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Abstract

Introduction:Clinical trials for sporadic Alzheimer’s disease generally use mixedmod-

els for repeatedmeasures (MMRM)or, to a lesser degree, constrained longitudinal data

analysis models (cLDA) as the analysis model with time since baseline as a categorical

variable. Inferences using MMRM/cLDA focus on the between-group contrast at the

pre-determined, end-of-study assessments, thus are less efficient (eg, less power).

Methods: The proportional cLDA (PcLDA) and proportional MMRM (pMMRM) with

time as a categorical variable are proposed to use all the post-baseline data without

the linearity assumption on disease progression.

Results:Comparedwith the traditional cLDA/MMRMmodels, PcLDAor pMMRM lead

to greater gain in power (up to 20% to 30%) while maintaining type I error control.

Discussion: The PcLDA framework offers a variety of possibilities to model longitu-

dinal data such as proportional MMRM (pMMRM) and two-part pMMRM which can

model heterogeneous cohortsmore efficiently andmodel co-primary endpoints simul-

taneously.

KEYWORDS
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1 INTRODUCTION

Currently, phase 2/3 efficacy clinical trials in sporadic Alzheimer’s

disease (AD) generally use the mixed model for repeated measures

(MMRM) or, to a lesser degree, the constrained longitudinal data anal-

ysis model (cLDA) as the primary analysis model1–7 with time since

baseline as a categorical variable. TheMMRMmodels the change from

baseline with the baseline value as a covariate, whereas cLDA includes

the baseline value in the response vector together with the post base-
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line values and imposes a constraint of a common baselinemean across

treatment groups as a result of randomization.5–8 The MMRM/cLDA

model concept iswell acceptedby regulatory agencies such as theFood

and Drug Administration (FDA) and the European Medicines Agency

because of its minimal restrictions on the disease progression during

the follow-up (cLDA to a lesser degreedue to its constraint on thebase-

line mean). However, the tradeoff is that MMRM/cLDA directly uses

only the baseline and the end-of-study assessments for the estimate

of the treatment effect, thus intermediate time points and participants
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TABLE 1 Model assumptions for the three types of models

Models Linearity∼ Time variable Treatment effect Extended follow-up

cLDA/MMRM No Categorical Non-proportional Not contribute to treatment effect

estimation*

LME Yes Continuous Proportional Contribute to treatment effect

estimation

PcLDA No Continuous/Categorical Proportional Contribute to treatment effect

estimation

Abbreviations: cLDA, constrained longitudinal data analysis; MMRM, mixed model for repeated measures; LME, linear mixed effects with first-order contin-

uous time; PcLDA, proportional cLDA.

*cLDA/MMRMcanallow the extended follow-up, but the assessments in the extended follow-updonot contribute directly to the treatment effect estimation.

∼Linearity: disease progression is linear during the follow-up for LMEwith first-order continuous time variable.

who drop out early contribute less to the treatment effect compari-

son. Furthermore, MMRM/cLDA requires the same exposure duration

for all participants. That means early enrollees need to stop the expo-

sure once reaching the pre-determined treatment duration while late

enrollees are continuing to complete the treatment. Thus, theextended

follow-up for early enrollees does not directly contribute to power. To

overcome these inefficiencies, the linear mixed effects (LME) model

with random effects (eg, random intercept and random slope)9 with

first-order time as a continuous variable, which estimates common

slopes from baseline to end of study for the treatment group and for

the placebo group, respectively, has gained interest.10 LME provides

greater power than MMRM/cLDA given the same sample size.10,11

However, comparedwithMMRM/cLDA, LMEhas stronger restrictions;

notably, it requires the disease progression during the follow-up to be

linear, which is not likely as demonstrated by real trial data.2,3 Other

LME models with curvilinear trends, such as polynomial regression

models, have not been used in any AD clinical trials as primary anal-

ysis models as the real data rarely meet the pre-specified curvilinear

trends. For these reasons, LME is not preferred by regulatory agencies

overMMRM/cLDA.

To overcome the inefficiency of MMRM/cLDA and the lin-

ear/curvilinear restriction of LME, we propose the proportional

cLDA (PcLDA) (Table 1) or proportional MMRM (supplemental Section

4 in the Supporting Information). Conceptually, PcLDA is similar to

the Cox proportional hazards model which estimates the hazard

ratio of two groups as a constant over time and thus assumes a

proportional treatment effect over time,12 that is, PcLDA models

the treatment effect as a single proportional difference at each post-

baseline visit (Section 2). PcLDA uses time as a categorical variable like

MMRM/cLDA and thus releases the linearity/curvilinear assumption

of LME. On the other hand, PcLDA directly uses all assessments

(baseline, intermediate, end-of-study, and extended follow-up) to

estimate the treatment effects, thus naturally yielding higher power

thanMMRM/cLDA. Furthermore, PcLDA can also incorporate random

effects like the LME model, which is able to yield individual-level

disease progression trajectories. When presenting a treatment effect,

it is a common practice to convert the difference in the change from

baseline between the treatment group and the placebo group to a

percent treatment effect using the outputs from cLDA/MMRM. For

example, it is widely reported that the FDA-approved aducanumab

demonstrated a 22% slowing of decline on the Clinical Dementia

Rating Sum of Boxes in the EMERGE trial,13 which was calculated

as the mean difference (0.39) in the change between the two groups

divided by the mean change from baseline in the placebo group (1.74).

However, as pointed out by the FDA’s review statistician, this percent

treatment effect “doesn’t represent the analysis scale or acknowledge

the standard error of the percent reductionwhich is needed for proper

context.”14 The PcLDA model overcomes this issue by directly esti-

mating an average percent treatment effect (ie, the proportion 𝜃) and

its 95% confidence interval (CI) using data from all post-baseline visits

based on the maximum likelihood method. Overall, PcLDA offers a

more delicate balance between model efficiency and the acceptability

requirements of regulatory agencies than both the MMRM/cLDA and

LMEmodels.

As it has been demonstrated, cLDA has equal or higher power than

MMRM given the same sample size,5,6 thus we choose to evaluate

the behavior of PcLDA relative to cLDA with the comparison between

PcLDA and MMRM in the appendix. The remainder of this paper is

as follows. Section 2 presents the model formulation and its compar-

ison with cLDA. Section 3 evaluates model behavior relative to cLDA

through simulated hypothetical clinical trials. Section 4 contains the

extension of thePcLDAmodel. Section5 concludeswith the discussion.

2 MATERIALS AND METHODS

2.1 Proportional cLDA without random effects
(marginal model)

Let yijk denote the longitudinal assessments for subject i at time j for

group k, i = 1, 2, … , n, j = 0, 1, … , mi, with j = 0 representing the

baseline visit, and k = 1, 2 representing the placebo group and the

treatment group, respectively, and let Δjk be the mean change from

baseline at time j ≥ 1 for group k.Wedefine theproportional treatment

effect (ie, a percent treatment effect relative to themean change of the

placebo group) as:

𝜃 =
Δj1 − Δj2

Δj1
, (1)
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thus, Δj2 = Δj1 (1 − 𝜃). Because 𝜃 is assumed to be the same from visit

to visit, thus the time index j is not needed for 𝜃. We assume that

due to disease progression, the change from baseline in the placebo

group is non-zeroandcanbepositiveornegative. PcLDAcanbewritten

as:

yijk = 𝜇0 + Δj1 (1 − 𝜃I (k = 2)) + 𝜀ijk, (2)

where, 𝜇0 is the baseline mean that is constrained to be the same

across groups because of randomization; I is the indicator function;

the within-subject error 𝜀ijk is assumed to follow the same multi-

variate normal distribution for both groups: N(0mi+1, ˚(mi+1)×(mi+1)),

where ˚ is an unstructured variance-covariance matrix and mi + 1

is the number of repeated measures for subject i. A description of

cLDA is presented in the corresponding supplemental section 2.1 for

reference.

PcLDA assumes that the proportional treatment effect is the same

at each post-baseline visit j ≥ 1, and themethod to test this assumption

is described in Section 2.3.When the assumption is not met, the model

can be fit with a different proportion 𝜃j at each visit.

Without loss of generality, we assume that a positive change from

baseline in the placebo group representsmore severe disease progres-

sion. Under this assumption, 𝜃 = 0 indicates no treatment effect at

all; 𝜃 = 1 indicates the treatment completely stops the disease pro-

gression; 𝜃 < 0 indicates the treatment speeds up the disease pro-

gression compared to placebo; 𝜃 > 0 indicates the treatment slows

down the disease progression compared to placebo. The primary test

is whether 𝜃 is significantly different from 0. The parameters in the

marginal PcLDA model can be estimated using (restricted) maximum

likelihoodmethod.9

2.2 Proportional cLDA with random effects

PcLDA can be adapted to include random effects (random intercept

and random change) like the LME model. PcLDA models with random

effects still use time as a categorical variable, thus do not restrict the

mean trajectory during the follow-up to be linear (first-order contin-

uous time) or curvilinear (polynomial continuous time) as required by

LME. PcLDAwith random effects can be presented as:

yijk = (𝜇0 + u0i) + Δj1 (1 − 𝜃I (k = 2)) + u1itij + 𝜀ijk, (3)

where yijk , I, 𝜇0, and Δj1 have the same meaning as those in (2); 𝜃 is

defined in the same way as in (1) with the same assumptions; u0i , u1i
are the random effects for the intercept and the change from base-

line and are assumed to follow the same bivariate normal distribu-

tion for both groups:
(
u0i
u1i

)
∼ N

(
0,

[
𝜎2u0i

𝜎u0iu1i

𝜎u0iu1i 𝜎2u1i

])
; the within-subject

error is assumed to follow the samenormal distribution for bothgroups

𝜀ijk ∼ N(0, 𝜎2e ). Like in the LMEmodel, we also consider a linear random

change effect. A description of LME (first-order time) is presented in

the corresponding supplemental section 2.2 for reference.

Parameters in this model can be estimated using the (restricted)

maximum likelihood method, the first order approximation method,15

or integration of the likelihood over the random effects using adaptive

and/or non-adaptive Gauss-Hermite quadraturemethod.16

2.3 Test of the proportional treatment effect

The assumption of the proportional treatment effect can be tested

using an approximate F statistic. The null hypothesis is:

H0 : 𝜃1 = 𝜃2 = … = 𝜃m ,

and the alternative hypothesis is:

Ha : 𝜃j ≠ 𝜃j′ , for some j, j′ ∈ {1, 2, … , m},

where, 𝜃j is the proportional treatment effect at post-baseline visit j,m

is the total number of post-baseline visits. Let 𝜃̂′ = (𝜃̂1, 𝜃̂2, 𝜃̂3,… , 𝜃̂m)

be the estimated treatment effect at each post-baseline visit, L′ =(
1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮

⋯ ⋯ 1 −1

)
(m−1)×m

be the design matrix for testing the null hypoth-

esis with each row representing the comparison between two 𝜃s and

the null hypothesis can be re-written as L′𝜃̂, Ĉ be an estimate of the

generalized inverse of the covariance matrix of the fixed effects, and

r = rank(L′ĈL), then the test statistic can be constructed in a standard

way9 as follows:

F = 𝜃̂
′
L(L′ĈL)−1L′𝜃̂r−1.

The test statistic can be approximated by an F distribution. The

numerator degrees of freedom in the F approximation are r, and the

denominator degrees of freedom can be estimated usingmethods such

as the containment method, the residual method, the Satterthwaite

method, and the Kenward-Roger method. If the null hypothesis that all

the proportions are equal is rejected, post hoc pairwise tests using the

F test statistic can be composed similarly to determine the pairs that

are significantly different.

2.4 Computational procedures

The marginal PcLDA and the PcLDA with random effects were imple-

mented using standard SAS computational procedures nlinmix macro

and nlmixed, respectively (details are given in the corresponding sup-

plemental materials section 2.4). All analyses were conducted using

SAS 9.4 (SAS Institute Inc., Cary, NC).

3 RESULTS

The model behavior of PcLDA was compared to cLDA using simu-

lations, and the simulation parameters were selected for easy inter-

pretation (eg, baseline mean is 1) or based on clinical trial practice

(eg, 20% minimum treatment effect, sample size ranging from 100 to

400/arm). Although the difference in power between PcLDA and cLDA

may vary when different simulation parameters are used, the over-

all conclusion that PcLDA has power advantage over cLDA remains

unchanged.
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F IGURE 1 Power comparison by sample sizes and dropout rates for a 20% proportional treatment effect (A, no dropout; B, 10% annual
dropout). Results are shown for the following simulations with constrained longitudinal analysis (CLDA) versus proportional cLDA (PcLDA): cLDA
(4 years)= cLDA4-year trial model; PcLDA (4 years)= PcLDA4-year trial model; PcLDA (5 years)= PcLDA4-year trial model with 1-year extended
follow-up for 50% of the remaining subjects; PcLDA (6 years)= PcLDA 4-year trial model with 1-year extended follow-up for 50% of the remaining
subjects and 2-year extended follow-up for 25% of the remaining subjects. Marginal PcLDA led to a power increase up to 34% over cLDA

TABLE 2 Bias, MSE, and 95% coverage probability of the proportional treatment effect of 20% (4-year trial only) for marginal PcLDA

Sample

Size/Arm

NoDropout 10%Annual Dropout

Bias MSE CP Bias MSE CP

200 −0.0044 0.0109 94.3% −0.0055 0.0152 94.5%

300 −0.0030 0.0067 94.8% −0.0017 0.0095 93.9%

400 −0.0027 0.0054 94.3% −0.0012 0.0074 94.5%

Bias is the mean of the difference between the estimated parameter and its true value (1000 replicates). Abbreviations: CP, coverage probability of the

corresponding 95% confidence interval; MSE, mean of the squared error; PcLDA, proportional constrained longitudinal data analysis model.

3.1 Power comparison between marginal PcLDA
and cLDA

Due to the word limit, simulation details are presented in the corre-

sponding supplemental Section 3.1.

3.1.1 Simulation results

The type I error in all cases is within 2% of the nominal 5% for all

models (Supplemental Figure 1), similar to the reported type I error

rate formixed effectsmodels based on simulation.10,17 The simulations

showed that PcLDA has greater power than cLDA with power gains as

much as over 30% between a 4-year cLDA and a 6-year PcLDA at sam-

ple size of 200 (Figure 1). Specifically, for a 4-year trial, PcLDA gained

about 15% greater power than cLDA; the extra year-5 data (50% of

the non-dropout subjects) led to another approximately 10% to 15%

gain; and the extra year-6 data (25% of the non-dropout subjects) pro-

duced another 2% to 7%power gain (Figure 1). The difference in power

remains similar even with a 10% annual dropout but decreased as the

sample size increased (Figure1). Table 2presents thebias,mean square

error (MSE), and the 95% coverage probability for the proportional

treatment effect of 20%. Both the bias and the MSE were very small

and the 95% coverage probability was within 2% of the nominal level.

Similar resultswereobservedwitha10%treatmenteffect (supplemen-

tal Figure 5).

3.2 Power comparison between PcLDA with
random effects and cLDA

Due to the word limit, simulation details are presented in the corre-

sponding supplemental Section 3.2.

3.2.1 Simulation results

Similarly, the type I error is typically within 2% of the nominal 5%

for both models (Figure S2). The PcLDA model with random effects

yielded larger power than the cLDA model, with power gains up to
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F IGURE 2 Power comparison by sample sizes and dropout rates for a 20% proportional treatment effect (A, no dropout; B, 10% annual
dropout). Results are shown for the following simulations with constrained longitudinal analysis (CLDA) versus proportional cLDA (PcLDA) with
random effects: cLDA (4 years)= cLDA 4-year trial model; PcLDA (4 years)= PcLDA 4-year trial model; PcLDA (5 years)= PcLDA 4-year trial
model with 1-year extended follow-up for 50% of the remaining subjects; PcLDA (6 years)= PcLDA 4-year trial model with 1-year extended
follow-up for 50% of the remaining subjects and 2-year extended follow-up for 25% of the remaining subjects. PcLDAwith random effects led to a
power increase up to 20% over cLDA

TABLE 3 Bias, MSE, and 95% coverage probability of the proportional treatment effect of 20% (4-year trial only) for PcLDAwith random
effects

NoDropout 10%Annual Dropout

Sample Size/Arm Bias MSE CP Bias MSE CP

100 −0.0041 0.0058 95.6% −0.0032 0.0084 93.8%

200 −0.0007 0.0028 95.2% −0.0027 0.0037 94.9%

300 −0.0017 0.0018 96.8% −0.0027 0.0025 94.4%

Bias is the mean of the difference between the estimated parameter and its true value (1000 replicates). Abbreviations: CP, coverage probability of the

corresponding 95% confidence interval; MSE; mean of the squared error; PcLDA, proportional constrained longitudinal data analysis model.

20% between a 4-year cLDA and a 6-year PcLDA at a sample size of

100 (Figure 2). For example, without dropout and for a sample size of

100/arm, the cLDA yielded approximately 60% power, whereas a 4-

year PcLDA yielded 71%, a 5-year PcLDA yielded 76%, and a 6-year

PcLDA yielded 80% (Figure 2). Table 3 presents the bias, MSE, and the

95%coverageprobability for theproportional treatment effect of 20%.

Both the bias andMSEwere very small and the 95% coverage probabil-

ity was within 2% of the nominal level. Similar results were observed

with a 10% treatment effect (Figure S5).

3.3 Violation of the proportional treatment effect

As pointed out earlier, when presenting a treatment effect, it is a com-

mon practice to convert the difference in the change from baseline

between the treatment groupand theplacebogroup to apercent treat-

ment effect, to evaluate the model performance when the assumption

of proportional treatment effect is violated, and the estimated percent

treatment effect of PcLDA will be compared to that derived using the

cLDA model output. Data were simulated with different proportional

treatment effects at each visit (violation of the proportionality assump-

tion) and were then analyzed using PcLDA with a single proportion

to evaluate the robustness of the estimated proportional treatment

effect. The simulation details are presented in the corresponding sup-

plemental Section 3.3.

Table 4 shows the means and standard deviations of the estimated

percent treatment effect and the power for both models. In all scenar-

ios, PcLDA yielded a smaller estimated mean percent treatment effect

than cLDAwhile maintaining power advantage. As expected, when the

treatment effect is smaller at the later stage, the power advantage

diminishes. Figure S3 demonstrates the true trajectories (mean change

frombaseline) versus themean trajectories of the 1000 estimated clin-

ical trials. Because PcLDA estimates a single proportional treatment

effect over all the post-baseline visits and leverages toward the effect

at the end of the follow-up due to the larger absolute change at the

later visits, its estimated mean trajectories for both groups fall within

the true trajectories when the treatment effect decreases in the late

visits (eg, 30% vs 20%, 40% vs 20%), leading to a smaller estimated
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TABLE 4 Percent treatment effect and power comparison between PcLDA and cLDA

(30%, 30%, 20%, 20%)a (20%, 20%, 30%, 30%) (40%, 40%, 20%, 20%) (20%, 20%, 40%, 40%)

Mean (SD)a Power Mean (SD) Power Mean (SD) Power Mean (SD) Power

PcLDA 18.2% (12.2%) 38.9% 28.3% (11.4%) 71.0% 15.5% (13.1%) 33.6% 34.5% (12.7%) 82.8%

cLDA∼ 19.1% (12.8%) 30.6% 29.5% (11.9%) 59.7% 19.2% (12.6%) 30.6% 39.5% (12.1%) 82.4%

Abbreviations: cLDA, constrained longitudinal data analysis model; PcLDA, proportional constrained longitudinal data analysis model.
aTreatment effect at eachpost-baseline visit, for example, 30%means the treatment grouphas30% less decline at the first post-baseline visit than theplacebo

group.
bMean (SD) of percent treatment effect based on 1000 simulations with the sample size 200/arm.
cPercent treatment effect is calculated as the mean difference in change at the last-study visit between the treatment group and the placebo group divided

by themean placebo change at the last-study visit.

meanpercent treatmenteffect than the treatmenteffect at the late vis-

its (eg, 20%).

3.4 Application to real AD trial data

We applied the marginal PcLDA model to the data from an AD clinical

trial.18 The data were included in a meta-database of clinical trials and

observational studies, whose details have been reported elsewhere.19

Because practice effects can affect cognitive tests for more than 6

months,20,21 the proportional treatment effect was modelled start-

ing from year-1 assessment only, and the mean change over every 6

months was estimated. The 11-item ADAS-Cog was the cognitive test

used in this analysis. The ADAS-Cog is a brief cognitive test scored as

a composite from 0 to 70 errors with higher scores indicating worse

impairment.22 The model output for cLDA and PcLDA are presented

in Table S1. Overall, the estimated mean trajectories are almost iden-

tical between the two models. Compared to the placebo group, the

estimated proportional treatment effect is −11.5% (95% CI [−40.5%,

17.6%]), indicating the treatment group progressed 11.5% faster than

placebo during the follow-up. From cLDA, the estimated mean differ-

ence (treatment minus placebo) in change from baseline at year 2 is

1.50 and the estimated mean change from baseline to year 2 in the

placebo group is 13.6, leading to 11.0% (ie, 1.5/13.6) faster progres-

sion in the treatment group.When comparing the treatment group and

the placebo group, although both models failed to reach significance

at type I error level 0.05, PcLDA yielded a smaller P-value (.44) due

to the use of data from multiple visits compared to cLDA (P-value of

.51). Given that the overall proportional treatment effect is not sig-

nificant, not surprisingly, the testing of the proportionality assumption

indicated the treatment effect was not statistically different from visit

to visit.

4 OTHER VARIATIONS OF THE PROPORTIONAL
LONGITUDINAL DATA ANALYSIS MODELS

The concept of proportionality offers a variety of flexibilities to adapt

the traditional longitudinal data analysismodels. Some examples of the

marginalmodels are presented in the corresponding supplemental Sec-

tion 4.Models with random effects can be described similarly.

5 DISCUSSION

In this paper, we proposed the PcLDA and the pMMRM to estimate

the average proportional (ie, the percent) treatment effect during the

follow-up using themaximum likelihoodmethod. Themodel is inspired

by the well-established Cox proportional hazards model, and thus is

easy to interpret and conceptualize. Through simulated hypothetical

clinical trials, we demonstrated that PcLDA yields accurate estima-

tions of the treatment effect, controls type I error, and leads to large

increases in power comparedwith cLDA. Type I error fluctuatedwithin

2% of the nominal level, which is in the range of previous studies.10,17

Compared to cLDA, simulations showed that PcLDA can lead to power

increases ranging from over 5% to over 30%, depending on the sam-

ple size and the extended follow-up. Becausewe did not assume linear-

ity, we did not directly compare the power between PcLDA and LME.

PcLDA demonstrated similar power advantage over MMRM (Figure

S4). When the baseline mean is not constrained to be the same across

groups because of randomization, a non-constrained proportional lon-

gitudinal data analysis (PLDA) model can be used, and it demonstrated

similar power advantage over a non-constrained LDA (supplemental

section 2.4.2 and Figure S6).

The power increase can be attributed to the use of the propor-

tional treatment effect which allows all the assessments to directly

contribute to the estimate of the treatment effect. Because of the

proportional treatment effect, PcLDA can model participants with

different durations of follow-up, thus allows early enrollees to con-

tribute beyond the pre-determined duration while waiting for the late

enrollees to complete the trial. This is relevant as the most valuable

information for neurodegenerative disease such as AD is from those

participants with the longest exposure,23 and the financial cost for

extending follow-up is less than the recruitment of new participants.24

While using data from the extended follow-up can be appealing, the

dropout patterns and dropout reasons in the extended follow-up

should be examined carefully in both the treatment and the placebo

groups. If data are not missing at random, sensitivity analyses such as
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only using data before the extended follow-up should be conducted to

evaluate a treatment effect less affected by the biased dropout.

The proportional treatment effect assumption can be tested using

the test proposed in Section 2.3. If the proportions are not signifi-

cantly different, PcLDA will estimate the average proportional treat-

ment effect. If statistical tests following the procedure listed in Sec-

tion 2.3 show that, for example, two different proportions appear to

be more appropriate than one proportion, then PcLDA can be modi-

fied to incorporate two proportions; however, the more proportions

used, the less power advantage PcLDA will have over cLDA. Theoret-

ically, if a different proportion is used for each post-baseline visit, then

PcLDAwouldhaveminimumadvantageover cLDAas theefficacy infer-

ence for both models will rely on the end-of-study comparison. Our

simulations also demonstratedwhen the proportionality assumption is

moderately violated, PcLDAstill provides a conservative percent treat-

ment effect estimation compared to cLDA. All things considered, it is

recommended to include cLDA/MMRM as sensitivity analysis models.

An effective drug should manifest its treatment effect in all models

although not all of themwill reach statistical significance.

Our study has some limitations. First, PcLDA assumes a propor-

tional treatment effect over time which can be relaxed by increasing

the number of proportional parameters. However, this assumption is

not unique to PcLDA, as theCox proportional hazardsmodel employed

this assumption as well. Additionally, the change over time in recently

publishedADclinical trials indicated approximately proportional treat-

ment effects from baseline to the end of study.2,4,25,26 Some clinical

trial data showed that potential practice effect led to a bump on the

first post-baseline visit.3,27 There are several ways to overcome this

limitation. One is to simply use two proportions. The first one will take

care of the “bump” and the second one will demonstrate the treatment

effects. Another possibility is to model the treatment effect from the

second post-baseline visit or from a certain post-baseline time point

as demonstrated in the real data example. However, under these cir-

cumstances, an algorithmmust be pre-determined so that the primary

analysis will not become post hoc and rely on any information obtained

by checking the data. A second limitation is that if a drug has only a

symptomatic treatment effect, meaning the treatment effect appears

early and vanishes at later time points, the trial durationmust be calcu-

lated such that the assumption of proportional treatment effect can be

tested (as presented in Section 2.3). If the trial duration is too short,

the test may fail to detect a significant difference in the proportions

and thus falsely conclude the drug is equally effective during both

the early stage and the late stage. The average duration for clinical

trial is 34.6 weeks for symptomatic treatments and 62.1 weeks for

disease-modifying treatments,28 and thus we recommend researchers

to design the duration in reference to these numbers. Additionally,

PcLDA/pMMRMmodels also require the change of the placebo group

to be non-zero, and for clinical trials without any change over time, the

model may become problematic. Therefore, it is critical to choose the

outcomes and the visit duration (eg, 6 months or longer) so that the

change of the placebo group is non-zero. Furthermore, when planning

a trial, the number of post-baseline visits which meet the proportion-

ality assumption cannot be easily determined a priori and can only be

tested after the trial completion. Since the statistical test for the pri-

mary endpoint has to be stated a priori in the protocol, this approach

may be impractical for planning a clinical trial without appropriate pilot

data. With such pilot data it is a novel way to improve the assessment

of the effectiveness of a treatment.

In summary, we propose the proportional mixed models that (1)

estimate the proportional/percent treatment effect and its confi-

dence interval directly; (2) combine the merits of the traditional

MMRM/cLDAandLMEmodels, (3) lead to large increases in power, and

(4) can be easily implemented with widely used SAS procedures. Appli-

cation of PcLDA in AD clinical trials may facilitate the development of

effective drugs by reducing the sample size, shortening the trial dura-

tion, and maximizing the use of participants by allowing extended and

unequal follow-up for each participant.
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