Skip to main content
. 2022 Mar 23;13:716506. doi: 10.3389/fpls.2022.716506

TABLE 4.

Evaluation of model performance on the test set for single-day models (trained on data at late booting stage) and 3D-CNN.

Model Fold RMSE (Mg/ha) MBE (Mg/ha) MAE (Mg/ha) R 2
Null A 0.93 −0.50 0.79 n.d.
B 0.75 0.08 0.57 n.d.
C 0.80 0.30 0.60 n.d.
D 0.83 0.13 0.62 n.d.
Mean 0.83 0.00 0.65 n.d.
Linear A 1.06 −0.78 0.93 0.17
B 0.70 0.07 0.51 0.18
C 0.94 0.59 0.70 0.15
D 0.83 0.10 0.63 0.04
Mean 0.88 −0.01 0.69 0.14
XGBoost A 0.88 −0.45 0.72 0.11
B 0.74 −0.02 0.53 0.19
C 0.83 0.50 0.61 0.22
D 0.83 0.11 0.63 0.04
Mean 0.82 0.04 0.63 0.14
2D-CNN A 0.73 −0.19 0.57 0.18
B 0.68 0.13 0.47 0.29
C 0.63 0.02 0.45 0.30
D 0.84 0.28 0.62 0.10
Mean 0.72* 0.06* 0.53 0.22
3D-CNN A 0.80 −0.37 0.67 0.08
B 0.67 0.17 0.48 0.27
C 0.77 −0.24 0.61 0.37
D 0.90 0.45 0.67 0.06
Mean 0.79 0.00 0.61 0.20

*Indicates significant difference in mean value between 2D-CNN and linear model only (p ≤ 0.05; one-way ANOVA).

RMSE, root mean squared error; MBE, mean bias error; MAE, mean absolute error;R2, coefficient of determination. n.d., not defined (observed ∼ predicted yield is a vertical line for the null model).