TABLE 2.
The classification report of SVM classifiers.
Number of observations | Cross- validation accuracy | Accuracy | Precision | Recall | F1-score | Matthews correlation coefficient | ||
---|---|---|---|---|---|---|---|---|
Naïve Bayes | Validation dataset | |||||||
Barefoot | 53 | 0.89 | 0.89 | 0.91 | 0.90 | 0.78 | ||
Shod | 49 | 0.90 | 0.88 | 0.89 | ||||
Test dataset | ||||||||
Barefoot | 25 | 0.93 | 1.00 | 0.88 | 0.94 | 0.87 | ||
Shod | 19 | 0.86 | 1.00 | 0.93 | ||||
SVM | Validation dataset | |||||||
PCA-based SVM model | Barefoot | 54 | 0.96 | 0.93 | 1.00 | 0.96 | 0.92 | |
Shod | 48 | 1.00 | 0.92 | 0.96 | ||||
RFE-based SVM model | Barefoot | 51 | 0.98 | 0.98 | 0.98 | 0.98 | 0.96 | |
Shod | 51 | 0.98 | 0.98 | 0.98 | ||||
Test dataset | ||||||||
PCA-based SVM model | Barefoot | 24 | 0.95 | 0.96 | 0.96 | 0.96 | 0.91 | |
Shod | 20 | 0.95 | 0.95 | 0.95 | ||||
RFE-based SVM model | Barefoot | 27 | 0.95 | 0.93 | 1.00 | 0.96 | 0.91 | |
Shod | 17 | 1.00 | 0.88 | 0.94 |
Note: SVM, support vector machine; PCA, principal component analysis; RFE, recursive feature elimination.