuated in their effects in all 
combinations, indicated by significance values below the guideline y =  − log10(0.05) and effect sizes reduced 
towards x = 0, relative to their distributions in the volcano plots in Fig. 5 (by definition y >  − log10 (0.05)). 
(d)–(f) Scatterplots comparing the maximum observed effect in either individual drug on the X axis with its 
observed effect under combination treatment on the Y axis, for the set of genes significantly impacted by each 
drug combination’s two constituent drug treatments. Guidelines at Y = 0 and X = Y aid visualization of the 
attenuation in gene-specific effects of the individual drugs in combination. Most genes fall between Y = 0 and 
X = Y, indicating a lesser change in RA in the same direction under combination treatment compared with its 
maximum effect observed in singular treatments.
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Automated pan‑ribosome immunoprecipitation.  To the remaining lysate, we added 1 µL of SUPER-
ase-in (ThermoFisher, AM2696) and 1 µL of biotinylated y10b antibody (ThermoFisher, MA516060) to each 
well, then sealed the plate and allowed it to incubate while gently shaking for 4 h at 4 °C. During this incubation, 
we washed 500µL of Dynabeads MyOne Streptavidin C1 streptavidin-coated magnetic beads (ThermoFisher, 
#65,001) 3 times with polysome wash buffer (20 mM Tris–HCl (pH 7.4), 250 mM NaCl, 15 mM MgCl2, 1 mM 
DTT, 0.1 mg/mL cycloheximide, 0.05% v/v Triton X-100), using 1 mL per wash and resuspending in 500µL. We 
added 5µL of washed beads to each well, then incubated while gently shaking at 4 °C for an additional hour. After 
this short incubation, we placed the plate on a magnet, removed and reserved supernatants, and washed the wells 
3 times with 200µL per well of polysome wash buffer supplemented with 1µL/mL SUPERase-in on the Biomek 
4000 automated liquid handling system.

Following the final wash, we resuspended the beads in 15µL of ribosome release buffer (20 mM Tris–HCl (pH 
7.4), 250 mM NaCl, 0.5% Triton X-100, 50 mM EDTA) per well. During a 15-min incubation at 4C on a Peltier 
module, with continuous pipet mixing on the Biomek 4000 in order to maximize elution, we distributed 15µL 
of 2 × TCL buffer to each well of a new 96-well plate. Finally, we replaced the eluted sample plate on the magnet 
and transferred eluants to the TCL-containing plate.

Tissue Culture and Cell Lysis for Non‑Automated riboPLATE‑seq in Wi‑38.  Separately, we seeded 
WI-38 human fibroblast cells on a 96-well plate at a density of 3,000 cells per well in 60µL cell culture media 
per well (DMEM (ThermoFisher #11,965,092) + 10% FBS (ThermoFisher #A3160501)), 36 h prior to cell lysis. 
After removing media by aspiration and gently washing wells once with cold PBS supplemented with 0.1 mg/
mL cycloheximide, we added 30µL cold polysome lysis buffer to each well and mixed by pipetting up and down 
five times. Additionally, we added 1µL of 1:5000 ERCC spike-in mix 1 (ThermoFisher #4,456,740) to every other 
column of wells on the plate. We rested the plate at room temperature for 5 min, then ice for 10 min more, fol-
lowing which we centrifuged the plate at 1400RPM for 5 min to remove bubbles. We then reserved 10µL from 
each well (33% initial lysate volume) in a second plate for PLATE-seq, and added 10µL 2 × TCL buffer (Qiagen) 
to each well before freezing at -80C.

Manual Immunoprecipitation of Ribosome Bound RNA (Wi‑38).  We first added 0.6 µL each of 
biotinylated antibody y10b and SUPERase-IN to each well of the remaining lysate, mixed well by pipetting, 
then sealed the plate and incubated for 4 h at 4C with gentle shaking. We then added 4µL of streptavidin-coated 
magnetic beads to each well, which we had washed 3 × and resuspended in polysome wash buffer, mixed care-
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Figure 7.   Distribution of TOP Motif-Containing Genes and Candidates in a Modeled Translational Control 
Network in TS-543 cells. (a) TOP genes and candidates significantly perturbed in RA by drug treatments. Strip 
plots along the X axis, labeled for each drug treatment in our riboPLATE-seq study, contain log-fold changes 
in RA (Y axis) for the genes exhibiting significant RA perturbations (FDR < 0.05) under each treatment relative 
to DMSO controls, excluding non-TOP-containing genes. TOP candidates behave similarly to canonical TOP 
genes, exhibiting decreased RA under treatment with mTOR axis inhibitors (PP242, AZD8055, BKM120) 
while MNK-i1 and 4EGi-1 elicit fewer significant alterations in these sets. (b) Network representation of targets 
of mTOR, PI3K, and MNK1, interpreted as the genes exhibiting significant decreases in RA under treatment 
with PP242, BKM120, and MNK-i1, respectively (FDR < 0.05). Targets are color-coded for identification as 
canonical 5’TOP motif-containing genes (green), TOP gene candidates with known mouse homologues (navy 
blue) and other genes (light blue). Shaded circles denote subsets of the network with significant enrichment of 
canonical and/or candidate TOP genes, with the Fisher’s exact test p-value for either set displayed. P-values are 
corrected for multiple testing over all gene sets and network intersections tested via Benjamini-Hochberg (false 
discovery rate/FDR) adjustment. The intersection of all three kinases is enriched for canonical TOP genes, but 
not candidates (Fisher’s exact test padj = 7.9 × 10–15 and padj = 1.0, respectively), while the intersection of PI3K 
and mTOR is significantly enriched for canonical TOP genes and less-significantly enriched for candidates 
(padj = 3.0 × 10–14 and padj = 0.02).
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fully, and allowed the plate to incubate for one additional hour at 4C with gentle shaking. After placing samples 
on a 96-well plate magnet, we washed all wells 3 × with polysome wash buffer, and eluted after the final wash by 
15 min of incubation in 15µL ribosome release buffer. Finally, we removed the supernatant using a 96-well plate 
magnet, and added 15µL of 2 × TCL buffer to each well before freezing the plate.

Ribosome profiling and RNA sequencing.  We seeded TS-543 neurospheres in a 6-well plate at a start-
ing density of 50,000 cells/mL in 2 ml of NS-A complete medium per well, and allowed the plate to rest for 36 h. 
After preparing PP242 solution in DMSO as above, we treated two wells each with 625 nM PP242 or DMSO 
vehicle for 6 h in the tissue culture incubator. In a separate experiment, we treated two wells each with the same 
concentrations of PP242 and DMSO for 30 min. Following treatment, we transferred samples to 15 mL conical 
vials for centrifugation at 640 RCF for 7 min, then removed supernatants and added 400 µL polysome lysis buffer 
(recipe above). After mixing by rapid pipetting, we transferred samples to 1.8 mL microcentrifuge tubes, rested 
them on ice for 5 min, and triturated by 5 passages through a 23-gauge needle. Following a clarifying spin of 
11 K RCF for 10 min at 4C on a benchtop centrifuge, we transferred supernatants to a new set of microcentrifuge 
tubes and discarded pellets. We prepared ligation-free ribosome profiling and total RNA-seq libraries from the 
clarified polysome lysates treated for 6 h following the instructions provided with their respective kits (smarter-
seq smRNA-seq kit, Takara-Clontech; NEBnext Ultra-Directional II) augmented with our previously-published 
ligation-free ribosome profiling protocol59. We additionally prepared conventional ribosome profiling and total 
RNA-sequencing libraries from the samples treated for 30 min, using previously-described55 modifications to 
the protocol by Ingolia et al60. We sequenced 6 ribosome profiling libraries or up to 12 RNA-seq libraries in 
one NextSeq 550 high-output 75-cycle kit. Library construction methods and experimental conditions for each 
sample are presented in Supplementary Table S2. Both PLATE-seq and ligation-free ribosome profiling library 
preparation protocols are available on our laboratory website (http://​www.​colum​bia.​edu/​~pas21​82/​index.​php/​
techn​ology.​html).

PLATE‑seq library preparation and sequencing.  We submitted plates of ribosome-associated and 
previously reserved total lysate in TCL buffer to the Columbia Genome Center for processing by the previously-
described PLATE-seq method of RNA-seq library preparation27, which involves poly-A selection of transcripts, 
incorporation of sequence barcodes in poly(T)-primed reverse transcription, and pooling for subsequent library 
preparation steps, generating a single 3’-end RNA-seq library from each 96-well plate. We pooled total and ribo-
some-associated PLATE-seq libraries, sequencing the pooled pairon the Illumina NextSeq 550 with a 75-cycle 
high-output kit. With paired-end sequencing, the first read corresponds to the 3’ end of a transcript, and the 
second read contains the barcode identifying the library in which the read was obtained.

Read alignment and data analysis.  With a custom processing pipeline, we first trim reads of trailing 
polyA sequence and adapters with cutadapt (v 3.5)61, then align the whole set of multiplexed reads to the hg38 
assembly of the human genome, plus additional sequences corresponding to ERCC spike-in transcripts added 
for depletion experiments, with STAR​62 (v 2.7.9a). We then demultiplex the aligned fragments from Read 2 
to their original riboPLATE- or PLATE-seq library indices according to their barcodes present in Read 1, as 
described in the original PLATE-seq paper27. We use a similar pipeline to process and align ribosome profiling 
and RNA sequencing libraries, first trimming polyA tails and adapters with cutadapt, then removing reads that 
align to the 45S pre-ribosomal RNA and 5S ribosomal RNA with bowtie263 (v 2.2.5) before aligning with STAR. 
We then use featureCounts64 (v 2.0.1) to count the number of fragments aligned to each gene in each library, 
counting all exon-aligned reads as valid. Barcode sequences for each PLATE- or riboPLATE-seq library gener-
ated are available as separate worksheets in Supplementary Table S3. Library quality control data are available in 
Supplementary Table S4.

Definition of gene sets of interest.  As PLATE- and riboPLATE-seq depend on isolation of RNA by 
poly(T) pulldown, they can only be used to measure polyadenylated transcripts. We first combined two sets 
of poly(A)- predominant transcripts from HeLa and H9 cells determined in a screen of polyadenylation status 
across the transcriptome65, and removed these genes from consideration in our study to leave only consistently 
polyadenylated transcripts. We also obtained a set of known 5’ terminal oligopyrimidine motif-containing genes 
(TOP genes), as well as novel TOP candidates with and without known TOP-containing analogues in mice, from 
a comprehensive search of transcription start sites50.

Variance‑stabilizing transformation and outlier removal.  After subsetting the count matrices for all libraries to 
remove alignments to non-polyadenylated and spike-in transcripts, we constructed an overall count matrix of 
all 192 libraries for all 96 samples. We read this matrix into DESeq2 with corresponding column data describing 
the sample ID, library type (ribo or RNA PLATE-seq), and drug treatment for each library. We then used the 
variance-stabilizing transform in DESeq2 (version 1.3.4) with default parameters to obtain an approximately 
homoscedastic, log-scale transformation of raw counts for all libraries. We used this transformed count matrix 
to perform two-dimensional principal component analyses (PCA) in Python, utilizing the scikit-learn pack-
age for analysis and matplotlib for visualization. We limited these analyses to genes determined significant by 
DESeq2 for differential RA in any drug tested (Benjamini–Hochberg adjusted FDR < 0.05; 1813 genes total). For 
each sample, we computed RA for each gene as the ratio of normalized riboPLATE-seq to PLATE-seq counts; 
for log-scale transformations such as vst, this corresponds to their difference. With the average RA across all 
vehicle-treated controls as a reference for baseline RA, we computed the log-fold change from baseline for all 
genes in each drug-treated sample. We first performed PCA on RA and log-fold change in RA for the full set of 

http://www.columbia.edu/~pas2182/index.php/technology.html
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samples from the plate, then removed 11/96 samples as PCA outliers (2 DMSO, 2 4EGi-1, 2 BKM120 + MNK-i1, 
1 AZD8055, 1 PP242, 1 BKM120, 1 PP242 + MNK-i1, 1 PP242 + BKM120) for subsequent analyses of differential 
ribosome association with DESeq2. We used the remaining samples to generate final matrices of raw counts and 
vst-transformed counts for the RNA quality control and principal component analyses in Figs. 2 and 3.

Differential count analysis in DESeq2.  We performed differential expression and differential ribosome associa-
tion analyses using the DESeq2 package in R66. We first read the entire matrix of counts across all samples, plus 
its corresponding column data table describing sample ID, drug treatment, and library type for each sample, into 
DESeq2. For each condition, we subset the matrix of gene counts to samples corresponding only to that condi-
tion and DMSO controls, then analyzed that subset using a likelihood ratio test with the following parameters:

dds_sub <- DESeq(dds_sub, fitType=’local’, test=’LRT’, full=~conditio
n+type+condition:type, reduced=~condition+type)

where condition and type in the design formulas refer to experimental condition/drug treatment and 
sequencing library type (riboPLATE or PLATE-seq), respectively. Following each subset DESeq2 analysis, we 
retrieved results for the interaction term condition:type, corresponding to changes in the ratio of riboPLATE- to 
PLATE-seq counts between conditions, i.e. differential RA:

res <—results(dds, name = ’condition < X > .typeRIBO’).
We analyzed ribosome profiling and RNA sequencing data in an identical fashion, comparing PP242 vs 

DMSO-treated samples at both 30 min and 6 h of treatment to generate two signatures of differential TE.

Comparison of sequencing library types with gene set enrichment analysis.  We constructed ranked lists for gene 
set enrichment analysis (GSEA) using the per-gene differential translation efficiencies calculated with ribosome 
profiling and RNA sequencing data at 30 min or 6 h of PP242 treatment. For each drug tested via riboPLATE-
seq, we identified its targets as genes exhibiting significant change in ribosome association (RA) by DESeq2 
(Benjamini–Hochberg adjusted FDR < 0.05), split by up- or downregulation (lfcRA > 0 / lfcRA < 0). We then 
removed genes from each such that all sets were mutually exclusive, i.e., no two drugs share a common upregu-
lated or downregulated gene. We used the preranked function in the GSEA desktop app to compare the ranked 
lists for differential TE, using each gene’s log fold change in TE as a ranking metric, against these differential 
RA-derived gene sets with default parameters and scoring method set to ‘classic’.

Network visualization.  To create a basic network, we interpreted the genes exhibiting significant reductions in 
RA under treatment with kinase inhibitors (FDR < 0.05) as positive targets of the kinases inhibited. We loaded 
these gene sets into CytoScape67 (v2.9.0) as individual networks for each kinase, merged the three networks, and 
organized the resulting merged network with the yFiles68 Organic automatic layout. We then color-coded the 
sets of canonical and novel TOP motif-containing genes present in the network, based on lists obtained from 
Yamashita et al50.

Data visualization and code.  All code was run in Python 3.9.5 and R 4.0.5. R packages were installed via Bio-
conductor v 3.12, including DESeq2 v1.34.0 for differential RA and TE analysis and normalization, and BiocPar-
allel v 1.28.0 for use of multicore processors.

Python libraries were installed via Anaconda (v 4.10.3). We generated plots and diagrams using matplotlib 
(v3.4.3) and Jupyter Notebook (IPython 7.28.0, jupyter_core v4.8.1)69,70. Our analyses use NumPy71 (v1.21.2) 
for data manipulation, SciPy72 (v1.6.3) for statistical tests, and scikit-learn73 (v1.0) for PCA. We additionally 
generated strip plots and heatmaps using Seaborn74 (v0.11.2).

Data availability
Sequencing data for this study is available on the Gene Expression Omnibus (GEO) under accession ID 
GSE139238 [https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE13​9238]. Custom scripts used in the 
analyses performed in this paper, a Jupyter notebook generating our main figures, and the accompanying files 
necessary for their function are available for download from our laboratory Github (https://​github.​com/​simsl​
ab/​riboP​LATE-​seq).
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